
WP277 (v1.0) May 22, 2008 www.xilinx.com 1

© 2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property
of their respective owners.

Those of you with DSP or computationally intensive
projects in mind will be most interested in the
dedicated multipliers Xilinx® Spartan®-3 generation
FPGA devices have to offer; the potential is
enormous, with anything from 3 to 104 available per
device.

This white paper describes methods for expanding
the natural bit-width capability of dedicated
multipliers in a way that will make best use of the
complete FPGA resources. This information is
applicable to the Spartan-3 generation FPGA
families. The same dedicated multiplier is found in
the Virtex®-II FPGAs and Virtex-II Pro FPGAs, with
up to 444 multipliers available.

White Paper: Xilinx FPGAs

WP277 (v1.0) May 22, 2008

Expanding Dedicated Multipliers

By: Ken Chapman

R

http://www.xilinx.com

2 www.xilinx.com WP277 (v1.0) May 22, 2008

Multiplication Revision
R

Each multiplier (Figure 1) supports up to 18-bit by 18-bit signed inputs, providing
support for a huge range of applications. While many people exploit the configurable
nature of Xilinx FPGA devices by reducing bit widths and therefore reducing product
cost, I also see an exciting trend towards extending arithmetic precision (using more
bits) to improve the quality of results and even make certain algorithms practical for
the first time. This is particularly interesting in those cases where the processing
performance made available by FPGAs exceeds that of ASIC implementations, while
at the same time providing a standard product solution to applications where the
volume simply could not entertain the ASIC development costs.

In this white paper we will look at expanding the natural bit-width capability of
dedicated multipliers in a way that will make best use of the complete FPGA
resources. This information is applicable to the Spartan-3 generation FPGA families.
The same dedicated multiplier is also found in the Virtex-II FPGAs and Virtex-II Pro
FPGAs, with up to 444 multipliers available.

Note: Newer Virtex families such as the Virtex-4 and Virtex-5 FPGAs, and the Spartan-3A DSP
family, replace the multipliers with complete DSP blocks. For more information on using these
dedicated DSP blocks, see the DSP User Guide for each family.

Multiplication Revision
Since we are going to exceed the bit-widths supported by a single dedicated
multiplier, we are going to need to decompose the multiplication process into smaller
sub-processes. In fact, we do this every time the battery runs out in our favorite
calculator (and it's too dark for the solar cell to work!). Then, we revert to good old
pencil and paper and perform long hand multiplication (Figure 2).

In each of the examples in Figure 2, we can see that a number can be split into separate
digits. “87” has been split into an “8” (meaning 80) and “7”, and “49” has been split
into a “4” (meaning 40) and “9”. Partial products are then formed by multiplying the

X-Ref Target - Figure 1

Figure 1: Dedicated Multiplier

WP277_01_051508

Multiplier
18 x 18

A

B

P

18

36

18

X-Ref Target - Figure 2

Figure 2: Long Hand Multiplication with Individual Digits

WP277_02_050708

87
9

63
720
783

9 7 63
9 8 72

87
49
63

720

4263

9 7 63
9 8 72
4 7 28
4 8 32

280
3200

http://www.xilinx.com

Splitting 2's Complement Numbers

WP277 (v1.0) May 22, 2008 www.xilinx.com 3

R

individual digits of the multiplicand with the individual digits of the multiplier. Once
all combinations have been completed, the partial products are summed to form the
final result. Care must be taken to ensure that the weighting of each partial result is
applied. We achieve this in long hand multiplication by inserting the “0” to offset our
partial product result (for example, when performing 87×49, the last partial product is
4×8=32, but this really means 40×80=3200).

The Weird Split!
As “normal people”, we learn to deal with numbers in powers of ten; during our long
hand multiplication process, we naturally split the numbers into individual digits.
However, the rules still work if we split numbers in weird ways, even if it doesn't
make the mental task easier (Figure 3).

We see in Figure 3 that the multiplicand has again been split into two parts; in this
case, however, the left-hand part consists of 2 digits. Since we do not naturally know
our “81” times-table, we find it hard to work out 9×81=729 (I bet you split it into
separate digits or used a calculator!); but so long as the partial product is
appropriately weighted during the summation, then the final result is good.

Splitting 2's Complement Numbers
A 2's complement number is an encoded binary representation of a signed value. We
tend to learn about 2's complement as some form of “invert and add one” procedure
that enables negative values to be represented; however, it is also possible to evaluate
a negative value more directly by splitting the number (Figure 4).

In Figure 4 the all-”11111111” pattern of an 8-bit number is used to represent the value
“-1”. Rather than invert all bits and add one (00000000+1=00000001), we can see that
the least significant bits can be considered to represent a positive value (+127), and the
most significant bit, a large negative value (-128). The net effect of this is to form the

X-Ref Target - Figure 3

Figure 3: Long Hand Multiplication with 2 Digits

WP277_03_051408

817
49
63

7290

40033

9 7 63
9 81 729
4 7 28
4 81 324

280
32400

X-Ref Target - Figure 4

Figure 4: 2's Complement Split into 1 sign Bit and 7 value Bits

WP277_04_050708

64 32 16 8 4 2 1Bit Value 128

11111111

128 64 32 16 8 4 2 1

128 127 1

http://www.xilinx.com

4 www.xilinx.com WP277 (v1.0) May 22, 2008

Splitting a Dedicated Multiplier
R

value -1. The interesting thing is that we can split the binary representation at any
point, provided that the negative weighting associated with the Most Significant Bit
(MSB) is taken into consideration (Figure 5).

Once again, we take the 8-bit pattern of “11111111”, but this time, we split it into 3 bits
and 5 bits. It doesn't make it easier to work out the value from a human perspective,
but the rules still apply. The least significant 5 bits are interpreted as a positive number
since all of the original bit values were positive.

However, the most significant 3 bits must be interpreted as a signed value because the
MSB has a negative weighting. In this example, the 3 bits have the potential to
represent the range of values -4 to +3. With the value of the most significant 3 bits
established, it can be added to the value of the 5 bits. We must remember to restore the
weighting of the most significant bits, which is a factor of 32 in this example. (Note
that -128+64+32=-32 in just the same way that (-4+2+1)×32=-32.)

So, if we split any 2's complement number into two sections, the least significant bits
will be a positive unsigned number, and the most significant bits will be a signed 2's
complement number in its own right. The offset weighting of the most significant
section must be restored at some stage.

Splitting a Dedicated Multiplier
Hopefully, we are now ready to consider how to support a multiplier that is larger
than the bit width provided by the dedicated multipliers (without simply reverting
purely to CLB-based logic multipliers). Let's have a look at two case studies that are
typical of those I frequently see:

Case Study 1
In this first case, we will consider that only one input exceeds the 18-bit limit of the
dedicated multiplier (Figure 6).

X-Ref Target - Figure 5

Figure 5: 2's Complement Split into 3 Bits and 5 Bits

WP277_05_050908

Bit Value 64 32 16 8 4 2 1128

11111111

4 2 1 1 16 8 4 2 1 31

Split Bit Value 2 1 16 8 4 2 14

311 32() 13132

http://www.xilinx.com

Splitting a Dedicated Multiplier

WP277 (v1.0) May 22, 2008 www.xilinx.com 5

R

Using the CLB logic to implement this multiplier would require 197 “slices” and 4
levels of logic. Being able to replace this with a dedicated multiplier would clearly
save a lot of CLB resources and offer a faster combinatorial process.

Unfortunately, the 22-bit input exceeds the 18 bits supported by the dedicated
multiplier; so we need to look at decomposing the multiplication process and splitting
the larger input (Figure 7).

Although we could select virtually any point to split the 22-bit input word, it makes
sense to take a maximum 18 bits in one section to maximize the use of a dedicated
multiplier. As we already know, the most significant section becomes a signed value in
its own right, but the least significant section is unsigned. Since the dedicated
multipliers are signed multipliers, it is vital that we assign the most significant section
to the dedicated multiplier, then consider the options for the support of the smaller
unsigned least significant section later.

Two partial products are formed. The first is a 20-bit signed product, which is the
result of the multiplying the 16-bit signed value by the 4-bit unsigned section. The
second is a 34-bit signed product formed by the multiplication of the 16-bit signed
value by the 18-bit signed section.

The addition process restores the weighting of the products (note the least significant
bits of the first product bypass the addition) and forms the final 38-bit product. Since
the first product is signed, the 20-bit value needs to be sign-extended before addition.
The adder itself only needs to be 34 bits.

So let's have a look at the structure that's required (Figure 8).

X-Ref Target - Figure 6

Figure 6: 22x16 Multiplication

X-Ref Target - Figure 7

Figure 7: Splitting 22-bit Input

WP277_06_051508

A

B

22

16

P
38

WP277_07_051408

18-bit Signed 4-bit Unsigned

Sign Extend

http://www.xilinx.com

6 www.xilinx.com WP277 (v1.0) May 22, 2008

Splitting a Dedicated Multiplier
R

The circuit shows that the dedicated multiplier can be well utilized. A 34-bit adder is
required and will be supported by 17 "slices". The question is, how should the second
16-bit signed by 4-bit unsigned multiplier be implemented? There are two options:
1. Use a second dedicated multiplier. Of course, it will not be used particularly efficiently in

this case, but if you have no other use for a dedicated multiplier (i.e., you have enough
available in your target device), then inefficient use is better than complete waste.

2. Implement this smaller multiplier using CLB logic. In this case, a 16×4 multiplier (note that
this is not a 4×16 multiplier) requires 27 slices and 2 levels of logic.

Performance and Synthesis Tools
Clearly, the structure of this decomposed multiplier has more than one level of logic,
and as a combinatorial multiplier, this must add to the delay and reduce system
performance. Fortunately, we can pipeline multipliers in most algorithms and
structures, and the flip-flops required to do this are available.

The flip-flop symbols in Figure 8 indicate where pipeline registers can be inserted. The
dedicated multiplier in the Spartan-3 family can internally support a single pipeline
stage, while the Spartan-3E and Spartan-3A/3AN multipliers support both input and
output pipeline stage options. The 16×4 multiplier will also require a single pipeline
stage to balance the circuit. Using a second dedicated multiplier makes this easy, but
care must be taken when using CLB logic to ensure that only one register is inserted,
even though there are two levels of logic.

Of course, the CLB multiplier could be fully pipelined using two registers, but this
would require an additional register to be included in the upper dedicated multiplier
(this would require CLB based flip-flops for the Spartan-3 devices). Some
experimentation may be necessary to determine just how much pipelining is needed
to meet your particular requirements.

Synthesis tools are good at decomposing large multiplier structures automatically;
however, it is worth investigating the rules that your synthesis tool follows. It is highly
likely that if your tool is set to target the dedicated multipliers, it will use these for each
partial product multiplier (option 1). This is acceptable if you have adequate

X-Ref Target - Figure 8

Figure 8: 22x16 Multiplication using One Dedicated Multiplier

WP277_06_051608

Unsigned

P

Multiplier
18 x 18

A

B

18

16

16

16

34

20

16

4

34

38

4

22
16-bit value sign extended
to 34 bits

http://www.xilinx.com

Splitting a Dedicated Multiplier

WP277 (v1.0) May 22, 2008 www.xilinx.com 7

R

multipliers, but you may need to become involved when you run out of multipliers
and yet still have 75% of the CLBs unoccupied!

When performance is your dominating factor, then don't forget that “y <= a*b;”
describes a combinatorial multiplier (or a combinatorial multiplier followed by a
single register when described in a clocked process), and that the decomposed
multiplier structure will therefore incur greater delay than a single dedicated
multiplier. Again, taking control of the decomposition yourself will also enable you to
pipeline the structure and achieve your required performance.

Case Study 2
In this second case, we extend the second input to also exceed the 18-bit limit of the
dedicated multiplier (Figure 9).

The multiplication must now be decomposed into 4 partial products. Once again, we
can maximize the use of the signed 18×18 bit dedicated multiplier by selecting our
split points of each word (Figure 10).

The partial products require the following multipliers:
1. A 4-bit unsigned × 2-bit unsigned multiplier producing a 6-bit unsigned product (3

“slices” of logic).

2. An 18-bit signed × 2-bit unsigned multiplier producing a 20-bit signed product (10 “slices”
of logic).

X-Ref Target - Figure 9

Figure 9: 22x20 Multiplier

WP277_09_051508

A

B

P

22

20

42

X-Ref Target - Figure 10

Figure 10: Splitting 22-bit and 20-bit Inputs

WP277_10_051408

18-bit Signed 4-bit Unsigned

http://www.xilinx.com

8 www.xilinx.com WP277 (v1.0) May 22, 2008

Summary
R

3. An 18-bit signed × 4-bit unsigned multiplier producing a 22-bit signed product (30 “slices”
of logic, or possibly a dedicated multiplier).

4. An 18-bit signed × 18-bit signed multiplier producing a 36-bit signed product (dedicated
multiplier).

As you can see, some of the multipliers are really so small that use of dedicated
multipliers in these positions just feels wrong. Once again, make sure that you
implement an 18×2 (one level of logic) and not a 2×18 (horrendous!) multiplier.

Although 4 partial products must be summed, the first purely unsigned 6-bit product
can simply be concatenated with the last 36-bit signed product. The 20-bit and 22-bit
products can be added to form a 23-bit value using a 21-bit adder. Finally, the 42-bit
result is formed using a 40-bit adder. With some multipliers followed by two levels of
addition logic, there is greater reason to consider the structure and insert pipeline
registers for higher performance.

Summary
Although it is ideal to adjust the algorithm to fit within the 18-bit limit of the dedicated
multipliers, larger multipliers are possible, making good use of the dedicated
multipliers as building blocks. Remember the effect that decomposing a multiplier
will have on performance, and look to insert pipeline registers when required.

Very large multipliers will obviously benefit from using the dedicated multipliers for
all partial products, but a mixture of dedicated multipliers and CLB-based multipliers
will often enable the selection of a smaller device. For more details see

UG331 Spartan-3 Generation User Guide, Chapter 11 Using Embedded Multipliers.

Revision History
The following table shows the revision history for this document:

Notice of Disclaimer
The information disclosed to you hereunder (the “Information”) is provided “AS-IS” with no warranty of
any kind, express or implied. Xilinx does not assume any liability arising from your use of the
Information. You are responsible for obtaining any rights you may require for your use of this
Information. Xilinx reserves the right to make changes, at any time, to the Information without notice and
at its sole discretion. Xilinx assumes no obligation to correct any errors contained in the Information or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING
THE INFORMATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

Date Version Description of Revisions

05/22/08 1.0 Initial Xilinx release. Originally published as a TechXclusive

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

	Expanding Dedicated Multipliers
	Multiplication Revision
	The Weird Split!

	Splitting 2's Complement Numbers
	Splitting a Dedicated Multiplier
	Case Study 1
	Performance and Synthesis Tools
	Case Study 2

	Summary
	Revision History
	Notice of Disclaimer

