Sharing with Theads

Try changing t echo. c to count total bytes:
- t echo.c
static size t counter = 0;
int main() {
Pthread create(&th, NULL, echo, connfd p);
}
void *echo(void *connfd p) {
while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {
// printf ("server received %1d bytes\n", n);
counter += n;
Rio writen(connfd, buf, n);
}
printf ("total bytes so far: %1d\n", counter);
}

Concurrent Variable Updates

counter += n counter += n

l l

Problem: the program has a race condition

Two threads race to update counter

2-

3

movl
movl

addl
movl

Concurrent Variable Updates

<counter>, %rdx
<n>, %rax
$rdx, S%Srax
$rax, <counter>

l

movl
movl

addl
movl

<counter>, %rdx
<n>, %rax
$rdx, %rax
$rax, <counter>

l

Concurrent Variable Updates

»pmovl <counter>, %rdx »pmovl <counter>, %rdx
movl <n>, %rax movl <n>, %rax
addl $rdx, S%Srax addl $rdx, S%Srax

movl Srax, <counter> movl srax, <counter>
grax 0 grax 0

mpmovl
movl
addl
movl

Concurrent Variable Updates
counter n, n,
500 10
<counter>, %rdx »pmovl <counter>, %rdx
<n>, %rax movl <n>, %rax
$rdx, S%Srax addl $rdx, S%Srax
Srax, <counter> movl srax, <counter>
grax 0 grax 0
Srdx 0 rdx 0

movl
Bpmovl

addl
movl

Concurrent Variable Updates
counter n, n,
500 10
<counter>, %rdx »pmovl <counter>, %rdx
<n>, %rax movl <n>, %rax
$rdx, S%Srax addl $rdx, S%Srax
Srax, <counter> movl srax, <counter>
grax 0 grax 0
Srdx 500 rdx 0

movl
Bpmovl

addl
movl

Concurrent Variable Updates
counter n, n,
500 10
<counter>, %rdx movl <counter>, 3%rdx
<n>, %rax movl <n>, %rax
%$rdx, %rax paddl $rdx, %rax
Srax, <counter> movl srax, <counter>

movl
movl
addl
»movl

Concurrent Variable Updates
counter n, n,
500 10
<counter>, %rdx movl <counter>, 3%rdx
<n>, %rax movl <n>, %rax
%$rdx, %rax paddl $rdx, %rax
Srax, <counter> movl srax, <counter>

movl
movl

addl
movl

Concurrent Variable Updates
counter n, n,
510 10
<counter>, %rdx movl <counter>, 3%rdx
<n>, %rax movl <n>, %rax
%$rdx, %rax paddl $rdx, %rax
Srax, <counter> movl srax, <counter>

10

movl
movl

addl
movl

Concurrent Variable Updates
counter n, n,
510 10
<counter>, %rdx movl <counter>, 3%rdx
<n>, %rax movl <n>, %rax
$rdx, S%Srax addl $rdx, S%Srax
$rax, <counter> »movl $rax, <counter>

11

movl
movl

addl
movl

Concu

pdates

rrent Variablrer_
counter n, n,
510 10

read—add—write sequence is not atomic

<counter>,

<n>,
$rdx,

$rax
$rax

$rdx

$rax, <counter>

movl
movl
addl
»movl

<counter>, %rdx
<n>, %rax
$rdx, %rax

$rax, <counter>

12

Concurrent Variable Updates

Try compiling with -02

counter += n counter += n

l l

13

Concurrent Variable Updates

Try compiling with -02

movl <n>, %rax movl <n>, %rax
addl $rax, <counter> addl srax, <counter>

l l

Doesn’t work with a multiprocessor

14-15

Threads and Processors

Intended illusion:

Memory

heap

code

stack

stack

CPU

CPU

registers

registers

thread

thread

16

Threads and Processors

Observable behavior:

Memory

heap

code

stack stack

L2 cache| |L2 cache
CPU CPU

registers || || registers

thread thread

Cache coherence is expensive, so the machine just
doesn’t do it! ... unless you insist

17-18

Global Variables and Optimization

Remember that C compilers can make assumptions:

long counter = 1;

void count to(long n) {
while (counter < n)
counter++;

void wait for it() {
while (counter < 100000)

L)
4

19

Global Variables and Optimization

Remember that C compilers can make assumptions:

long counter = 1;
void count to(long n) {

while (counter < n)
counter++;

void wait for it() {

while (counter < 100000)

L)
4

long counter = 0;

void count(long n) {
long v = counter;
while (v < n)
v++;
counter = v;

void wait for it() {
if (counter < 100000)
while (1)

°
4

20

Threads and Sharing

Successful sharing among threads requires explicit synchronization
v Side-steps question of machine-code atomicity
v Declares need for cache coherence

v/ Exposes constraints to compiler

A program with a race condition is practically always a buggy program

21-22

Synchronization for Sharing
Several general approaches to sharing;

No sharing — pass messages, instead
v" No one changes your data while you look at it

X Communication must be explicitly scheduled

Transactions — system finds a good ordering
v" Programmer declares needed atomicity

X Requires substantial extra infrastructure

Locks — constrain allowed orders
v' Almost like declaring atomicity

X Declare and using locks correctly is still difficult

23-26

Synchronization for Sharing
Several general approaches to sharing;

No sharing — pass messages, instead
v" No one changes your data while you look at it

X Communication must be explicitly scheduled

Transactions — system finds a good ordering

v" Programmer declares needed atomicity

X F' Most common, especially for systems programming

Locks — constrain allowed orders
v' Almost like declaring atomicity

X Declare and using locks correctly is still difficult

27

Machine-Level Synchronization

lock cmpxchgx source, dest
Atomically checks whether $rax matches dest and
* if equal, copies source to dest, sets ZF

* if not equal, clears ZF

Atomicity means that if dest is a memory address,
caches are forced to agree during the instruction

A.K.A. compare and swap (CAS)

Accessible in gcc via
__sync_bool compare and swap (addr, old val, new_val)

28-31

Machine-Level Synchronization

#include "csapp.h"
volatile int counter;

void *count(void * n) {
int i, n = *(int *) n;

for (i = 0; 1 < n; i++)
counter++;

return NULL;

int main(int argc, char **argv) {
pthread t a, b;
int n = 30000;
Pthread create(&a, NULL, count, &n);
Pthread create (&b, NULL, count, &n);
Pthread join(a, NULL) ;
Pthread join(b, NULL) ;
printf ("result: %d\n", counter);

32

Machine-Level Synchronization

#include "csapp.h"
volatile int counter;

void *count(void * n) {
int i, n = *(int *) n;

for (i = 0; 1 < n; i++)
counter++;

return NULL;

int main(int argc, char **argv) {
pthread t a, b;
int n = 30000;
Pthread create(&a, NULL, count, &n);
Pthread create (&b, NULL, count, &n);
Pthread join(a, NULL) ;
Pthread join(b, NULL) ;
printf ("result: %d\n", counter);

volatile forces

separate load and

store on
counter

Result is
unspecified

33

Machine-Level Synchronization

CAS ensures a consistent result:

int old counter;

do {
old counter = counter;
} while (! sync bool compare and swap (&counter,

old counter,
old counter+l));

Copy

CAS is too low-level for most purposes
X Failure is a form of busy waiting

X Sometimes, multiple values need to change together

34-35

Locking for a Critical Region

A critical region is a section of code that should be
running in only one thread at a time

for (1 = 0; 1 < n; i++) {
counter++;

36

Locking for a Critical Region

A critical region is a section of code that should be

running in only one t' ,
& 4 Only one thread should increment at

a time
for (i vy d N 11y LT T 1
counter++;

Locking for a Critical Region

A critical region is a section of code that should be
running in only one thread at a time

for (1 = 0; 1 < n; i++) {
lock () ;
counter++;
unlock() ;

}

lock () returns if currently unlocked, otherwise waits

unlock () only if previously 1ock () ed

lock and unlock are not actual function names...

38-39

Locking for a Critical Region

A critical region is a section of code that should be
running in only one thread at a time

for (1 = 0; 1 < n; i++) {
lock () ;
count = lookup (name) ;
if (count < 10)
update (name, count + 1);
unlock () ;

}

lock () returns if currently unlocked, otherwise waits

unlock () only if previously 1lock () ed

40

Locking for Specific Data

Locks can be more fine-grained, such as locking specific object
instead of a section of code

for (1 = 0; i < n; i++)
lock (locks[1]) ;
count = lookup (orders[i], name) ;
if (count < 10)
update (orders[i], name, count + 1);
unlock (locks[1]) ;

41

Locking as a Signaling Mechanism

Since 1lock () waits for another thread’s unlock (), locks can
effectively send a “signal” from one thread to another

int value = 0;
lock_t ready lock;

int main() {

lock (ready lock);
Pthread create(&th, NULL, go, NULL);

value = 1;
unlock (ready lock) ;

}

void *go(void *ignored) ({
lock (ready lock) ;
. value

4?2

Locking as a Signaling Mechanism

Since 1lock () waits for another thread’s unlock (), locks can
effectively send a “signal” from one thread to another

int value = 0;
lock_t ready lock;

int main() {

lock (ready lock);
Pthread create(&th, NULL, go, NULL);

value = 1;
unlock (ready lock) ;

}

void *go(void *ignored) ({
lock (ready lock) ;
value

} Cannot proceed until main thread gets to unlock

Locking as a Signaling Mechanism

If unlock () doesn’t have to be in the 1lock () thread, signaling
can work the other way, too

int value = 0;
lock_t ready lock;

int main() {

lock (ready lock);
Pthread create(&th, NULL, go, NULL);
lock (ready lock) ;

. value

}

void *go(void *ignored) ({
value = 1;
unlock (ready lock);

Locking as a Signaling Mechanism

If unlock () doesn’t have to be in the 1lock () thread, signaling
can work the other way, too

int value = 0;
lock_t ready lock;

int main() {
lock (ready lock);

Pthread create(&th, NULL, go, NULL);
lock (ready lock) ;

value

}

void *go(void *ignored) ({
value = 1;
unlock (ready lock);

Cannot proceed until new thread gets to unlock

45

Kinds of Locks

Mutex
* pthread mutex t

* pthread mutex init (mutex, attr)
* pthread mutex lock (mutex)
* pthread mutex unlock (mutex)
. . .lock () and balancing . . .unlock () must be same thread

Semaphore
*sem t
* Sem _init(sem, ps_share, value)
« P(sem) = lock (), but with a counter
* V(sem) =unlock (), with the counter
P () and balancing V() threads can be different

46-47

Kinds of Locks

Mutex
* pthread mutex t

* pthread mutex init (mutex, attr)
* pthread mutex lock (mutex)

" Pthr gometimes, we create a semaphore and name it mutex,

.- -lock pecause it’s used that way

Semaphore
*sem t
* Sem _init(sem, ps_share, value)
« P(sem) = lock (), but with a counter
* V(sem) =unlock (), with the counter
P () and balancing V() threads can be different

48

Semaphores

#include "csapp.h"

void Sem init(sem t *sem, int ps share, unsigned int value);
void P(sem t *sem);

void V(sem t *sem);

void Sem destroy(sem t *sem) ;

Sem init creates sem with initial count value
1 as value for a mutex
0 as ps_share

P waits until sem has a non-0 count, then decrements
corresponds to lock, also called “wait”

V increments sem’s count
corresponds to unlock, also called “post”

Sem destroy destroys sem

49

Semaphore Example

sem_ t count_sem;

void *count(void * n) {
int i, n = *(int *) n;

for (i = 0; i < n; i++) {
P (&count sem) ;
counter++;
V(&count sem) ;

}

return NULL;

int main(int argc, char **argv) {

Sem init(&count sem, 0, 1);
Pthread create(&a, NULL, count, &n);
Pthread create (&b, NULL, count, é&n);

50

Semaphores for Echo

t_echo .C

sem t ready sem, count_ sem;
int main(int argc, char **argv) {

Sem init (&count sem, 0, 1);
Sem init(&ready sem, 0, 0);

Pthread create(&th, NULL, echo, &connfd);
P(&ready sem) ;

void *echo (void *connfd p) {
V(&ready sem) ;
P (&count_sem) ;

counter += n;
V(&count sem) ;

51

Semaphores as Per-Object Locks

counter.c

typedef struct {
int val;
sem t sem;

} counter;

counter *make counter() {
counter *c = malloc(sizeof (counter)) ;
c->val = 0;
Sem init(&c->sem, 0, 1);
return c;

void counter add(counter *c, int amt) {
P(&c->sem) ;
c->val += amt;
V(&c->sem) ;

void destroy counter (counter *c) ({
Sem destroy (&c->sem) ;
free(c);

52

Limiting Echo Threads
Our echo server runs N threads for N concurrent clients

Using a fixed number of threads, instead:
v limits the server’s resource consumption

v lowers cost of handling each connection

echo

accept echo

echo

53-55

Limiting Echo Threads
Our echo server runs N threads for N concurrent clients

Using a fixed number of threads, instead:
v limits the server’s resource consumption

v lowers cost of handling each connection

producer of £ds echo

accept echo

echo

56

Limiting Echo Threads

Our echo server runs N threads for N concurrent clients

Using a fixed number of threads, instead:
v limits the server’s resource consumption

v lowers cost of handling each connectic

producer of £ds

accept

consumers of £ds

echo

echo

echo

57

Limiting Echo Threads
Our echo server runs N threads for N concurrent clients

Using a fixed number of threads, instead:
v limits the server’s resource consumption

. .. consumers of £ds
v lowers cost of handling each connectic

producer of £ds echo
sbuf t /

accept ——> |fd|[fd||fd — echo

\‘ echo

Limiting Echo Threads
Our echo server runs N threads for N concurrent clients

Using a fixed number of threads, instead:

v limits the server’s resource consumption

. .. consumers of £ds
v lowers cost of handling each connectic

producer of £ds echo
sbuf t /

accept ———> |fd||fd| fd \—> echo
|

A pipe-like, thread-safe queue: echo

* consumer waits if empty

* producer waits if full

Implementing a Limited Queue with Semaphores

Strategy: use semaphore count to reflect availability

* sbuf insert (for producer) — count is available slots

* sbuf remove (for consumer) — count is available values

= two counter semaphores, plus one as a mutex

60-61

Implementing a Limited Queue with Semaphores

sbuf.h

typedef struct {
int *buf;
int n;
int front;
int rear;
sem t mutex;
sem t slots;
sem t items;
} sbuf t;

/*
/*
/*
/*
/*
/*
/*

Buffer array */

Maximum number of slots */

buf[(front+l) %n] is first item */
buf[rear%n] is last item */
Protects accesses to buf */
Counts available slots */

Counts available items */

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigs

Implementing a Limited Queue with Semaphores

sbuf.c
void sbuf init(sbuf t *sp, int n) ({
sp->buf = Calloc(n, sizeof (int));
sp->n = n; /* max of n items */
sp->front = sp->rear = 0; /* empty iff front == rear */

Sem init(&sp->mutex, 0, 1); /* for locking */
Sem init(&sp->slots, 0, n); /* initially n empty slots */
Sem init(&sp->items, 0, 0); /* initially zero data items */

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigg

Implementing a Limited Queue with Semaphores

sbuf.c

void sbuf insert(sbuf t *sp, int item) {
P (&sp->slots) ; /* wait for available slot */
P (&sp->mutex) ; /* lock */
sp->buf [(++sp->rear) S (sp->n)] = item;
V (&sp->mutex) ; /* unlock */
V (&sp->items) ; /* announce available item */

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigp

Implementing a Limited Queue with Semaphores

sbuf.c

int sbuf remove (sbuf t *sp) {
int item;
P(&sp->items); /* wait for available item */
P(&sp->mutex); /* lock */
item = sp->buf|[(++sp->front) s (sp->n)];
V(&sp->mutex); /* unlock */
V(&sp->slots); /* announce available slot */

return item;

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigg

Producer—Consumer Echo Server

pc_echo.c

sbuf t connfds;

int main(int argc, char **argv) {
égﬁé_init(&connfds, SBUF SIZE) ;
for (i = 0; i < NUM THREADS; i++) {

Pthread create(&th, NULL, echo, NULL);
Pthread detach(th);

}

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
sbuf insert (&connfds, connfd);

66

Producer—Consumer Echo Server

pc_echo.c

void *echo(void *ignored) {
while (1) {
connfd = sbuf remove (&connfds) ;
Rio readinitb(&rio, connfd) ;
while((n = Rio readlineb(&rio, buf, MAXLINE)) '= 0) ({
printf ("server received %1d bytes\n", n);

Rio writen(connfd, buf, n);

}

Close (connfd) ;

67

Threads and errno

Suppose one thread is running

fd = open(...)
if (£d < 0)
fprintf (stderr, "%d", errno);

and another is running

fd = connect(...);
if (£d < 0)
fprintf (stderr, "%d", errno);

Can the open thread get the errno value for connect!

No, errno is thread-local Whew!

68-69

Thread-Safe Functions

Standard library functions are generally thread-safe

OK in multiple threads:
*malloc and free

- read on the same file descriptor
- fread on the same file handle
- getaddrinfo to fill different records

Not OK in multiple threads:

- getenv when setenv might be called
* rio readnb on a specific buffer

70-71

Concurrency vs. Parallelism

Concurrency = multiple control flows overlapping in time

possibly on a uniprocessor

reduces latency

Parallelism = multiple control flows at the same time

requires a multiprocessor

can improve throughput

parallelism = concurrency concurrency # parallelism

72-74

