File Descriptors
Unix philosophy: everything is a file

*main.c

*a.out

« /dev/sdal — the whole disk

« /dev/tty2 — a terminal

» /proc/cpuinfo — CPU as deduced by the kernel

* unnamed channels of communication
including input and output streams

A file descriptor is a handle to a file’s input and/or output
represented as an int

1-7



Opening Files

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *path, int flags);

Open a file, where £1lags is typically O RDONLY,
O _WRONLY, or O_RDWR

Adding O _CREAT implies an extra argument

#include <unistd.h>

int close(int £d);

Closes a file descriptor



Reading and Writing

#include <unistd.h>

ssize t read(int fd, void *buf, size t n);

Reads from £d, putting up to n bytes into buf

#include <unistd.h>

ssize t write(int fd, const void *buf, size t n);

Write to £d, using up to n bytes from buf

Result in either case is number of bytes read/written

or —1 for an error



Example: Reading a File

#include "csapp.h" )
505 Prints

ELF

int main(int argc, char **argv) {
int fd = Open(argv[0], O RDONLY, 0);
char buf[5];

Read (£fd, buf, 4);
buf[4] = 0;

printf ("$s\n", buf+l);
return O;

10-11



Creating a Pipe
#include <unistd.h>

int pipe(int fds[2]) ;

Create an unnamed “file”
just in memory — not on a disk

« £fds[O0] is the read end

« fds[1] is the write end

12



Example: Data through a Pipe

#include "csapp.h"

int main(int argc, char **argv) {

int fds[2];
char buf[6];

Pipe (fds) ;
Write(fds[1l], "Hello",

Read (fds[0], buf, 5);
buf[5] = 0;

printf ("%$s\n", buf);
return O;

5);

Prints
Hello

13-14



Example: Pipe Read Waits on Write

#include "csapp.h"

int main(int argc, char **argv)
int fds[2];

Pipe (fds) ;

if (Fork() == 0) {
Sleep (1) ;
Write (fds[1l], "Hello", 5);
} else {
char buf[6];
Read (fds[0], buf, 5);
buf[5] = 0;
printf ("$s\n", buf);
}

return O;

{

Prints
Hello

after | second

15-16



Example: EOF Result

#include "csapp.h"

int main(int argc, char **argv) ({
int f£ds[2];
char buf[6];

Pipe (fds) ;

Write(fds[1l], "Hello", 5);
Write(fds[1l], "World", 5);
Close(fds[1]) ;

while (1) {
ssize t n = Read(fds[0], buf, 3);
if (n == 0) break;
buf[n] = 0;
printf ("$s\n", buf);

return 0O;

Prints
Hel

l1oW

orl
d

17-18



Example: Fork and Closing Pipes

#include "csapp.h"

int main(int argc, char **argv) ({
int fds[2];
Pipe (fds) ;

if (Fork() == 0) {
Write (fds[1l], "Hello", 5);
Close(fds[1]);
} else {
// Close(fds[1l]) ;
while (1) {
char buf[6];

ssize t n = Read(fds[0], buf, 3);

if (n == 0) break;
buf[n] = 0;
printf ("$s\n", buf);
}
}

return 0O;

Gets stuck, unless
the Close call is

uncommented

19-20



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1
fd 3
fd 4

\

[

write

position = 5

refcount = 1

®
pipe (fds)

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editiop



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1
fd 3|
fd 4

Hellol

write

position = 5

refcount = 0

® >
pipe (fds) close(fds[1])

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editios



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1
fd 3
fd 4

\

[

write

position = 5

refcount = 1

®
pipe (fds)

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editieg



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O read .
fd 1 position = 0
fd 2 refcount = 2
]
£d 3 Hello..
fd 4| .
write
position = 5
fd 0 refcount = 2
fd 1
fd 2 o
£4 3| ¢
£d4 4| ¢
e >
pipe (fds) fork c

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editiop



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O read .
fd 1 position = 0
fd 2 refcount = 2
£d 3|
fd 4| .
write
position = 5
fd 0 refcount = 1
fd 1
fd 2 "
£d4 3| ¢ close (fds[1])
fd 4
® >
pipe (fds) fork

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editiog



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1
fd 3
fd 4

\

[

write

position = 5

refcount = 1

>o >®
close(fds[1l]) exit

>0

®
pipe (fds) fork

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editiog



File Descriptors and Open Files

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1
fd 3|
fd 4

Hellol

write

position = 5

refcount = 0

>o >®
close(fds[1l]) exit

° >o
pipe (fds) fork close(fds[1l])

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Edition



Example: Pipe Write Can Wait on Read

#include "csapp.h"

int main(int argc, char **argv) {
int fds[2];

Pipe (fds) ;

if (Fork() == 0) {
char buf[6];
Sleep(2) ;
while (Read(fds[0], buf, 6) > 0)
} else {
int i;
for (1 = 0; i < 20000; i++)
Write(fds[1l], "Hello", 5);
printf ("done\n") ;
}

return O;

{

}

Prints
done
after ~2 seconds

Sleep (1)

= ~| second

fewer iterations

= ~0 seconds

28-29



Pipe Buffer Size

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1
£fd 3|
fd 4|
- —— 3/ write
position = 5 pipe buffer holds
refcount = 1 only so much

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigg



Input, Output, and Error

Every process starts with at least 3 file descriptors:

* 0 = standard input (read)
* 1 = standard output (write)

2 = standard error (write)

31



Using Standard File Descriptors

#include '"csapp.h"

int main() {
char buffer[32];
int n;

Write(l, "Your name? ", 11);
n = Read (0, buffer, 32);
Write (2, "Unknown: ", 9);

Write (2, buffer,

return O;

n);

Copy

Writes to output,
reads from input,
writes to error

32-33



Setting Standard File Descriptors

fork creates a process with the same file descriptors
as the parent

A shell needs a way to redirect input, output, and errors

#include <unistd.h>

int dup2(int oldfd, int newfd);

Makes newfd refer to the same open file as oldfd

if newfd is already used, closes it first

34-36



Capturing Child Output

#include "csapp.h"

int main() {
pid t pid;
int fds[2], n;

Pipe (fds) ;

pid = Fork()

if (pid == 0) {
Dup2 (fds[1], 1);
printf ("Hello!");

} else {
char buffer[32];
Close(fds[1l]) ;
Waitpid(pid, NULL, 0);

n = Read(fds[0], buffer, 31);

buffer[n] = 0;
printf ("Got: %s\n" ,buffer) ;
}

return O;

Prints
Got: Hello!

because printf
writes to 1

37-38



Redirecting File Descriptors

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )

fd 1 position = 0
fd 2 refcount = 1
fd 3
fd 4

\

[

write

position = 0

refcount = 1

®
pipe (fds)

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editiog



Redirecting File Descriptors

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O read .
fd 1 position = 0
fd 2 refcount = 2
£d 3| 7
fd 4| .
write
position = 0
fd 0 refcount = 2
fd 1
fd 2 o
£4 3| ¢
£d4 4| ¢
e >
pipe (fds) fork c

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigg



Redirecting File Descriptors

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O read .
fd 1 position = 0
fd 2 refcount = 2
£d 3| 7
fd 4| .
write

position = 0
fd 0 refcount = 3
fd 1
fd 2 o
£d4 3| ¢ dup2 (fds[1], 1)
£d4 4| ¢

° >0

pipe (fds) fork

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigg



Redirecting File Descriptors

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0
fd 2 refcount = 1
£d 3| 7
£fd 4 ,
write
position = 0
fd 0 refcount = 1
fd 1
fd 2 o o
£d 3 dup2 close(fds[0])
1
£ 4 close(fds[1l])
® > L
fork .. close(fds[1])

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigs



Redirecting File Descriptors

file descriptor table open file table underlying device
ber-process shared by all processes shared by all processes
fd O /" read )
fd 1 position = 0

fd 2 refcount = 1

fd 3| |
Hello!'m|
fd 4 .
write
position = 6
refcount = 0
>0 >0 >0
dup2 printf exit
° >e >®
fork - close(fds[1])

Bryant and O’Hallaron, Computer Systems:A Programmer’s Perspective, Third Editigg



Shell Pipeline
$ cat *.c | grep fork | wc -1

* pipe (fdsA) for a cat-to-grep connection
- pipe (£dsB) for a grep-to-wc connection
« fork three times;in those children:

© dup2 (fdsA[1], 1)
exec ("/bin/cat", ...)

© dup2 (£dsA[0], O)
dup2 (£dsB[1], 1)
exec ("/bin/grep", ...)

© dup2 (£dsB[0], O0)
exec ("/bin/wec", ...)

44-46



Shell Pipeline

$ cat *.c | grep fork | wc -1

* pipe (fdsA) for a cat-to-grep connection

- pipe (£dsB) for a grep-to-wc connection

 fork three times;in those children:

© dup2 (fdsA[1], 1)
exec ("/bin/cat",

© dup2 (£dsA[0], O)
dup2 (£dsB[1], 1)
exec ("/bin/grep",

© dup2 (£dsB[0], O0)
exec ("/bin/wec",

Before exec, plus parent:
close (fdsA[0])
close (fdsA[l])
close (£dsB[0])
close (fdsB[1])

47



Shell Pipeline

$ cat *.c | grep fork

Pipe buffer limit keeps cat from
getting too far ahead of grep

wc -1

48



Unix I/O vs. C Library I/O

* Unix
© file descriptors as int
© open, read, write, ..

* Standard C
O file handles as FILE*

© fopen, fread, fwrite, ..

Convert from file descriptor to FILE* using £dopen

Predefined:

* stdin = fdopen (0, "r")
* stdout = fdopen (1, "w"
* stderr = fdopen (2, "w"

49-50



Unix I/O vs. C Library I/O

#include "csapp.h"
#define ITERS 1000000

int main() {

#include "csapp.h"
#define ITERS 1000000

int main() {

int fds[2]; int fds[2];

int i; int i;

Pipe (fds) ; Pipe (fds) ;

if (Fork() == 0) { if (Fork() == 0) {

for (i = 0; 1 < ITERS; i++)
Write(fds[1], "Hello", 5);

FILE *out = fdopen(fds[1l], "w");
for (i = 0; i < ITERS; i++)

} else { fwrite("Hello", 1, 5, out);
char buffer([5]; } else {
int n = 0; FILE *in = fdopen(fds[0], "r");
for (i = 0; i < ITERS; i++) char buffer([5];
n += Read(fds[0], buffer, 5); int n = 0;
printf ("%d\n", n); for (i = 0; i < ITERS; i++)
} n += fread(buffer, 1, 5, in);

return O;

} }

C
=2 return 0;

printf ("%$d\n", n);




Unix I/O vs. C Library I/O

#include "csapp.h"
#define ITERS 1000000

int main() {
int f£ds[2];
int 1i;

Pipe (fds) ;
if (Fork() == 0) {

for (i = 0; i < ITERS; i++)

Write (fds[1l], "Hello", 5);

} else {

char buffer([5];

int n = 0;

for (i = 0; i < ITERS; i++)

n += Read(fds[0], buffer, 5);

printf ("%d\n", n);
}

return O;

(D

| Ox faster!

#include "csapp.h"
#define ITERS 1000000

int main() {
int f£ds[2];
int 1i;

Pipe (fds) ;
if (Fork() == 0) {

FILE *out = fdopen(fds[1],
for (i = 0; i < ITERS;

fwrite("Hello",
} else {

FILE *in = fdopen(fds[O0],

char buffer[5];
int n = 0;

for (i = 0; i < ITERS;
n += fread(buffer,

printf ("%$d\n", n);
}

return 0O;




Unix I/O vs. C Library I/O

53



Unix I/O vs. C Library I/O

54



Unix I/O vs. C Library I/O

55



Unix I/O vs. C Library I/O

System call through kernel every time

56



Unix I/O vs. C Library I/O

57



Unix I/O vs. C Library I/O

58



Unix I/O vs. C Library I/O

Extra bytes are stored in the FILE record

59



Unix I/O vs. C Library I/O

Extra bytes are stored in the FILE record

60



Unix I/O vs. C Library I/O

User Kernel
fread(..., 5, ...)
memcpy (.. .)

Extra bytes are stored in the FILE record

Fast when buffered bytes are available

61



Unix I/O vs. C Library I/O

62



Unix I/O vs. C Library I/O

63



Unix I/O vs. C Library I/O

64



Unix I/O vs. C Library I/O

System call through kernel every time

65



Unix I/O vs. C Library I/O

66



Unix I/O vs. C Library I/O

User Kernel
fwrite(..., 5, ...)
memcpy (.. .)

Written bytes are stored in the FILE record

Fast when buffer space is available

67



Unix I/O vs. C Library I/O

User Kernel

fwrite(..., 5, ...)

Q£ite(..., 4096)7 )

Written bytes are stored in the FILE record

Bytes are flushed when the buffer is full

68



Unix I/O vs. C Library I/O

User Kernel

fflush(...)

ﬁ£ite(..., 130) )

Written bytes are stored in the FILE record

Explicit flush also writes

69



Output Buffer Modes

Automatic flushes depend on the buffer mode
* Unbuffered — flush on every write
* Block buffered — flush when out of space

* Line buffered — flush when writing newline

printf ("Hello\n") ;

70-71



Output Buffer Modes

Automatic flushes depend on the buffer mode
* Unbuffered — flush on every write
* Block buffered — flush when out of space

* Line buffered — flush when writing newline

Default buffer mode?! It depends

 stderr: unbuffered

* terminal output: line buffered
determined by isatty ()

* anything else: block buffered

72



/O Options

Unix I/O
+ Precise control

- Slow for small transfers
— Partial reads/write possible due to limits or signals

Standard C
+ Fast via buffering

+ Many conveniences
- Less control

From csapp. c:
* sio_...:convenience around Unix |/O

* rio_ .. .: partial-handling wrapper around Unix I/O

73-74



