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It is obvious that a multiplexer is used to select one of
several input signals; however, in this white paper, I
will consider a variety of ways in which multiplexers
can be implemented within Xilinx FPGA devices.
First, I will consider the straight forward method
and identify some potential issues. We will then
investigate some alternative techniques that can lead
to more efficient and lower cost implementations. In
your future designs, you will be able to consider
your multiplexer selections in order to select signals.
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Multiplexers in Xilinx FPGAs
Multiplexers can be implemented in Xilinx FPGA look-up tables (LUTs) as with any 
other kind of logic, but all Xilinx Spartan™ and Virtex™ FPGAs also include 
dedicated multiplexers to combine the outputs of LUTs. These are labeled "MUXFx" 
(or "FxMUX") where "x" is the equivalent LUT size it provides. For example, the four-
input LUTs connect to a MUXF5, which allows the implementation of any function of 
five inputs. If the two LUTs contain 2-input muxes, the result of the MUXF5 is a 4-
input mux, which is a 6-input function (see Figure 1). The MUXF5 connects to the 
MUXF6, allowing any function of six inputs, or an 8-input mux. The Virtex-II, Virtex-
II Pro, Virtex-4, and Spartan-3 Generation FPGAs extend this capability with MUXF7 
and MUXF8. The Virtex-5 FPGA starts with a 6-input LUT and adds MUXF7 and 
MUXF8. The concepts described here can be applied to any Xilinx FPGA family, 
although the implementation details may vary between families.

The Normal Case
The majority of multiplexers are formed by using the look-up tables (LUTs) and 
dedicated multiplexer elements of logic slices. These would normally be implemented 
automatically by a synthesis tool such as XST, so let’s take a look at the details and 
make some observations. The following VHDL code uses a CASE statement to 
describe a simple 4-to-1 multiplexer:

signal D3 : std_logic;

signal D2 : std_logic;

signal D1 : std_logic;

signal D0 : std_logic;

signal SEL : std_logic_vector(1 downto 0);

signal Y : std_logic;

.

.

.

process (SEL, D3, D2, D1, D0)

begin

case SEL is

when “00” => Y <= D0;

when “01” => Y <= D1;

when “10” => Y <= D2;

when “11” => Y <= D3;

when others => NULL;

end case;

end process;

XST is able to recognize this as a multiplexer and automatically exploit the dedicated 
multiplexer within each slice. The result is a multiplexer that is smaller and faster than 
it would be if it was implemented using only LUTs, as shown in Figure 1.
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Larger multiplexers can be implemented by exploiting the dedicated MUXF6, MUXF7, 
and MUXF8 components; here again, XST is able to achieve this automatically. For 
example, an 8:1 multiplexer has the structure illustrated in Figure 2. 

Using this implementation technique, it is easy to estimate the size of a multiplexer 
because each LUT is responsible for two data inputs. Hence the 4:1 multiplexer 
requires two LUTs (one slice) and the 8:1 multiplexer requires four LUTs (two slices).

The Unpleasant Case
After all that good news, we should take a moment to examine a case in which things 
are not as nice as we would hope. So far we have only considered multiplexers in 
which there are a power-of-two number of data inputs. However, this won’t be the 
case in all designs.

Let’s take a look at a 5:1 multiplexer and examine the alternatives that must be 
considered. The VHDL looks very simple, but are you aware of what this will really 

X-Ref Target - Figure 1

Figure 1: 4:1 Multiplexer Using Dedicated Slice Multiplexer

X-Ref Target - Figure 2

Figure 2: 8:1 Multiplexer Using Two Slices
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implement? Take a moment to sketch what you believe is required to implement this 
piece of code (then read on to see if you are right).

signal D4 : std_logic;

signal D3 : std_logic;

signal D2 : std_logic;

signal D1 : std_logic;

signal D0 : std_logic;

signal SEL : std_logic_vector(2 downto 0);

signal  CLK : std_logic;

signal Y  : std_logic;

.

.

.

process (CLK)

begin

if CLK'event and CLK="1" then

case SEL is

when “000” => Y <= D0;

when “001” => Y <= D1;

when “010” => Y <= D2;

when “011” => Y <= D3;

when “100” => Y <= D4;

when others => NULL;

end case;

end if;

end process;
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It is important to observe that all connections to the dedicated MUXFx components are 
formed by fixed, dedicated connections. Although this makes them fast, data inputs to 
the MUXF5 components must come directly from the associated LUTs, and data 
inputs to the MUXF6 must come directly from the associated MUXF5 components. 
This will have an impact when you implement multiplexers that do not have a power-
of-two number of data inputs. Figure 3 and Figure 4 show two potential 5:1 
multiplexer implementations that XST may use.

Although both methods use 1½ slices (three LUTs), the performances will differ. 
Method A exploits the dedicated interconnections and multiplexers within the CLB. 
Notice how the LUT and MUXF5 of the left slice are sacrificed in order to gain access 
to the MUXF6 in the right slice. All this is done to impose the minimum delay to all 
signal paths. By contrast, Method B incurs additional delay due to the general 
interconnect and use of a second LUT-based multiplexer.

It would be natural to assume that Method A is always superior and should be the 
preferred solution. However, we should consider the cases in which the data inputs 
are not individual signals, but instead are multi-signal data busses, such as those being 
selected by a processor. Since Method A requires a MUXF6 for each output bit 
selected, and only one MUXF6 exists for every two slices, the bus multiplexer will 
become spread out. For example, 16-bit data busses will result in 32 slices being 
occupied (compared with 24 slices using Method B). Of course, the 16 unused LUTs 
within the 32 slices of Method A could be used for simple logic functions; however, 

X-Ref Target - Figure 3

Figure 3: Potential Implementations of 5:1 Multiplexer: Method A

X-Ref Target - Figure 4

Figure 4: Potential Implementations of 5:1 Multiplexer: Method B
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such logic is often completely unrelated and cannot always be conveniently merged in 
with the multiplexer during implementation.

Unintended Functionality
So, did you spot that neither Method A nor B is actually what a synthesis tool will (or 
should) implement? While the VHDL describes a 5:1 multiplexer, the description also 
defines functionality I almost certainly didn’t want or intend. If you didn’t spot the 
cause of the problem, it would be well worth taking a look at your own designs to see 
if you, too, have implied similar additional logic that impacts performance and, 
potentially, the cost of your system.

The beginning of this problem is that the selection is controlled by three signals that 
have a potential for eight combinations. As the multiplexer only uses five 
combinations, what should happen to the Y output if SEL is “101”, “110” or “111”? 
These combinations will never occur in many designs; for those designs in which they 
could occur, we wouldn’t be using the output from the multiplexer anyway, or we 
really would have a bug in the design.

Fortunately, the VHDL language provides us with the “when others” clause to catch 
all the undefined conditions of the input. This includes the more esoteric states that 
don’t even exist in the pure digital world (which is why it is still required even when 
you have apparently covered all the combinations in a power-of-two multiplexer). 
However, we still need to define what to do in these cases. This, unfortunately, is the 
cause of all the trouble. The word “NULL” means “do nothing,” but it takes logic to 
achieve this “nothing.” 

“Nothing” means that the multiplexer output must retain the previous value. The 
functional diagram in Figure 5 illustrates the additional logic required to implement 
this in a clocked process. A combinatorial process will cause a highly undesirable 
LATCH to be implied, which is not directly available in the slice. There are numerous 
ways in which the additional logic could actually be implemented in the slices. 
However, to consider them just misses the point that we simply do not want any 
additional logic because this functionality is not needed in the first place.

X-Ref Target - Figure 5

Figure 5: Additional Logic to Support a "When Others" Clause in a Clocked Process
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The solution is very simple. What is required in the “unused” conditions must be more 
precisely defined. We can specify that the output really doesn’t matter as shown in the 
following code.

case SEL is

when “000” => Y <= D0;

when “001” => Y <= D1;

when “010” => Y <= D2;

when “011” => Y <= D3;

when “100” => Y <= D4;

when others => Y <= ‘X’;

end case;

While some people have an aversion to ever observing an “X” during simulation, this 
is perfectly acceptable, provided the unknown state is never used in the design. The 
synthesis tool should then realize that it is able to avoid any additional logic and allow 
the multiplexer to do whatever it happens to do in the undefined conditions. XST will 
actually implement the multiplexer using Method A described previously and shown 
in Figure 3, page 5.

Alternatively, we can explicitly define the remaining conditions as shown in the 
following code.

case SEL is

when “000” => Y <= D0;

when “001” => Y <= D1;

when “010” => Y <= D2;

when “011” => Y <= D3;

when “100” => Y <= D4;

when “101” => Y <= D4;

when “110” => Y <= D4;

when “111” => Y <= D4;

when others => Y <= ‘X’;

end case;

The functionality is now fully described and predictable both in simulation and final 
implementation. Although the definition has artificially expanded the multiplexer to 
eight inputs, by assigning the same data input for four of the conditions, synthesis 
tools should be able to reduce the logic required. XST will implement this code using 
Method B described previously and shown in Figure 4, page 5. This illustrates the 
importance of appreciating different coding styles and realizing that there is benefit to 
understanding how your preferred synthesis tool behaves.

Alternative Techniques
Having looked at the obvious implementation of a multiplexer in some detail, we now 
consider alternative techniques to implement this common function. If we can 
implement a multiplexer using fewer device resources and/or make a multiplexer 
faster in a given speed grade, this will help contribute to an overall cost saving in the 
complete system design. This should be of particular interest to designers of high-
volume products that use Spartan devices.

}Replicated data input
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Back to Basics
So what are the logic gates associated with a simple multiplexer? Figure 6 and Figure 7 
show the simple truth table and gates for a 2:1 multiplexer. Although we don’t 
normally think in terms of gates when designing with look-up tables, this view 
reminds us exactly how a multiplexer operates. 

The select signal is effectively used to “turn on” only one AND gate at a time. This 
allows the associated data signal to pass through the AND gate to the OR gate. The 
AND gate that is “off” is guaranteed to generate a logic “0,” which means that the 
output from the OR gate is determined only by the signal from the AND gate that is 
turned on.

Although we normally think of a multiplexer as being one consolidated function, it is 
possible to separate the gates into the multiple masking AND gates and the single OR 
gate signal combiner. A look-up table (LUT) can directly implement any function up to 
four inputs, which limits the consolidated multiplexer to a 2-to-1 structure with its 
three input signals. However, a LUT is able to implement a four-input OR gate that 
would be suitable for a 4:1 multiplexer, as shown in Figure 8.

X-Ref Target - Figure 6

Figure 6: Truth Table and Gates for a 2:1 Multiplexer: SEL=0, Y=D0

X-Ref Target - Figure 7

Figure 7: Truth Table and Gates for a 2:1 Multiplexer: SEL=1, Y=D1

SEL D1 D0 Y

0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
1
0
1
0
0
1
1

D0

D1

Y

0

=‘0’ Y=D0

‘0’

SEL

SEL

WP274_06_121207

0
0
0
0
1
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
1
0
1
0
0
1
1

SEL

D0

D1

Y

1

=‘1’ Y=D1

‘0’

SEL

WP274_07_121207

SEL D1 D0 Y

http://www.xilinx.com


Back to Basics

WP274 (v1.0) February 4, 2008 www.xilinx.com  9

R

So far, this appears to be a somewhat ridiculous suggestion because the AND gates 
each require a LUT to implement, and the total size of a 4:1 multiplexer will be five 
LUTs. This is both bigger and slower than the multiplexer created around the 
dedicated MUXF5 seen earlier. Fortunately, there are two ways in which we can hide 
the AND gates in our designs.

The most ideal method is to exploit the dedicated reset logic provided with flip-flops 
and block memory. As shown in Figure 9, a flip-flop in the path from D2 is used to 
force logic “0” into the OR gate by holding the reset control active. Releasing the reset 
allows the value of D2 to propagate through the flip-flop and then on to provide the 
output of the multiplexer structure. Similarly, the block RAM can be controlled to 
provide D1. 

Obviously, the one clock cycle latency in the data path may be undesirable when 
considering the functional level, but is exactly what we need in a pipelined system 

X-Ref Target - Figure 8

Figure 8: Gates for a 4:1 Multiplexer

X-Ref Target - Figure 9

Figure 9: Using Resets Instead of AND Gates to Select Data
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design to maximize performance. Indeed, in a well-pipelined design (and whenever 
block RAM is used), the pipeline stage exists and simply requires the reset control to 
be added. Block RAM can continue to be used for writing or full access via the second 
port.

However, flip-flop contents will be destroyed by the reset control. The reset control 
prevents this technique from being directly applicable to flip-flops used to implement 
functions, such as counters and data registers, unless they are only used when 
continuously selected as input to the multiplexer.

Selection of D1 and D2 is achieved by controlling each reset in a one-hot style (only one 
signal is active at time). A 4:1 multiplexer therefore has four select lines instead of the 
normal two encoded select signals. If a LUT is used to implement a decoding gate, it 
nullifies the area saved by the use of the flip-flop to replace the AND gate in the first 
place.

Hence, the system design should include a plan to implement a one-hot selection 
scheme from the outset to avoid this conversion logic. The acceptable exception to this 
is when the multiplexer operation applies to multi-bit busses. In these cases, a LUT is 
still required to generate the reset control signal, but this is distributed to multiple flip-
flops.

When applying the synchronous reset control to the flip-flops, take care to ensure that 
the selection logic is not over-complicated or enlarged due to a global reset competing 
for resources (see WP272, Get Smart About Reset [Think Local, Not Global]).

It may also be possible to hide the AND gate with other combinatorial logic using any 
spare capacity within LUTs that form the source of the signal. In Figure 10, the AND 
gate selecting the D0 input is combined with a traditional 2:1 multiplexer (although it 
could be any function up to three inputs). 

Priority Selection
The final multiplexer technique we will consider is the use of MUXCY components 
normally associated with carry logic. The technique generally provides one data input 
per LUT; although this is not the most area-efficient solution in its own right, it does 
have other advantages. Take a look at an example of a 4:1 multiplexer using the carry 
chain in Figure 11.

X-Ref Target - Figure 10

Figure 10: Hiding the Select AND Gate in Other Logic
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Each MUXCY component is a 2:1 multiplexer with the select line controlled by the 
associated LUT. The data inputs are fixed connections: the first is one of the four LUT 
inputs, and the second is the output from the MUXCY below. (To use these 
components as a data multiplexer in your design, you must accept this fixed 
connectivity and work with it.) The initial impact is that the LUT is essentially reduced 
to a three-input function because the fourth input must be the data input and can be 
any value. However, the three inputs still provide significant decoding capability.

In Figure 11, D0 is applied to the top MUXCY. To select D0 and pass it to the Y output, 
the MUXCY select control must be logic “0” and is determined by the top LUT, which 
allows up to three signals (SEL0A, SEL0B, and SEL0C) to be decoded.

If the condition for selection of D0 is not satisfied, the output from the top LUT will be 
a logic “1.” So, the top MUXCY selects the carry chain input. It is now possible to select 
the D1 input as a result of the decoding of the three inputs SEL1A, SEL1B, and SEL1C. 
Note that these signals do not need to be the same as those used to select D0.

Similarly, if D0 and D1 are not selected, the decision passes to the next stage with a 
decoding of SEL0A, SEL0B, and SEL0C controlling the selection of D2. In the event 
that D2 is not selected, D3 becomes the default data selection with no further decoding 
required.

Therefore, this technique provides a multiplexer structure in which the inputs have a 
priority in addition to being selected. It is ideal for combining the decoding of signals 
with the multiplexer logic in those cases where separate signals are used to define the 
selection. For example, consider the selection of data passed to a processor, as shown 
in Figure 12.

X-Ref Target - Figure 11

Figure 11: 4-to-1 Multiplexer Using the Carry Chain
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In the event of an interrupt, which is a very high-priority situation, the processor will 
read the interrupt_vector. This, therefore, occupies the top position in the chain 
and is controlled by the two interrupt signals. If there is no interrupt to process, the 
processor is able to access data from a UART or memory. The UART selection is 
uniquely determined by a couple of address bits and a read strobe. This means that 
MEMORY_data is the ideal default selection for covering a wide range of addresses, 
even non-contiguous addresses.

The carry chain multiplexer may also be beneficial in some system designs because of 
the physical structure it imposes on the layout of the design. Figure 13 illustrates the 
connections from data sources (shown in white) to a multiplexer (shown in black).

The traditional multiplexer implied on the left is a very compact implementation, 
often within a single CLB. The various data sources distributed around the device 
must all connect to this one CLB; this leads to some long interconnections or a need to 
require the implementation tools to force all logic to compete for the same space. In 
contrast, the carry chain multiplexer implied on the right is distributed across several 
CLBs in a vertical column, which helps to separate logic and the interconnect. The 
high performance of the carry chain is then exploited to route the selections to the 
output.

X-Ref Target - Figure 12

Figure 12: Data Selection to a Processor

X-Ref Target - Figure 13

Figure 13: Layout of Traditional Multiplexer and Carry-based Multiplexer
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Conclusion
So, the next time you find yourself describing a multiplexer, take a moment to think 
about the implementation. Where there isn’t a power-of-two number of data inputs, 
will you decompose the multiplexer into smaller power-of-two multiplexers, or 
effectively increase size to the next power of two? Whatever your decision, be sure that 
you don’t get more than you wanted.

Multiplexers are generally the glue of many systems. If the traditional implementation 
implied by HDL code is adequate for your design, then use it. However, if you have 
performance, size or cost challenges and find that multiplexers and their connectivity 
are a cause for concern, take some time to investigate these alternative techniques. If 
you do not have a power-of-two number of data inputs, consider either decomposing 
into smaller power-of-two multiplexers, or increasing to the next power-of-two. 
Consider alternative implementations using dedicated resets or carry logic. The 
requirement for these techniques to be an integral part of the decoding and 
functionality of the modules of your design may not make it easy to retrofit, but your 
next design will benefit from the variety of options available to you from the outset.
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