
1

Blending

Blending

Learn to use the A component in RGBA
color for

• - Blending for translucent surfaces

• - Compositing images

• - Antialiasing

2

Opacity and Transparency

Opaque surfaces permit no light to pass through

• Transparent surfaces permit all light to pass

• Translucent surfaces pass some light

translucency = 1 – opacity ()

Physically Correct Translucency
Dealing with translucency in a physically correct manner is

difficult due to

• The complexity of the internal interactions of light and
matter

• Limitations of pipeline rendering w/ shaders

3

Window Transparency

• Look out a window

Window Transparency

• Look out a window

• What’s wrong with that?

4

Window Transparency

• Look out a window

• What’s wrong with that?

Screen Door Transparency

• glEnableGL_POLYGON_STIPPLE(GL_POLYGON_STIPPLE)

5

Example

• Example 1

• Example 2

• Frame Buffer (assuming 32-bits)
– Simple color model: R, G, B; 8 bits each
– -channel A, another 8 bits

• Alpha determines opacity, pixel-by-pixel
–  = 1: opaque
–  = 0: transparent
– 0 <  < 1: translucent

• Blend translucent objects during rendering
• Achieve other effects (e.g., shadows)

6

Compositing

• Back to Front

• Front to Back

ccincout CCC  )1(

)1(

)1(

incinout

inccinout CCC







Back to Front Compositing

7

Front to Back Compositing

8

Blending

• Blending operation
– Source: s = [sr sg sb sa]

– Destination: d = [dr dg db da]

– b = [br bg bb ba] source blending factors

– c = [cr cg cb ca] destination blending factors
– d’ = [brsr + crdr, , bgsg + cgdg ,bbsb + cbdb ,basa + cada]

OpenGL Blending and Compositing

• Must enable blending and pick source and
destination factors

gl.Enable(GL_BLEND)

gl.BlendFunc(source_factor,destination_factor)

• Only certain factors supported
gl.ZERO, gl.ONE

gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA

gl.DST_ALPHA, gl.ONE_MINUS_DST_ALPHA

See web or Programmers Guide for complete list

9

Blending Factors
/* BlendingFactorSrc */

gl.ZERO

gl.ONE
gl.DST_COLOR
gl.SRC_COLOR

gl.ONE_MINUS_DST_COLOR

gl.ONE_MINUS_SRC_COLOR

gl.SRC_ALPHA

gl.ONE_MINUS_SRC_ALPHA

gl.DST_ALPHA

gl.ONE_MINUS_DST_ALPHA

gl.SRC_ALPHA_SATURATE

gl.blendEquation(…)

• gl. FUNC_ADD

• gl. BLEND_EQUATION

• gl. BLEND_EQUATION_RGB
– /* same as BLEND_EQUATION */

• gl. BLEND_EQUATION_ALPHA

• /* BlendSubtract */

• gl. FUNC_SUBTRACT

• gl. FUNC_REVERSE_SUBTRACT

10

Blending Example

Given the following:

Fragment: (R,G,B,A)=

(0.0, 0.0, 1.0, 0.25)

Framebuffer: (0.0, 1.0, 0.0, 0.75)

Assume blending is enabled and
the state is correctly setup.

What is the result of the following:

RGBA blend with:

gl.blendFunc(
gl.ONE_MINUS_SRC_COLOR
, gl.SRC_ALPHA)?

Sorting

Magenta
Yellow
Gray
Cyan

Correct

11

Sorting

• General Solution?
– Just sort polygons

• Which Space?

– What About?

– Depth Peeling

Blending Errors

• Operations are not commutative

• Operations are not idempotent

• Interaction with hidden-surface removal
– Polygon behind opaque one should be hidden

– Translucent in front of others should be composited

– Show Demo of the problem
– Solution?

12

Blending Errors

• Interaction with hidden-surface removal
– Polygon behind opaque one should be hidden

– Translucent in front of others should be composited

– Solution?
• Two passes using alpha testing (gl.AlphaFunc): 1st pass

• alpha=1 accepted, and 2nd pass alpha<1 accepted

• make z-buffer read-only for translucent polygons (alpha<1)
with gl.depthMask(gl.FALSE);

– Demo

AntiAliasing in WebGL

The optional WebGLContextAttributes object may be used to change whether
or not the buffers are defined. It can also be used to define whether the
color buffer will include an alpha channel. If defined, the alpha channel is
used by the HTML compositor to combine the color buffer with the rest of
the page. The WebGLContextAttributes object is only used on the first call
to getContext. No facility is provided to change the attributes of the drawing
buffer after its creation.

The depth, stencil and antialias attributes, when set to true, are requests, not
requirements. The WebGL implementation should make a best effort to
honor them. When any of these attributes is set to false, however, the
WebGL implementation must not provide the associated functionality.
Combinations of attributes not supported by the WebGL implementation or
graphics hardware shall not cause a failure to create a
WebGLRenderingContext. The actual context parameters are set to the
attributes of the created drawing buffer. The alpha, premultipliedAlpha and
preserveDrawingBuffer attributes must be obeyed by the WebGL
implementation.

13

AntiAliasing in WebGL
https://www.youtube.com/watch?v=GvLEAHRmPl0#t=51

https://www.youtube.com/watch?v=GvLEAHRmPl0#t=98

dictionary WebGLContextAttributes {
GLboolean alpha = true;
GLboolean depth = true;
GLboolean stencil = false;
GLboolean antialias = true;
GLboolean premultipliedAlpha = true;
GLboolean preserveDrawingBuffer = false;

};

Antialias: If the value is true and the implementation supports antialiasing the
drawing buffer will perform antialiasing using its
choice of technique (multisample/supersample) and quality.
If the value is false or the implementation does not support antialiasing,
no antialiasing is performed.

14

Antialiasing Revisited

• Single-polygon case first

• Set  value of each pixel to covered
fraction

• Use destination factor of “1 – ”

• Use source factor of “”

• This will blend background with foreground

• Overlaps can lead to blending errors

Antialiasing with Multiple Polygons

• Initially, background color C0, a0 = 0

• Render first polygon; color C1 fraction 1

– Cd = (1 – 1)C0 + 1C1

– d = 1

• Render second polygon; assume fraction 2

• If no overlap (case a), then
– C’d = (1 – 2)Cd + 2C2

– ’d = 1 + 2

15

Antialiasing with Multiple Polygons

• Now assume overlap (case b)

• Average overlap is a1a2

• So ad = a1 + a2 – a1a2

• Make front/back decision for color as usual

16

Antialiasing in OpenGL

• Avoid explicit -calculation in program
• Enable both smoothing and blending

gl.Enable(gl.POINT_SMOOTH);
gl.Enable(gl.LINE_SMOOTH);
gl.Enable(gl.BLEND);

gl.BlendFunc(gl.SRC_ALPHA,gl.ONE_MINUS_SRC_ALPHA);

• Can also hint about quality vs performance
using gl.Hint(…)

