
XAPP465 (v1.1) May 20, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary The SRL16 is an alternative mode for the look-up tables where they are used as 16-bit shift
registers. Using this Shift Register LUT (SRL) mode can improve performance and rapidly lead
to cost savings of an order of magnitude. Although the SRL16 can be automatically inferred by
the software tools, considering their effective use can lead to more cost-effective designs.

This application note applies to all Spartan™-3 Generation FPGA families, which include the
Spartan-3 family, the Spartan-3L family, and the Spartan-3E family.

Introduction Spartan-3 Generation FPGAs can configure the look-up table (LUT) in a SLICEM slice as a
16-bit shift register without using the flip-flops available in each slice. Shift-in operations are
synchronous with the clock, and output length is dynamically selectable. A separate dedicated
output allows the cascading of any number of 16-bit shift registers to create whatever size shift
register is needed. Each CLB resource can be configured using four of the eight LUTs as a
64-bit shift register.

This document provides generic VHDL and Verilog submodules and reference code examples
for implementing from 16-bit up to 64-bit shift registers. These submodules are built from 16-bit
shift-register primitives and from dedicated MUXF5, MUXF6, and MUXF7 multiplexers.

These shift registers enable the development of efficient designs for applications that require
delay or latency compensation. Shift registers are also useful in synchronous FIFO and
Content-Addressable Memory (CAM) designs. To quickly generate a Spartan-3 shift register
without using flip-flops (i.e., using the SRL16 element(s)), use the CORE Generator™ RAM-
based Shift Register module.

Shift Register
Architecture

The structure of the SRL16 is described from the bottom up, starting with the shift register and
then building up to the surrounding FPGA structure.

LUT Structure

The Look-Up Table can be described as a 16:1 multiplexer with the four inputs serving as binary
select lines, and the values programmed into the Look-Up Table serving as the data being
selected (see Figure 1).

With the SRL16 configuration, the fixed LUT values are configured instead as an addressable
shift register (see Figure 2). The shift register inputs are the same as those for the synchronous
RAM configuration of the LUT: a data input, clock, and clock enable (not shown). A special

Application Note: Spartan-3 FPGA Series

XAPP465 (v1.1) May 20, 2005

Using Look-Up Tables as Shift Registers
(SRL16) in Spartan-3 Generation FPGAs

R

Figure 1: LUT Modeled as a 16:1 Multiplexer

x465_01_070603

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1 0 1 1 1 0 0 0

D

A[3:0]

1 1 1 0 1 0 0 1

http://www.xilinx.com

2 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Shift Register Architecture
R

output for the shift register is provided from the last flip-flop, called Q15 on the library primitives
or MC15 in the FPGA Editor. The LUT inputs asynchronously (or dynamically) select one of the
16 storage elements in the shift register.

Dynamic Length Adjustment

The address can be thought of as dynamically changing the length of the shift register. If D is
used as the shift register output instead of Q15, setting the address to 7 (0111) selects Q7 as
the output, emulating an 8-bit shift register. Note that since the address lines control the mux,
they provide an asynchronous path to the output.

Logic Cell Structure

Each SRL16 LUT has an associated flip-flop that makes up the overall logic cell. The
addressable bit of the shift register can be stored in the flip-flop for a synchronous output or can
be fed directly to a combinatorial output of the CLB. When using the register, it is best to have
fixed address lines selecting a static shift register length to avoid timing hazards. Since the
clock-to-output delay of the flip-flop is faster than the shift register, performance can be
improved by addressing the second-to-last bit and then using the flip-flop as the last stage of
the shift register. Using the flip-flop also allows for asynchronous or synchronous set or reset of
the output.

The shift register input can come from a dedicated SHIFTIN signal, and the Q15/MC15 signal
from the last stage of the shift register can drive a SHIFTOUT output. The addressable D output
is available in all SRL primitives, while the Q15/MC15 signal that can drive SHIFTOUT is only
available in the cascadable SRLC16 primitive.

The SRL16 can shift from either LSB to MSB or MSB to LSB according to the application.
Although the device arbitrarily names the output MC15, it can be the LSB of the user function.

Figure 2: LUT Configured as an Addressable Shift Register

Figure 3: Logic Cell SRL Structure

x465_02_040203

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D

A[3:0]

DIN

CLK

D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q D Q

Q15 or
MC15

A[3:0]

SHIFTIN

SHIFTOUT
or YB

DI (BY)

D

MC15

DI

WSG

CE (SR)
CLK

SRLC16

D Q

SHIFT-REG

WE
CK

A[3:0] Output

Registered
Output

(optional)

4

X465_03_040203

WS

http://www.xilinx.com

Shift Register Architecture

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 3

R

Slice Structure

The two logic cells within a slice are connected via the SHIFTOUT and SHIFTIN signals for
cascading a shift register up to 32 bits (see Figure 4). These connect the Q15/MC15 of the first
shift register to the DI (or Q0 flip-flop) of the second shift register.

If dynamic addressing (or "dynamic length adjustment") is desired, the two separate data
outputs from each SRL16 must be multiplexed together. One of the two SRL16 bits can be
selected by using the F5MUX to make the selection (see Figure 5).

CLB Structure

The Spartan-3 Generation CLB contains four slices, each with two Look-Up Tables, but only
two allow LUTs to be used as SRL16 components or distributed RAM. The two left-hand
SLICEM components allow their two LUTs to be configured as a 16-bit shift register. The same
cascading of SHIFTOUT to SHIFTIN available between the LUTs in the SLICEM is also
available to connect the two SLICEM components. The four left-hand LUTs of a single CLB can
be combined to produce delays up to 64 clock cycles (see Figure 6).

Figure 4: Shift Register Connections Between Logic Cells in a Slice

Figure 5: Using F5MUX for Addressing Multiple SRL16 Components

SHIFTIN

SLICEM

SHIFTOUT

X465_04_070703

MC15

SRL16
LC

DI

SRL16
LC

F5MUX

X465_05_070703

SRL16

A[3:0]

A4

LC

SRL16
LC

http://www.xilinx.com

4 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Shift Register Architecture
R

The multiplexers can be used to address multiple SLICEMs similar to the description for
combining the two LUTs within a SLICEM. The F6MUX can be used to select from three or four
SRL16 components in a CLB, providing up to 64 bits of addressable shift register (see
Figure 7).

Figure 6: Cascading Shift Register LUTs in a CLB

Figure 7: Using F6MUX to Address a 64-Bit Shift Register

SLICEM S0

SLICEM S1

1 Shift Chain
in CLB

X465_06_040503

SRLC16
MC15

MC15

D

SRLC16

DI

DI

SHIFTIN

IN

OUT

CASCADABLE OUT

FF

FFD

SRLC16
MC15

MC15

D

SRLC16
DI

SHIFTOUT

FF

FFD

DI

 X465_07_040203

LUT

SLICEM S1

D

LUT

LUT

SLICEM S0

F6

LUT

F5

F5

CLB

http://www.xilinx.com

Library Primitives

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 5

R

Library
Primitives

Eight library primitives are available that offer optional clock enable (CE), inverted clock (CLK)
and cascadable output (Q15) combinations.

Table 1 lists all of the available primitives for synthesis and simulation.

Initialization in VHDL and Verilog Code

A shift register can be initialized in VHDL or Verilog code for both synthesis and simulation. For
synthesis, the INIT attribute is attached to the 16-bit shift register instantiation and is copied in
the EDIF output file to be compiled by Xilinx Alliance Series tools. The VHDL code simulation
uses a generic parameter to pass the attributes. The Verilog code simulation uses a
defparam parameter to pass the attributes.

The S3_SRL16E shift register instantiation code examples (in VHDL and Verilog) illustrate
these techniques (see “VHDL and Verilog Templates,” page 12). S3_SRL16E.vhd and .v files
are not a part of the documentation.

Port Signals

Clock — CLK

Either the rising edge or the falling edge of the clock is used for the synchronous shift-in. The
data and clock enable input pins have set-up times referenced to the chosen edge of CLK.

Data In — D

The data input provides new data (one bit) to be shifted into the shift register.

Table 1: Shift Register Primitives

Primitive Length Control Address Inputs Output

SRL16 16 bits CLK A3, A2, A1, A0 Q

SRL16E 16 bits CLK, CE A3, A2, A1, A0 Q

SRL16_1 16 bits CLK A3, A2, A1, A0 Q

SRL16E_1 16 bits CLK, CE A3, A2, A1, A0 Q

SRLC16 16 bits CLK A3, A2, A1, A0 Q, Q15

SRLC16E 16 bits CLK, CE A3, A2, A1, A0 Q, Q15

SRLC16_1 16 bits CLK A3, A2, A1, A0 Q, Q15

SRLC16E_1 16 bits CLK, CE A3, A2, A1, A0 Q, Q15

Figure 8: SRLC16E Primitive

D

CE

CLK

Q

Q15

A0

A1

A2

A3

SRLC16E

X465_19_040503

http://www.xilinx.com

6 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Library Primitives
R

Clock Enable — CE (optional)

The clock enable pin affects shift functionality. An inactive clock enable pin does not shift data
into the shift register and does not write new data. Activating the clock enable allows the data
in (D) to be written to the first location and all data to be shifted by one location. When available,
new data appears on output pins (Q) and the cascadable output pin (Q15).

Address — A3, A2, A1, A0

Address inputs select the bit (range 0 to 15) to be read. The nth bit is available on the output pin
(Q). Address inputs have no effect on the cascadable output pin (Q15), which is always the last
bit of the shift register (bit 15).

Data Out — Q

The data output Q provides the data value (1 bit) selected by the address inputs.

Data Out — Q15 (optional)

The data output Q15 provides the last bit value of the 16-bit shift register. New data becomes
available after each shift-in operation.

Inverting Control Pins

The two control pins (CLK, CE) have an individual inversion option. The default is the rising
clock edge and active High clock enable.

GSR

The global set/reset (GSR) signal has no impact on shift registers.

Attributes

Content Initialization — INIT

The INIT attribute defines the initial shift register contents. The INIT attribute is a hex-encoded
bit vector with four digits (0000). The left-most hexadecimal digit is the most significant bit. By
default the shift register is initialized with all zeros during the device configuration sequence, but
any other configuration value can be specified.

Location Constraints

Figure 9 shows how the slices are arranged within a CLB. Each CLB has four slices, but only
the two at the bottom-left of the CLB can be used as shift registers. These are both designated
SLICEM in CLB positions S0 and S1. The relative position coordinates are X0Y0 and X0Y1. To
constrain placement, these coordinates can be used in a LOC property attached to the SRL
primitive. Note that the dedicated CLB shift chain runs from the top to the bottom, but the start
and end of the shift register can be in any of the four SLICEM LUTs.

http://www.xilinx.com

Library Primitives

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 7

R

Shift Register Operations

Data Flow

Each shift register (SRL16 primitive) supports:

• Synchronous shift-in

• Asynchronous 1-bit output when the address is changed dynamically

• Synchronous shift-out when the address is fixed

In addition, cascadable shift registers (SRLC16) support synchronous shift-out output of the
last (16th) bit. This output has a dedicated connection to the input of the next SRLC16 inside
the CLB resource. Two primitives are illustrated in Figure 10.

Figure 9: Arrangement of Slices within the CLB

Figure 10: Shift Register and Cascadable Shift Register

X465_08_040203

Interconnect
to Neighbors

Left-Hand SLICEM
(Logic or Distributed RAM

or Shift Register)

Right-Hand SLICEL
(Logic Only)

CIN

SLICE
X0Y1

SLICE
X0Y0

Switch
Matrix

COUT

CLB

COUT

SHIFTOUT
SHIFTIN

CIN

SLICE
X1Y1

SLICE
X1Y0

X465_09_070703

D Q

Address

CE

CLK

SRL16E

D Q

Address

CE

CLK

SRLC16E

D Q

Q15

Q15

Address

CE

CLK

SRLC16E

http://www.xilinx.com

8 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Library Primitives
R

Shift Operation

The shift operation is a single clock-edge operation with an active-High clock enable feature.
When enable is High, the input (D) is loaded into the first bit of the shift register, and each bit is
shifted to the next highest bit position. In a cascadable shift register configuration (such as
SRLC16), the last bit is shifted out on the Q15 output.

The bit selected by the 4-bit address appears on the Q output.

Dynamic Read Operation

The Q output is determined by the 4-bit address. Each time a new address is applied to the 4-
input address pins, the new bit position value is available on the Q output after the time delay to
access the LUT. This operation is asynchronous and independent of the clock and clock enable
signals.

Figure 11 illustrates the shift and dynamic read operations.

Static Read Operation

If the 4-bit address is fixed, the Q output always uses the same bit position. This mode
implements any shift register length up 1 to 16 bits in one LUT. Shift register length is (N+1)
where N is the input address.

The Q output changes synchronously with each shift operation. The previous bit is shifted to
the next position and appears on the Q output.

Figure 11: Shift- and Dynamic-Length Timing Diagrams

tshift

taccess

7

Position (7) Position (10)

10

taccess

CLK

CE

D

Q

Q15

Q

Address

Shift Timing Diagram

Dynamic Length Timing Diagram

X465_10_040203

http://www.xilinx.com

Shift Register Inference

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 9

R

Characteristics
• A shift operation requires one clock edge.

• Dynamic-length read operations are asynchronous (Q output).

• Static-length read operations are synchronous (Q output).

• The data input has a setup-to-clock timing specification.

• In a cascadable configuration, the Q15 output always contains the last bit value.

• The Q15 output changes synchronously after each shift operation.

Shift Register
Inference

When a shift register is described in generic HDL code, synthesis tools infer the use of the
SRL16 component. Since the SRL16 does not have either synchronous or asynchronous set or
reset inputs, and does not have access to all bits at the same time, using such capabilities
precludes the use of the SRL16, and the function is implemented in flip-flops. The cascadable
shift register (SRLC16) may be inferred if the shift register is larger than 16 bits or if only the
Q15 is used.

In fact, adding a reset is one way to force a synthesis tool to use flip-flops instead of the SRL16
when flip-flops are preferred for performance or other reasons. If a reset is not needed, simply
connect a dummy signal and use an appropriate KEEP attribute to prevent the synthesis tool
from optimizing it out of the design.

Although the SRL16 shift register does not have a parallel load capability, an equivalent
function can be implemented simply by anticipating the load requirement and shifting in the
proper data. This requires predictable timing for the load command.

VHDL Inference Code

The following code infers an SRL16 in VHDL.

architecture Behavioral of srl16 is

signal Q_INT: std_logic_vector(15 downto 0);

begin

process(C)
begin
if (C’event and C=’1’) then
Q_INT <= Q_INT(14 downto 0) & D;

end if;
end process;

Q <= Q_INT(15);

end Behavioral;

An inverted clock (SRL16_1) is inferred by replacing C='1' with C='0'. A clock enable
(SRL16E) is inferred by inserting if (CE='1') then after the first if-then statement.

Verilog Inference Code

The following code infers an SRL16 in Verilog.

always @ (posedge C)
begin
Q_INT <= {Q_INT[14:0],D};

end

always @(Q_INT)
begin

http://www.xilinx.com

10 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Shift Register Submodules
R

Q <= Q_INT[15];
end

An inverted clock (SRL16_1) is inferred by replacing (posedge C) with (negedge C). A clock
enable (SRL16E) is inferred by inserting if(CE) after the begin statement.

Shift Register
Submodules

In addition to the 16-bit primitives, two submodules that implement 32-bit and 64-bit cascadable
shift registers are provided in VHDL and Verilog code. Table 2 lists available submodules.

The submodules are based on SRLC16E primitives, which are associated with dedicated
multiplexers (MUXF5, MUXF6, and so forth). This implementation allows a fast static- and
dynamic-length mode, even for very large shift registers.

Figure 12 represents the cascadable shift registers (32-bit and 64-bit) implemented by the
submodules in Table 2.

Table 2: Shift Register Submodules

Submodule Length Control Address Inputs Output

SRLC32E_SUBM 32 bits CLK, CE A4, A3, A2, A1, A0 Q, Q31

SRLC64E_SUBM 64 bits CLK, CE A5, A4, A3, A2, A1, A0 Q, Q63

Figure 12: Shift-Register Submodules (32-bit, 64-bit)

SRLC16E

X465_11_051505

SRLC16E

32-bit Shift Register

64-bit Shift Register

4

4

MUXF5

SRLC16E

D D

4

5

A3, A2, A1, A0

A4

Add.

4

A[3:0]

CE

Q

Q

Q15

Q15

D

A[3:0]

CE

Q
MUXF5

Q31

D

4

4

6

A3, A2, A1, A0

A5, A4 A5

A4

Add.

MUXF5

D

A[3:0]

CE

Q

Q15

Q15

D

A[3:0]

CE

Q

SRLC16E

D

A[3:0]

CE

Q

Q15

Q15

SRLC16E

D

A[3:0]

CE

Q

SRLC16E

MUXF6

Q

Q63

http://www.xilinx.com

Shift Register Submodules

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 11

R

All clock enable (CE) and clock (CLK) inputs are connected to one global clock enable and one
clock signal per submodule. If a global static- or dynamic-length mode is not required, the
SRLC16E primitive can be cascaded without multiplexers.

Fully Synchronous Shift Registers

All shift-register primitives and submodules do not use the register(s) available in the same
slice(s). To implement a fully synchronous read and write shift register, output pin Q must be
connected to a flip-flop. Both the shift register and the flip-flop share the same clock, as shown
in Figure 13.

This configuration provides a better timing solution and simplifies the design. Because the flip-
flop must be considered to be the last register in the shift-register chain, the static or dynamic
address should point to the desired length minus one. If needed, the cascadable output can
also be registered in a flip-flop. The delay from the SRL16 to the flip-flop is a fixed CLB setup
time delay and is not controlled by a PERIOD constraint.

Static-Length Shift Registers

The cascadable 16-bit shift register implements any static length mode shift register without the
dedicated multiplexers (MUXF5, MUXF6, and so on). Figure 14 illustrates a 40-bit shift register.
Only the last SRLC16E primitive needs to have its address inputs tied to “0111”. Alternatively,
shift register length can be limited to 39 bits (address tied to “0110”) and a flip-flop can be used
as the last register. (In an SRLC16E primitive, the shift register length is the address input + 1.)

Figure 13: Fully Synchronous Shift Register

Figure 14: 40-bit Static-Length Shift Register

D Q

Q15

Address

CE (Write Enable)

CLK

SRLC16E QD Synchronous
Output

X465_12_040203

FF

DD

Q15
SRLC16

LUT

D

Q15
SRLC16

LUT

D Q OUT
(40-bit SRL)A[3:0]

Q15
SRLC16

LUT

"0111" 4

DD

Q15
SRLC16

LUT

D

Q15
SRLC16

LUT

D Q OUT
(40-bit SRL)A[3:0]

Q15
SRLC16

D Q

LUT

FF

"0110"

X465_13_051505

http://www.xilinx.com

12 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Shift Register Submodules
R

VHDL and Verilog Instantiation

VHDL and Verilog instantiation templates are available for all primitives and submodules.

In VHDL, each template has a component declaration section and an architecture section.
Each part of the template should be inserted within the VHDL design file. The port map of the
architecture section should include the design signal names.

The ShiftRegister_C_x (with x = 16, 32, or 64) templates are cascadable modules and
instantiate the corresponding SRLCxE primitive (16) or submodule (32 or 64).

The ShiftRegister_16 template can be used to instantiate an SRL16 primitive.

VHDL and Verilog Templates

In template names, the number indicates the number of bits (for example, SHIFT_SELECT_16
is the template for the 16-bit shift register) and the “C” extension means the template is
cascadable.

The following are templates for primitives:

• SHIFT_REGISTER_16

• SHIFT_REGISTER_16_C

The following are templates for submodules:

• SHIFT_REGISTER_32_C (submodule: SRLC32E_SUBM)

• SHIFT_REGISTER_64_C (submodule: SRLC64E_SUBM)

The corresponding submodules have to be synthesized with the design.

Templates for the SHIFT_REGISTER_16_C module are provided in VHDL and Verilog code as
an example.

VHDL Template:

-- Module: SHIFT_REGISTER_C_16
-- Description: VHDL instantiation template
-- CASCADABLE 16-bit shift register with enable (SRLC16E)
-- Device: Spartan-3 Generation Family

-- Components Declarations:
--
component SRLC16E
-- pragma translate_off
 generic (
-- Shift Register initialization ("0" by default) for functional
simulation:
 INIT : bit_vector := X"0000"
);

-- pragma translate_on
 port (
 D : in std_logic;
 CE : in std_logic;
 CLK : in std_logic;
 A0 : in std_logic;
 A1 : in std_logic;
 A2 : in std_logic;
 A3 : in std_logic;
 Q : out std_logic;
 Q15 : out std_logic
);

end component;
-- Architecture Section:
--

http://www.xilinx.com

Shift Register Submodules

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 13

R

-- Attributes for Shift Register initialization (“0” by default):
attribute INIT: string;
--
attribute INIT of U_SRLC16E: label is “0000”;
--
-- ShiftRegister Instantiation
U_SRLC16E: SRLC16E
 port map (
D => , -- insert input signal
CE => , -- insert Clock Enable signal (optional)
CLK => , -- insert Clock signal
A0 => , -- insert Address 0 signal
A1 => , -- insert Address 1 signal
A2 => , -- insert Address 2 signal
A3 => , -- insert Address 3 signal
Q => , -- insert output signal
Q15 => -- insert cascadable output signal
);

Verilog Template:

// Module: SHIFT_REGISTER_16
// Description: Verilog instantiation template
// Cascadable 16-bit Shift Register with Clock Enable (SRLC16E)
// Device: Spartan-3 Generation Family
//---
// Syntax for Synopsys FPGA Express
// synopsys translate_off

 defparam

//Shift Register initialization ("0" by default) for functional simulation:
U_SRLC16E.INIT = 16'h0000;

// synopsys translate_on

//SelectShiftRegister-II Instantiation
 SRLC16E U_SRLC16E (.D(),

.A0(),

.A1(),

.A2(),

.A3(),

.CLK(),

.CE(),

.Q(),

.Q15()
);

// synthesis attribute declarations
 /* synopsys attribute
INIT "0000"

 */

CORE Generator System

The Xilinx CORE Generator system generates fast, compact, FIFO-style shift registers, delay
lines, or time-skew buffers using the SRL16. The RAM-based Shift Register module shown in
Figure 15 provides a very efficient multibit wide shift for widths up to 256 and depths to 1024.
Fixed-length shift registers and variable-length shift registers can be created. An option is also
provided to register the outputs of the module. If output registering is selected, there are
additional options for Clock Enable, Asynchronous Set, Clear, and Init, and Synchronous Set,
Clear and Init of the output register. The module can optionally be generated as a relationally
placed macro (RPM) or as unplaced logic.

http://www.xilinx.com

14 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Applications
R

Applications Delay Lines

The register-rich nature of the Xilinx FPGA architecture allows for the addition of pipeline
stages to increase throughput. Data paths must be balanced to keep the desired functionality.
The SRL16 can be used when additional clock cycles of delay are needed anywhere in the
design (see Figure 16).

Figure 15: CORE Generator RAM-Based Shift Register Module

x465_14_040203

D[N:0]

ASET SSET

ACLR SCLR AINIT SINIT

A[M:0]

CE

CLK

Q[N:0]

Figure 16: Using SRL16 as a Delay Line

4 Cycles 8 Cycles

Operation BOperation A

3 Cycles

3 Cycles

Operation C

4 Cycles 8 Cycles

Operation B

9 Cycles
using SRL16

Pipeline

Operation A

3 Cycles

12 Cycles

Operation C

12 Cycles

12 Cycles

9-cycle imbalance

Paths statically
balanced

X465_20_040603

http://www.xilinx.com

Applications

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 15

R

Linear Feedback Shift Registers

Linear Feedback Shift Registers (LFSRs) sequence through 2n-1 states, where n is the number
of flip-flops. The sequence is created by feeding specific bits back through an XOR or XNOR
gate. LFSRs can replace conventional binary counters in performance critical applications
where the count sequence is not important (e.g., FIFOs). LFSRs are also used as pseudo-
random number generators. They are important building blocks in encryption and decryption
algorithms.

Maximal-length LFSRs need taps taken from specific positions within the shift register. There
are multiple ways these taps can be made available in the SRL16 configuration. One is by
addressing the necessary bit in a given SRL16 while allowing the Q15 to cascade to the next
SRL16. Another is to use flip-flops to "extend" the SRL16 where necessary to access the tap
points. For example, Figure 17 shows how a 52-bit LFSR can be implemented with the
feedback coming from bits 49 and 52. A third method is to duplicate the LFSR in multiple SRLs
and address different bits from each one. Yet another method is to generate multiple addresses
in one SRL clock cycle to capture multiple bit positions. The XNOR gate required for any LFSR
can be conveniently located in the SLICEL part of the CLB. More detail is available in
XAPP210.

Gold Code Generator

Gold code generators are used in CDMA systems to generate code sequences with good
correlation properties (see Figure 18). R. Gold suggested that sets of small correlation codes
could be generated by modulo 2 addition of the results of two LFSRs, primed with factor codes.
The result is a set of codes ideally suited to distinguish one code from another in a spectrum full
of coded signals. Figure 18 shows an implementation of a Gold code generator. The logic
required to initially fill the LFSR and provide the feedback can be located in the SLICEL parts
of the CLB. See XAPP217 for more details.

Figure 17: 52-bit LFSR

XNOR

x465_15_040203

D Q

D Q

Bit 1

Bit 52

Bit 52

Bit 49

Bit 49

OutputD
SRL16

Address = 15

Q
Bit 17

D
SRL16

Address = 15

Q
Bit 33

D
SRL16

Address = 15

Q

D Q
Bit 51

D Q
Bit 50

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp210.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp217.pdf

16 www.xilinx.com XAPP465 (v1.1) May 20, 2005

Applications
R

FIFOs

Synchronous FIFOs can be built out of the SRL16 components. These are useful when other
resources become scarce, providing up to 64 bits per CLB. For larger FIFOs, the block RAM is
the most efficient resource to use. See XAPP256 for more detail.

Counters

Any desired repeated sequence of 16 states can be achieved by feeding each output with an
SRL16. Cascading the SRL16 allows even longer arbitrary count sequences. A terminal count
can be generated by using the standard carry chain (see Figure 20).

Figure 18: Gold Code Generator

Figure 19: Synchronous FIFO Using SRLC16 Shift Registers

Figure 20: SRL-Based Counter with Terminal Count

LFSR 1

LFSR 2

Gold Code Out

x465_16_051505

 x465_17_051505

CLK

Address
Counter

DATA_OUT

FULL

EMPTY

SINIT

DATA_IN

RD_EN

SRL16
Based
FIFO

WR_EN FIFO_COUNTFIFO
Count

Status
Flag

Generation

0

Q3

1SRL

0

Q2

TC

VCC

1SRL

0

Q1

1SRL

0

Q0

1SRL

x465_18_051505

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp256.pdf

Related Materials and References

XAPP465 (v1.1) May 20, 2005 www.xilinx.com 17

R

Related
Materials and
References

The following documents provide supplementary information useful with this application note:

• XAPP210: Linear Feedback Shift Registers in Virtex Devices
Linear Feedback Shift Registers are very efficient counters in the FPGA architecture.
Using the SRL16 as the basis of the shift register, a 15-bit counter can fit in one slice and
a 52-bit counter in two slices.

• XAPP211: PN Generators Using the SRL Macro
Pseudo-random Noise sequences are used to code and spread signals across a wide
band of transmission frequencies for spread spectrum modulation. PN generators are
based upon LFSRs, which can be effectively built from the SRL16 components.

• XAPP217: Gold Code Generators in Virtex Devices
A special type of PN sequence is a Gold code generator, which can be created from
SRL16-based LFSRs.

• XAPP220: LFSRs as Functional Blocks in Wireless Applications
Further discussion of the usage of LFSRs such as Gold Code Generators in applications
such as CDMA.

• XAPP256: FIFOs Using Virtex-II Shift Registers
The SRL16 is ideal for building smaller synchronous FIFOs. FIFOs can be built in any
width while producing a 1-bit resolution. With cascaded SRL16 shift registers, a flexible
depth in multiples of 16 is available. These techniques are useful for even larger FIFOs
when block RAM resources are not available.

• TechXclusive: "Saving Costs with the SRL16E"
Describes the SRL16 function and its application in pipeline compensation, pseudo
random noise generators, serial frame synchronizers, running averages, pulse generation
and clock division, pattern generation, state machines, dynamically addressable shift
registers, FIFOs, and an RS232 receiver.

• DS228: RAM-Based Shift Register LogiCORE Module
Generates fast, compact, FIFO-style shift registers, delay lines or time-skew buffers using
the SRL16.

• SRL16 Primitives in Libraries Guide
Describes the usage and functionality of the SRL16 primitive and its variations.

Conclusion The SRL16 configuration of the Spartan-3 Generation LUT provides a space-efficient shift
register that otherwise require 16 flip-flops. This feature is automatically used when a small shift
register is described in HDL code. However, creative consideration of the uses of the SRL16 as
described here can provide even more significant advantages in many applications.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/10/03 1.0 Initial Xilinx release.

07/05/03 1.0.1 Changed title.

05/20/05 1.1 Included all Spartan-3 Generation families, including Spartan-3E
and Spartan-3L devices. Made additional clarifications.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp210.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp211.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp217.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp220.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp256.pdf
http://www.xilinx.com/xlnx/xweb/xil_tx_display.jsp?sTechX_ID=kc_srl16e
http://www.xilinx.com/ipcenter/catalog/logicore/docs/ram_shift.pdf
http://toolbox.xilinx.com/docsan/xilinx7/books/data/docs/lib/lib0368_354.html

	Summary
	Introduction
	Shift Register Architecture
	LUT Structure
	Dynamic Length Adjustment

	Logic Cell Structure
	Slice Structure
	CLB Structure

	Library Primitives
	Initialization in VHDL and Verilog Code
	Port Signals
	Clock — CLK
	Data In — D
	Clock Enable — CE (optional)
	Address — A3, A2, A1, A0
	Data Out — Q
	Data Out — Q15 (optional)
	Inverting Control Pins
	GSR

	Attributes
	Content Initialization — INIT

	Location Constraints
	Shift Register Operations
	Data Flow
	Shift Operation
	Dynamic Read Operation
	Static Read Operation

	Characteristics

	Shift Register Inference
	VHDL Inference Code
	Verilog Inference Code

	Shift Register Submodules
	Fully Synchronous Shift Registers
	Static-Length Shift Registers
	VHDL and Verilog Instantiation
	VHDL and Verilog Templates

	CORE Generator System

	Applications
	Delay Lines
	Linear Feedback Shift Registers
	Gold Code Generator
	FIFOs
	Counters

	Related Materials and References
	Conclusion
	Revision History

