
R

Synthesis and
Simulation
Design Guide

10.1

10.1 www.xilinx.com 10.1

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2002–2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners

R

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 3
10.1

R

Preface

About the Synthesis and Simulation
Design Guide

This chapter (About the Synthesis and Simulation Design Guide) provides general information
about this Guide, and includes:

• “Synthesis and Simulation Design Guide Overview”

• “Synthesis and Simulation Design Guide Design Examples”

• “Synthesis and Simulation Design Guide Contents”

• “Additional Resources”

• “Conventions”

Synthesis and Simulation Design Guide Overview
The Synthesis and Simulation Design Guide provides a general overview of designing Field
Programmable Gate Arrays (FPGA) devices with Hardware Description Languages
(HDLs). It includes design hints for the novice HDL user, as well as for the experienced
user who is designing FPGA devices for the first time. Before using the Synthesis and
Simulation Design Guide, you should be familiar with the operations that are common to all
Xilinx tools.

The Synthesis and Simulation Design Guide does not address certain topics that are important
when creating Hardware Description Language (HDL) designs, such as:

• Design environment

• Verification techniques

• Constraining in the synthesis tool

• Test considerations

• System verification

For more information, see your synthesis tool documentation.

Synthesis and Simulation Design Guide Design Examples
The design examples in the Synthesis and Simulation Design Guide were:

• Created with VHSIC Hardware Description Language (VHDL) and Verilog

Xilinx® endorses Verilog and VHDL equally. VHDL may be more difficult to learn than
Verilog, and usually requires more explanation.

http://www.xilinx.com

4 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Preface: About the Synthesis and Simulation Design Guide
R

• Compiled with various synthesis tools

• Targeted for the following devices:

♦ Spartan™-II, Spartan-IIE

♦ Spartan-3, Spartan-3E, Spartan-3A

♦ Virtex™, Virtex-E

♦ Virtex-II, Virtex-II Pro

♦ Virtex-4, Virtex-5

 Synthesis and Simulation Design Guide Contents
The Synthesis and Simulation Design Guide contains the following chapters:

• Chapter 1, “Introduction to Synthesis and Simulation,” provides an introduction to
synthesis and simulation and describes how to design Field Programmable Gate
Arrays (FPGA devices) with Hardware Description Languages (HDLs).

• Chapter 2, “FPGA Design Flow,” describes the steps in a typical FPGA design flow.

• Chapter 3, “General Recommendations for Coding Practices,” contains general
information relating to Hardware Description Language (HDL) coding styles and
design examples to help you develop an efficient coding style.

• Chapter 4, “Coding for FPGA Flow,” contains specific information relating to coding
for FPGA devices.

• Chapter 5, “Using SmartModels,” describes special considerations when simulating
designs for Virtex-II Pro, Virtex-4, and Virtex-5 FPGA devices. These devices are
platform FPGA devices for designs based on IP cores and customized modules. The
family incorporates RocketIO™ and PowerPC™ CPU and Ethernet MAC cores in the
FPGA architecture

• Chapter 6, “Simulating Your Design” describes the basic Hardware Description
Language (HDL) simulation flow using Xilinx® and third party tools.

• Chapter 7, “Design Considerations,” describes understanding the architecture,
clocking resources, defining timing requirements, driving synthesis, choosing
implementation options, and evaluating critical paths.

• Appendix A, “Simulating Xilinx Designs in Modelsim”

• Appendix B, “Simulating Xilinx Designs in NCSIM”

• Appendix C, “Simulating Xilinx Designs in Synopsys VCS-MX and VCS-MXi”

Additional Resources
For additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Synthesis and Simulation Design Guide www.xilinx.com 5
10.1

Conventions
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select from
a menu File > Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Square brackets []

An optional entry or parameter.
They are required in bus
specifications, such as
bus[7:0],

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

http://www.xilinx.com

6 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Preface: About the Synthesis and Simulation Design Guide
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current file or in another
file in the current document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text
Cross-reference link to a location
in another document

See Figure 2-5 in the Virtex-II
Platform FPGA User Guide.

Blue, underlined text Hyperlink to a website (URL)
Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com
http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 7
10.1

Preface: About the Synthesis and Simulation Design Guide
Synthesis and Simulation Design Guide Overview . 3
Synthesis and Simulation Design Guide Design Examples. 3
 Synthesis and Simulation Design Guide Contents . 4
Additional Resources . 4
Conventions . 5

Typographical . 5
Online Document . 6

Chapter 1: Introduction to Synthesis and Simulation
Hardware Description Languages (HDLs) . 17
Advantages of Using Hardware Description Languages

(HDLs) to Design FPGA Devices . 18
Designing FPGA Devices With Hardware Description Languages (HDLs). . . . 18

Understanding Hardware Description Languages (HDLs) . 19
Designing FPGA Devices with VHDL . 19
Designing FPGA Devices with Verilog. 19
Designing FPGA Devices with Synthesis Tools . 20
Using FPGA System Features . 20
Designing Hierarchy . 20
Specifying Speed Requirements . 20

Chapter 2: FPGA Design Flow
Design Flow Diagram . 22
Design Entry Recommendations. 23

Use Register Transfer Level (RTL) Code . 23
Select the Correct Design Hierarchy . 23

Architecture Wizard . 23
Using Architecture Wizard . 23
Opening Architecture Wizard . 24
Architecture Wizard Components . 24

Clocking Wizard . 24
RocketIO Wizard . 25
ChipSync Wizard . 25
XtremeDSP Slice Wizard. 25

CORE Generator . 26
About CORE Generator . 26
CORE Generator Files . 26

Electronic Data Interchange Format Netlist (EDN) and NGC Files 26
VHDL Template (VHO) Files . 26
Verilog Template (VEO) Files . 26
V (Verilog) and VHD (VHDL) Wrapper Files. 27
ASY (ASCII Symbol) Files. 27

Table of Contents

http://www.xilinx.com

8 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Functional Simulation. 27
Synthesizing and Optimizing . 27

Creating a Compile Run Script . 28
Running the TCL Script (Precision RTL Synthesis). 28
Running the TCL Script (Synplify) . 28
Running the TCL Script (XST) . 29

Modifying Your Code to Successfully Synthesize Your Design 29
Reading Cores . 29

About Reading Cores . 30
Reading Cores (XST) . 30
Reading Cores (Synplify Pro) . 30
Reading Cores (Precision RTL Synthesis) . 30

Setting Constraints . 30
Advantages of Setting Constraints . 30
Specifying Constraints in the User Constraints File (UCF) . 31
Setting Constraints in ISE . 31

Evaluating Design Size and Performance . 31
Meeting Design Parameters . 31
Estimating Device Utilization and Performance . 32
Determining Actual Device Utilization and Pre-Routed Performance 32

Determining If Your Design Fits the Specified Device . 32
Mapping Your Design Using Project Navigator . 33
Mapping Your Design Using the Command Line . 33

Evaluating Coding Style and System Features . 34
Modifying Code to Improve Design Performance . 34
Using FPGA System Features . 34
Using Xilinx-Specific Features of Your Synthesis Tool . 35

Placing and Routing. 35
Timing Simulation . 35

Chapter 3: General Recommendations for Coding Practices
Designing With Hardware Description Languages (HDLs) 37
Naming, Labeling, and General Coding Styles . 38

Common Coding Style . 38
Xilinx Naming Conventions . 38
Reserved Names . 38
Naming Guidelines for Signals and Instances . 39

General Naming Rules for Signals and Instances . 39
Recommendations for VHDL and Verilog Capitalization . 39

Matching File Names to Entity and Module Names . 40
Naming Identifiers . 40
Instantiating Sub-Modules . 40

Instantiating Sub-Modules Recommendations . 40
Incorrect and Correct VHDL and Verilog Coding Examples . 41
Instantiating Sub-Modules Coding Examples. 41

Recommended Length of Line . 42
Common File Headers . 42
Indenting and Spacing . 43

Specifying Constants . 44
Using Constants and Parameters to Clarify Code . 44
Using Constants and Parameters VHDL Coding Examples . 44

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 9
10.1

R

Using Generics and Parameters to Specify Dynamic Bus and Array Widths. 45
About Using Generics and Parameters to Specify Dynamic Bus and Array Widths . . . 45
Generics and Parameters Coding Examples . 45

TRANSLATE_OFF and TRANSLATE_ON . 46

Chapter 4: Coding for FPGA Flow
VHDL and Verilog Limitations . 47
Design Hierarchy . 48

Advantages and Disadvantages of Hierarchical Designs . 48
Using Synthesis Tools with Hierarchical Designs. 48

Restrict Shared Resources . 49
Compile Multiple Instances . 49
Restrict Related Combinatorial Logic . 49
Separate Speed Critical Paths . 49
Restrict Combinatorial Logic . 49
Restrict Module Size . 49
Register All Outputs . 49
Restrict One Clock to Each Module or to Entire Design . 49

Choosing Data Type . 50
Use Std_logic (IEEE 1164) . 50
Declaring Ports . 50
Arrays in Port Declarations . 51

Incompatibility with Verilog. 51
Inability to Store and Re-Create Original Array Declaration . 51
Mis-Correlation of Software Pin Names . 51

Minimize Ports Declared as Buffers . 52
Using `timescale . 53
Mixed Language Designs. 53
If Statements and Case Statements . 53

Comparing If Statements and Case Statements . 54
4–to–1 Multiplexer Design With If Statement . 54
4–to–1 Multiplexer Design With Case Statement . 55

Sensitivity List in Process and Always Statements . 57
Delays in Synthesis Code . 58

About Delays in Synthesis Code . 58
Delays in Synthesis Code Coding Examples . 58

Registers and Latches in FPGA Design . 59
Registers in FPGA Design . 59

About Registers in FPGA Design . 59
Registers in FPGA Design Coding Examples . 59

IOB Registers . 61
About IOB Registers . 61
Dual-Data Rate IOB Registers . 62

Latches in FPGA Design . 63
Implementing Shift Registers . 64

About Implementing Shift Registers . 64
Describing Shift Registers . 65

About Describing Shift Registers . 65
Shift Registers Coding Examples . 65

Control Signals . 67

http://www.xilinx.com

10 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Set, Resets, and Synthesis Optimization . 67
About Set, Resets, and Synthesis Optimization . 67
Global Set/Reset (GSR). 67
Shift Register LUT (SRL). 68
Synchronous and Asynchronous Resets . 68

Asynchronous Resets Coding Examples . 68
Synchronous Resets Coding Examples . 69
Using Clock Enable Pin Instead of Gated Clocks . 73

About Using Clock Enable Pin Instead of Gated Clocks. 73
Using Clock Enable Pin Instead of Gated Clocks Coding Examples. 73

Converting the Gated Clock to a Clock Enable . 74
Initial State of the Registers, Latches, Shift Registers, and RAMs. 75

Initial State of the Registers and Latches . 75
Initial State of the Shift Registers . 76
Initial State of the RAMs . 76

About Initial State of the RAMs . 76
Initial State of the RAMs Coding Examples . 76

Multiplexers . 77
About Multiplexers . 77
Multiplexers Coding Examples . 78

Finite State Machines (FSMs). 79
FSM Description Style . 79
FSM With One Process . 81
FSM With Two or Three Processes . 83
FSM Recognition and Optimization . 83
Other FSM Features . 84

Implementing Memory. 84
Block RAM Inference . 85

About Block RAM Inference. 85
Block RAM Inference Coding Examples . 85

Single-Port RAM in Read-First Mode . 86
Single-Port RAM in Write-First Mode . 87
Single-Port RAM In No-Change Mode . 90
Dual-Port RAM in Read-First Mode with One Write Port . 91
Dual-Port Block RAM in Read-First Mode With Two Write Ports 93

Distributed RAM Inference . 96
Single-Port Distributed RAM . 96
Dual-Port Distributed RAM . 97

Arithmetic Support . 99
About Arithmetic Support . 99
Arithmetic Support Coding Examples . 100
Order and Group Arithmetic Functions . 107
Resource Sharing . 108

About Resource Sharing . 108
Resource Sharing Coding Examples . 109

Synthesis Tool Naming Conventions . 110
Instantiating Components and FPGA Primitives . 111

Instantiating FPGA Primitives . 111
About Instantiating FPGA Primitives . 111

Instantiating CORE Generator Modules . 112
Attributes and Constraints . 112

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 11
10.1

R

Attributes. 113
Synthesis Constraints . 113
Implementation Constraints . 113
Passing Attributes . 113
Passing Synthesis Constraints . 114

VHDL Synthesis Attributes . 115
Verilog Synthesis Attributes . 116

Pipelining and Retiming . 116
About Pipelining . 116
Before Pipelining . 117
After Pipelining . 117
About Retiming . 118

Chapter 5: Using SmartModels
Using SmartModels with ISE Simulator . 119
Using SmartModels to Simulate Designs . 119
SmartModel Simulation Flow . 120
About SmartModels. 120
SmartModel Supported Simulators and Operating Systems 121
Installing SmartModels . 121

Installing SmartModels (Method One) . 122
Installing SmartModels (Method Two). 123

Installing SmartModels (Method Two on Linux) . 123
Installing SmartModels (Method Two on Linux 64) . 123
Installing SmartModels (Method Two on Windows) . 124
Installing SmartModels (Method Two on Solaris) . 125

Setting Up and Running Simulation . 125

Chapter 6: Simulating Your Design
About Simulating Your Design . 127
Adhering to Industry Standards . 128

Simulation Flows . 128
Standards Supported by Xilinx Simulation Flow . 128
Xilinx Supported Simulators and Operating Systems . 129
Xilinx Libraries . 130

Simulation Points in HDL Design Flow . 130
About Simulation Points . 130

Primary Simulation Points for HDL Designs Diagram . 130
Five Simulation Points in HDL Design Flow . 132
Simulation Flow Libraries. 132
VHDL Standard Delay Format (SDF) File. 132
Verilog Standard Delay Format (SDF) File . 133

Register Transfer Level (RTL) . 133
Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation . 133
Post-NGDBuild (Pre-Map) Gate-Level Simulation . 134
Post-Map Partial Timing (Block Delays) . 134
Timing Simulation Post-Place and Route (Block and Net Delays) 135

Using Test Benches to Provide Stimulus . 135
About Test Benches . 135

http://www.xilinx.com

12 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Creating a Test Bench . 136
Test Bench Recommendations . 136

VHDL and Verilog Libraries and Models . 137
Required Simulation Point Libraries . 137

First Simulation Point: Register Transfer Level (RTL) . 137
Second Simulation Point: Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation. . . . 137
Third Simulation Point: Post-NGDBuild (Pre-Map) Gate-Level Simulation. 138
Fourth Simulation Point: Post-Map Partial Timing (Block Delays). 138
Fifth Simulation Point: Timing Simulation Post-Place and Route

(Block and Net Delays) . 138
Simulation Phase Library Information . 138
Library Source Files and Compile Order . 139

Simulation Library VITAL VHDL Files . 139
Simulation Library Verilog Files . 141

Simulation Libraries . 141
UNISIM Library . 142
VHDL UNISIM Library . 142
Verilog UNISIM Library . 142
UniMacro Library . 142
VHDL UniMacro Library . 143
Verilog UniMacro Library . 143
CORE Generator XilinxCoreLib Library . 143
SIMPRIM Library . 143
SmartModel Libraries . 144
SecureIP Libraries . 144
VHDL SecureIP Library . 144
Verilog SecureIP Library. 144
Xilinx Simulation Libraries (COMPXLIB) . 144

Reducing Simulation Runtimes . 144
Simulation of Configuration Interfaces . 146

JTAG Simulation . 146
SelectMAP Simulation . 147

Slave SelectMAP . 147
System Level Description . 148
Debugging with the Model . 148
Supported Features. 149

Spartan-3AN In-System Flash Simulation . 150
Spartan-3AN In-System Flash Simulation Overview . 150
SPI_ACCESS Supported Commands . 151
SPI_ACCESS Memory Initialization . 152
SPI_ACCESS Attributes . 153

Disabling BlockRAM Collision Checks for Simulation . 155
About Disabling BlockRAM Collision Checks for Simulation 155
SIM_COLLISION_CHECK Strings . 155

Global Reset and Tristate for Simulation . 156
About Global Reset and Tristate for Simulation . 156
Using Global Tristate (GTS) and Global Set/Reset (GSR)

Signals in an FPGA Device . 157
Global Set/Reset (GSR) and Global Tristate (GTS) in Verilog 157

Design Hierarchy and Simulation . 157
Advantages of Hierarchy . 158
Improving Design Utilization and Performance . 158

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 13
10.1

R

Good Design Practices . 158
Maintaining the Hierarchy . 158

Instructing the Synthesis Tool to Maintain the Hierarchy . 159
Using the KEEP_HIERARCHY Constraint to Maintain the Hierarchy. 159

Register Transfer Level (RTL) Simulation Using Xilinx Libraries 161
Simulating Xilinx Libraries . 161
Delta Cycles and Race Conditions . 161
Recommended Simulation Resolution . 163
IP Encryption Methodology . 163

Generating Gate-Level Netlist (Running NetGen) . 163
Disabling X Propagation for Synchronous Elements . 164

X Propagation During Timing Violations . 164
Using the ASYNC_REG Constraint. 164

MIN/TYP/MAX Simulation . 165
About MIN/TYP/MAX Simulation . 165

Minimum (MIN) . 165
Typical (TYP) . 165
Maximum (MAX) . 166

Obtaining Accurate Timing Simulation Results . 166
Run Netgen. 166
Run Setup Simulation . 166
Run Hold Simulation . 166

Absolute Min Simulation . 167
Using the VOLTAGE and TEMPERATURE Constraints . 167

Using the VOLTAGE Constraint. 168
Using the TEMPERATURE Constraint . 168
Determining Valid Operating Temperatures and Voltages . 168
NetGen Options for Different Delay Values . 169

Special Considerations for CLKDLL, DCM, and DCM_ADV. 169
DLL/DCM Clocks Do Not Appear De-Skewed . 169
TRACE/Simulation Model Differences for DCM/DLL . 170
Non-LVTTL Input Drivers . 171
Viewer Considerations . 171
Attributes for Simulation and Implementation . 171

Understanding Timing Simulation . 172
Importance of Timing Simulation . 172

About Importance of Timing Simulation . 172
Functional Simulation. 172
Static Timing Analysis and Equivalency Checking. 172
In-System Testing . 173

Glitches in Your Design . 173
Debugging Timing Problems . 173

Identifying Timing Problems . 173
Setup Violation Messages . 174

Timing Problem Root Causes . 174
Simulation Clock Does Not Meet Timespec . 174
Unaccounted Clock Skew . 175
Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase 175
Asynchronous Clocks . 175
Asynchronous Inputs . 175
Out of Phase Data Paths . 176

Debugging Tips . 176

http://www.xilinx.com

14 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Setup and Hold Violations . 176
Zero Hold Time Considerations . 176
Negative Hold Times . 176
RAM Considerations for Setup and Hold Violations . 177
Timing Violations . 177
Collision Checking . 177
Hierarchy Considerations . 177

Simulation Using Xilinx-Supported EDA Simulation Tools 178

Chapter 7: Design Considerations
Understanding the Architecture . 179

Understanding Hardware Features and Trade-Offs . 179
Slice Structure . 179
Hard-IP Blocks . 180

Use Block Features Optimally. 180
Evaluate the Percentage of BRAMs or DSP Blocks . 180
Lock Down Block Placement . 180
Compare Hard-IP Blocks and Slice Logic . 180
Use SelectRAMs . 181
Compare Placing Logic Functions in Slice Logic or DSP Block. 181

Clocking Resources . 181
Determining Whether Clocking Resources Meet Design Requirements 181
Evaluating Clocking Implementation . 182
Clock Reporting . 183

Clock Report . 183
Reviewing the Place and Route Report. 183
Clock Region Reports . 184
Global Clock Region Report . 184
Secondary Clock Region Report . 185

Defining Timing Requirements . 187
Defining Constraints . 187
Over-Constraining . 187
Constraint Coverage . 188
Examples of Non-Consolidated Constraints . 188
Consolidation of Constraints Using Grouping . 188

Driving Synthesis . 188
Creating High-Performance Circuits . 188

Use Proper Coding Techniques . 188
Analyze Inference of Logic . 188
Provide a Complete Picture of Your Design . 189
Use Optimal Software Settings . 189

Helpful Synthesis Attributes . 190
Additional Timing Options . 190

Choosing Implementation Options . 191
Choosing Options for Maximum Performance . 191
Performance Evaluation Mode . 191
Packing and Placement Option . 191
Physical Synthesis Options . 192
Xplorer . 192

Timing Closure Mode . 192
Best Performance Mode . 192

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 15
10.1

R

Evaluating Critical Paths . 193
Understanding Characteristics of Critical Paths . 193
Logic Levels . 193

Many Logic Levels . 193
Few Logic Levels . 193

Design Preservation With SmartCompile . 194
About Design Preservation With SmartCompile . 194
Deciding Whether to Use Partitions or SmartGuide . 194

Guidelines for Using Partitions. 195
Guidelines for Using SmartGuide. 195

Design Preservation with Partitions . 195
About Design Preservation with Partitions . 195
Defining Partitions for Design Preservation . 196
Tips for Using Partitions for Design Preservation . 196

Design Preservation with SmartGuide . 197
About Design Preservation with SmartGuide . 197
Optimal Changes for SmartGuide . 197
Constraint Changes That Impact SmartGuide . 198
Reimplementing Without SmartGuide . 198

Appendix A: Simulating Xilinx Designs in Modelsim
Simulating Xilinx Designs in Modelsim . 199

Compiling the Xilinx Simulation Libraries . 199
Running Simulation from Project Navigator (VHDL or Verilog) 199
Running Functional Simulation in Modelsim (Standalone) . 200

Running Functional Simulation in MTI Standalone (Verilog) 200
Running Functional Simulation in MTI Standalone (VHDL) . 200

Running Back Annotated Simulation in Modelsim (Standalone) 201
Running Back Annotated Simulation in MTI Standalone (Verilog) 201
Running Back Annotated Simulation in MTI Standalone (VHDL) 201

Running SmartModel Simulations in Modelsim . 202
About Running SmartModel Simulations in Modelsim . 202
Editing the Initialization File . 203
Additional Steps . 204

Appendix B: Simulating Xilinx Designs in NCSIM
Running Simulation from Project Navigator . 205
Running Simulation in NC-Verilog . 205

Running Simulations in NC-Verilog (Method One) . 205
Running Simulations in NC-Verilog (Method Two) . 206

Back-Annotating Delay Values from SDF File . 206
Running SmartModel Simulations in NC- Verilog . 207

Running SmartModel Simulation in Cadence NC-Verilog (Linux) 207
Running SmartModel Simulation in Cadence NC-Verilog (Linux 64) 208

Running Simulation in NC-VHDL . 208
Setting Up the Libraries . 209
Running Behavioral Simulation With NC-VHDL. 209
Running Timing Simulation With NC-VHDL . 209
Running SmartModel Simulations in Cadence NC- VHDL . 210

Running SmartModel Simulation in Cadence NC-VHDL (Linux) 210
Running SmartModel Simulation in Cadence NC-VHDL (Linux 64) 211

http://www.xilinx.com

16 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Appendix C: Simulating Xilinx Designs in Synopsys VCS-MX and VCS-
MXi

Simulating Xilinx Designs from Project Navigator in Synopsys VCS-MX and VCS-MXi
213

Simulating Xilinx Designs in Standalone Synopsys VCS-MX and VCS-MXi 213
Using Library Source Files With Compile Time Options . 213
Using Shared Pre-Compiled Libraries . 214
Using Unified Usage Model (Three-Step Process) . 215

Three-Step Process Analysis Phase . 215
Three-Step Process Elaboration Phase . 215
Three-Step Process Simulation Phase . 215

Using SDF with VCS . 215
Compiling the SDF file at Compile Time . 215
Reading the ASCII SDF File at Runtime . 216

Simulating Xilinx Designs Using SmartModel with Synopsys VCS-MX and VCS-MXi
216

About Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi 216
Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi (Linux) . . . 216

Synopsys VCS-MX and VCS-MXi (Linux) Setup File . 216
Synopsys VCS-MX and VCS-MXi (Linux) Simulate File. 217

Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi (Linux-64) 217
Synopsys VCS-MX and VCS-MXi Setup File (Linux-64). 217
Synopsys VCS-MX and VCS-MXi Simulate File (Linux-64) . 218

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 17
10.1

R

Chapter 1

Introduction to Synthesis and
Simulation

This chapter (Introduction to Synthesis and Simulation) provides an introduction to synthesis
and simulation. This chapter includes:

• “Hardware Description Languages (HDLs)”

• “Advantages of Using Hardware Description Languages (HDLs) to Design FPGA
Devices”

• “Designing FPGA Devices With Hardware Description Languages (HDLs)”

Hardware Description Languages (HDLs)
Designers use Hardware Description Languages (HDLs) to describe the behavior and
structure of system and circuit designs. Understanding FPGA architecture allows you to
create HDL code that effectively uses FPGA system features. To learn more about
designing FPGA devices with HDL:

• Enroll in training classes offered by Xilinx® and by synthesis tool vendors.

• Review the HDL design examples in this Guide.

• Download design examples from Xilinx Support.

• Take advantage of the many other resources offered by Xilinx, including:

♦ Documentation

♦ Tutorials

♦ Tech Tips

♦ Service packs

♦ Telephone hotline

♦ Answers database

For more information, see “Additional Resources.”

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com

18 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 1: Introduction to Synthesis and Simulation
R

Advantages of Using Hardware Description Languages
(HDLs) to Design FPGA Devices

Using Hardware Description Languages (HDLs) to design high-density FPGA devices has
the following advantages:

• Top-Down Approach for Large Projects

Designers useHDLs to create complex designs. The top-down approach to system
design works well for large HDL projects that require many designers working
together. After the design team determines the overall design plan, individual
designers can work independently on separate code sections.

• Functional Simulation Early in the Design Flow

You can verify design functionality early in the design flow by simulating the HDL
description. Testing your design decisions before the design is implemented at the
Register Transfer Level (RTL) or gate level allows you to make any necessary changes
early on.

• Synthesis of HDL Code to Gates

Synthesizing your hardware description to target the FPGA implementation:

♦ Decreases design time by allowing a higher-level design specification, rather than
specifying the design from the FPGA base elements.

♦ Reduces the errors that can occur during a manual translation of a hardware
description to a schematic design.

♦ Allows you to apply the automation techniques used by the synthesis tool (such
as machine encoding styles and automatic I/O insertion) during optimization to
the original HDL code. This results in greater optimization and efficiency.

• Early Testing of Various Design Implementations

HDLs allow you to test different design implementations early in the design flow. Use
the synthesis tool to perform the logic synthesis and optimization into gates.
Additionally, Xilinx FPGA devices allow you to implement your design at your
computer. Since the synthesis time is short, you have more time to explore different
architectural possibilities at the Register Transfer Level (RTL). You can reprogram
Xilinx FPGA devices to test several design implementations.

• Reuse of RTL Code

You can retarget RTL code to new FPGA devices with minimum recoding.

Designing FPGA Devices With Hardware Description Languages
(HDLs)

This section discusses Designing FPGA Devices with Hardware Description Languages
(HDLs), and includes:

• “Understanding Hardware Description Languages (HDLs)”

• “Designing FPGA Devices with VHDL”

• “Designing FPGA Devices with Verilog”

• “Designing FPGA Devices with Synthesis Tools”

• “Using FPGA System Features”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 19
10.1

Designing FPGA Devices With Hardware Description Languages (HDLs)
R

• “Designing Hierarchy”

• “Specifying Speed Requirements”

Understanding Hardware Description Languages (HDLs)
If you are used to schematic design entry, you may find it difficult at first to create
Hardware Description Languages (HDLs) designs. You must make the transition from
graphical concepts, such as block diagrams, state machines, flow diagrams, and truth
tables, to abstract representations of design components. To ease this transition, keep your
overall design plan in mind as you code in HDL.

To effectively use an HDL, you must understand the:

• Syntax of the language

• Synthesis and simulator tools

• Architecture of your target device

• Implementation tools

Designing FPGA Devices with VHDL
VHSIC Hardware Description Language (VHDL) is a hardware description language for
designing integrated circuits. Since VHDL was not originally intended as an input to
synthesis, many VHDL constructs are not supported by synthesis tools. The high level of
abstraction of VHDL makes it easy to describe the system-level components and test
benches that are not synthesized. In addition, the various synthesis tools use different
subsets of VHDL.

The examples in this Guide work with most FPGA synthesis tools. The coding strategies
presented in the remaining chapters of this Guide can help you create Hardware
Description Language (HDL) descriptions that can be synthesized.

Designing FPGA Devices with Verilog
Verilog is popular for synthesis designs because:

• Verilog is less verbose than traditional VHDL.

• Verilog is standardized as IEEE-STD-1364-95 and IEEE-STD-1364-2001.

Since Verilog was not originally intended as an input to synthesis, many Verilog constructs
are not supported by synthesis tools. The Verilog coding examples in this Guide were
tested and synthesized with current, commonly-used FPGA synthesis tools. The coding
strategies presented in the remaining chapters of this Guide can help you create Hardware
Description Language (HDL) descriptions that can be synthesized.

SystemVerilog is a new emerging standard for both synthesis and simulation. It is not
known if, or when, this standard will be adopted and supported by the various design
tools.

Whether or not you plan to use this new standard, Xilinx recommends that you:

• Review the standard to ensure that your current Verilog code can be readily carried
forward as the new standard evolves.

• Review any new keywords specified by the standard.

• Avoid using the new keywords in your current Verilog code.

http://www.xilinx.com

20 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 1: Introduction to Synthesis and Simulation
R

Designing FPGA Devices with Synthesis Tools
Most synthesis tools have special optimization algorithms for Xilinx FPGA devices.
Constraints and compiling options perform differently depending on the target device.
Some commands and constraints in ASIC synthesis tools do not apply to FPGA devices. If
you use them, they may adversely impact your results.

You should understand how your synthesis tool processes designs before you create FPGA
designs. Most FPGA synthesis vendors include information in their documentation
specifically for Xilinx FPGA devices.

Using FPGA System Features
To improve device performance, area utilization, and power characteristics, create
Hardware Description Language (HDL) code that uses FPGA system features such as
DCM, multipliers, shift registers, and memory. For a description of these and other
features, see the device data sheet and user guide. The choice of the size (width and depth)
and functional characteristics must be taken into account by understanding the target
FPGA resources and making the proper system choices to best target the underlying
architecture.

Designing Hierarchy
Hardware Description Languages (HDLs) give added flexibility in describing the design.
Not all HDL code is optimized the same. How and where the functionality is described can
have dramatic effects on end optimization. For example:

• Certain techniques may unnecessarily increase the design size and power while
decreasing performance.

• Other techniques can result in more optimal designs in terms of any or all of those
same metrics.

This Guide will help instruct you in techniques for optional FPGA design methodologies.

Design hierarchy is important in both the implementation of an FPGA and during
interactive changes. Some synthesizers maintain the hierarchical boundaries unless you
group modules together. Modules should have registered outputs so their boundaries are
not an impediment to optimization. Otherwise, modules should be as large as possible
within the limitations of your synthesis tool.

The “5,000 gates per module” rule is no longer valid, and can interfere with optimization.
Check with your synthesis vendor for the preferred module size. As a last resort, use the
grouping commands of your synthesizer, if available. The size and content of the modules
influence synthesis results and design implementation. This Guide describes how to create
effective design hierarchy.

Specifying Speed Requirements
To meet timing requirements, you should understand how to set timing constraints in both
the synthesis tool and the placement and routing tool. If you specify the desired timing at
the beginning, the tools can maximize not only performance, but also area, power, and tool
runtime. This usually results in a design that better matches the desired performance. It
may also result in a design that is smaller, and which consumes less power and requires
less time processing in the tools. For more information, see “Setting Constraints.”

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

Synthesis and Simulation Design Guide www.xilinx.com 21
10.1

R

Chapter 2

FPGA Design Flow

This chapter (FPGA Design Flow) describes the steps in a typical FPGA design flow, and
includes:

• “Design Flow Diagram”

• “Design Entry Recommendations”

• “Architecture Wizard”

• “CORE Generator”

• “Functional Simulation”

• “Synthesizing and Optimizing”

• “Setting Constraints”

• “Evaluating Design Size and Performance”

• “Evaluating Coding Style and System Features”

• “Placing and Routing”

• “Timing Simulation”

http://www.xilinx.com

22 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

Design Flow Diagram
Figure 2-1, “Design Flow Overview Diagram,” shows an overview of the design flow
steps.

Figure 2-1: Design Flow Overview Diagram

X10303

Entering your Design
and Selecting Hierarchy

Functional Simulation
of your Design

Synthesizing and Optimizing
your Design

Adding Design
Constraints

Evaluating your Design Size
and Performance

Placing and Routing
your Design

Downloading to the Device,
In-System Debugging

Generating a Bitstream

Creating a PROM, ACE
or JTAG File

Evaluating your Design's Coding Style
and System Features

Timing Simulation
of your Design

Static Timing
Analysis

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 23
10.1

Design Entry Recommendations
R

Design Entry Recommendations
This section discusses Design Entry Recommendations, and includes:

• “Use Register Transfer Level (RTL) Code”

• “Select the Correct Design Hierarchy”

Use Register Transfer Level (RTL) Code
Use Register Transfer Level (RTL) code, and, when possible, do not instantiate specific
components. Following these two practices allows for:

• Readable code

• Ability to use the same code for synthesis and simulation

• Faster and simpler simulation

• Portable code for migration to different device families

• Reusable code for future designs

In some cases instantiating optimized CORE Generator™ modules is beneficial with RTL.

Select the Correct Design Hierarchy
Select the correct design hierarchy to:

• Improve simulation and synthesis results

• Improve debugging

• Allow parallel engineering, in which a team of engineers can work on different parts
of the design at the same time

• Improve the placement and routing by reducing routing congestion and improving
timing

• Allow for easier code reuse in the current design, as well as in future designs

Architecture Wizard
This section discusses Architecture Wizard, and includes:

• “Using Architecture Wizard”

• “Opening Architecture Wizard”

• “Architecture Wizard Components”

Using Architecture Wizard
Use Architecture Wizard to configure advanced features of Xilinx® devices. Architecture
Wizard consists of several components for configuring specific device features. Each
component functions as an independent wizard. For more information, see “Architecture
Wizard Components.”

Architecture Wizard creates a VHDL, Verilog, or Electronic Data Interchange Format
(EDIF) file, depending on the flow type passed to it. The generated Hardware Description
Language (HDL) output is a module consisting of one or more primitives and the
corresponding properties, and not just a code snippet. This allows the output file to be

http://www.xilinx.com

24 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

referenced from the HDL Editor. No User Constraints File (UCF) is output, since the
necessary attributes are embedded inside the HDL file.

Opening Architecture Wizard
There are three ways to open the Architecture Wizard:

• Open Architecture Wizard from Project Navigator

For information on opening Architecture Wizard in ISE, see the ISE Help, especially
Working with Architecture Wizard IP.

• Open Architecture Wizard from CORE Generator

To open the Architecture Wizard from CORE Generator, select any of the Architecture
Wizard IP from the list of available IP in the CORE Generator window.

• Open Architecture Wizard from the Command Line

To open Architecture Wizard from the command line, type arwz.

Architecture Wizard Components
This section discusses Architecture Wizard Components, and includes the following:

• “Clocking Wizard”

• “RocketIO Wizard”

• “ChipSync Wizard”

• “XtremeDSP Slice Wizard”

Clocking Wizard

The Clocking Wizard enables:

• Digital clock setup

• DCM and clock buffer viewing

• DRC checking

The Clocking Wizard allows you to:

• View the DCM component

• Specify attributes

• Generate corresponding components and signals

• Execute DRC checks

• Display up to eight clock buffers

• Set up the Feedback Path information

• Set up the Clock Frequency Generator information and execute DRC checks

• View and edit component attributes

• View and edit component constraints

• View and configure one or two Phase Matched Clock Dividers (PMCDs) in a Virtex™-
4 device

• View and configure a Phase Locked Loop (PLL) in a Virtex-5 device

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 25
10.1

Architecture Wizard
R

• Automatically place one component in the XAW file

• Save component settings in a VHDL file

• Save component settings in a Verilog file

RocketIO Wizard

The RocketIO Wizard enables serial connectivity between devices, backplanes, and
subsystems.

The RocketIO Wizard allows you to:

• Specify RocketIO type

• Define Channel Bonding options

• Specify General Transmitter Settings, including encoding, CRC, and clock

• Specify General Receptor Settings, including encoding, CRC, and clock

• Provide the ability to specify Synchronization

• Specify Equalization, Signal integrity tip (resister, termination mode...)

• View and edit component attributes

• View and edit component constraints

• Automatically place one component in the XAW file

• Save component settings to a VHDL file or Verilog file

ChipSync Wizard

The ChipSync Wizard applies to Virtex-4 and Virtex-5 devices only.

The ChipSync Wizard:

• Facilitates the implementation of high-speed source synchronous applications.

• Configures a group of I/O blocks into an interface for use in memory, networking, or
any other type of bus interface.

• Creates Hardware Description Language (HDL) code with these features configured
according to your input:

♦ Width and IO standard of data, address, and clocks for the interface

♦ Additional pins such as reference clocks and control pins

♦ Adjustable input delay for data and clock pins

♦ Clock buffers (BUFIO) for input clocks

♦ ISERDES/OSERDES or IDDR/ODDR blocks to control the width of data, clock
enables, and tristate signals to the fabric

XtremeDSP Slice Wizard

The XtremeDSP Slice Wizard applies to Virtex-4 and Virtex-5 devices only.

The XtremeDSP Slice Wizard facilitates the implementation of the XtremeDSP Slice. For
more information, see the Virtex-4 and Virtex-5 data sheets, the XtremeDSP for Virtex-4
FPGAs User Guide, and the Virtex-5 XtremeDSP User Guide, both available from the Xilinx
user guide web page.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

26 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

CORE Generator
This section discusses CORE Generator™, and includes:

• “About CORE Generator”

• “CORE Generator Files”

About CORE Generator
CORE Generator delivers parameterized Intellectual Property (IP) optimized for Xilinx
FPGA devices. It provides a catalog of ready-made functions ranging in complexity from
FIFOs and memories to high level system functions. High level system functions can
include:

• Reed-Soloman Decoder and Encoder

• FIR filters

• FFTs for DSP applications

• Standard bus interfaces (for example, PCI and PCI-X)

• Connectivity and networking interfaces (for example, Ethernet, SPI-4.2, and PCI
Express)

CORE Generator Files
For a typical core, CORE Generator produces the following files:

• “Electronic Data Interchange Format Netlist (EDN) and NGC Files”

• “VHDL Template (VHO) Files”

• “Verilog Template (VEO) Files”

• “V (Verilog) and VHD (VHDL) Wrapper Files”

• “ASY (ASCII Symbol) Files”

Electronic Data Interchange Format Netlist (EDN) and NGC Files

The Electronic Data Interchange Format (Electronic Data Interchange Format (EDIF)
Netlist (EDN) file and NGC files contain the information required to implement the
module in a Xilinx FPGA. Since NGC files are in binary format, ASCII NDF files may also
be produced to communicate resource and timing information for NGC files to third party
synthesis tools. The NDF file is read by the synthesis tool only and is not used for
implementation.

VHDL Template (VHO) Files

VHDL template (VHO) template files contain code that can be used as a model for
instantiating a CORE Generator module in a VHDL design. VHO files come with a VHDL
(VHD) wrapper file.

Verilog Template (VEO) Files

Verilog template (VEO) files contain code that can be used as a model for instantiating a
CORE Generator module in a Verilog design. VEO files come with a Verilog (V) wrapper
file.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 27
10.1

Functional Simulation
R

V (Verilog) and VHD (VHDL) Wrapper Files

V (Verilog) and VHD (VHDL) wrapper files support functional simulation. These files
contain simulation model customization data that is passed to a parameterized simulation
model for the core. In the case of Verilog designs, the V wrapper file also provides the port
information required to integrate the core into a Verilog design for synthesis.

Some cores may generate actual source code or an additional top level Hardware
Description Language (HDL) wrapper with clocking resource and IOB instances to enable
you to tailor your clocking scheme to your own requirements. For more information, see
the core-specific documentation.

The V and VHD wrapper files mainly support simulation and are not synthesizable.

ASY (ASCII Symbol) Files

ASY (ASCII Symbol) symbol information files allow you to integrate the CORE Generator
modules into a schematic design for Mentor or ISE tools.

Functional Simulation
Use functional or Register Transfer Level (RTL) simulation to verify syntax and
functionality.

When you simulate your design, Xilinx recommends that you:

• Perform Separate Simulations

With larger hierarchical Hardware Description Language (HDL) designs, perform
separate simulations on each module before testing your entire design. This makes it
easier to debug your code.

• Create a Test Bench

Once each module functions as expected, create a test bench to verify that your entire
design functions as planned. Use the same test bench again for the final timing
simulation to confirm that your design functions as expected under worst-case delay
conditions.

You can use ModelSim simulators with Project Navigator. The appropriate processes
appear in Project Navigator when you choose ModelSim as your design simulator,
provided you have installed any of the following:

• ModelSim Xilinx Edition III

• ModelSim SE or ModelSim PE

You can also use these simulators with third-party synthesis tools in Project Navigator.

Synthesizing and Optimizing
This section discusses Synthesizing and Optimizing, and includes:

• “Creating a Compile Run Script”

• “Modifying Your Code to Successfully Synthesize Your Design”

• “Reading Cores”

See the following recommendations for compiling your designs to improve your results
and decrease the run time. For more information, see your synthesis tool documentation.

http://www.xilinx.com

28 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

Creating a Compile Run Script
This section discusses Creating a Compile Run Script, and includes:

• “Running the TCL Script (Precision RTL Synthesis)”

• “Running the TCL Script (Synplify)”

• “Running the TCL Script (XST)”

TCL scripting can make compiling your design easier and faster. With advanced scripting,
you can:

• Run a compile multiple times using different options

• Write to different directories

• Run other command line tools

Running the TCL Script (Precision RTL Synthesis)

To run the TCL script from Precision RTL Synthesis:

1. Set up your project in Precision.

2. Synthesize your project.

3. Run the following commands to save and run the TCL script.

Running the TCL Script (Synplify)

To run the TCL script from Synplify:

• Select File > Run TCL Script.

OR

• Type synplify -batch script_file.tcl at a UNIX or DOS command prompt. Enter the
following TCL commands in Synplify.

Table 2-1: Precision RTL Synthesis Commands

Function Command

save the TCL script File > Save Command File

run the TCL script File > Run Script

run the TCL script from a command line c:\precision -shell -file project.tcl

complete synthesis add_input_file top.vhdl

setup_design -manufacturer Xilinx -family Virtex-II -part 2v40cs144 -
speed 6

compile

synthesize

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 29
10.1

Synthesizing and Optimizing
R

Running the TCL Script (XST)

For information and options used with the Xilinx Synthesis Tool (XST), see the Xilinx XST
User Guide at http://www.xilinx.com/support/software_manuals.htm.

Modifying Your Code to Successfully Synthesize Your Design
You may need to modify your code to successfully synthesize your design. Certain design
constructs that are effective for simulation may not be as effective for synthesis. The
synthesis syntax and code set may differ slightly from the simulator syntax and code set.

Reading Cores
This section discusses Reading Cores, and includes:

• “About Reading Cores”

• “Reading Cores (XST)”

• “Reading Cores (Synplify Pro)”

• “Reading Cores (Precision RTL Synthesis)”

Table 2-2: Synplify Commands

Function Command

start a new project project -new

set device options set_option -technology Virtex-E

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

add file options add_file -constraint “watch.sdc”

add_file -vhdl -lib work “macro1.vhd”

add_file -vhdl -lib work “macro2.vhd”

add_file -vhdl -lib work “top_levle.vhd”

 set compilation anmapping options set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler true

set_option -resource_sharing true

 set simulation options set_option -write_verilog false

set_option -write_vhdl false

set automatic place and route (vendor) options set_option -write_apr_constraint true

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

set result format and file options project -result_format “edif”

project -result_file “top_level.edf”

project -run

project -save “watch.prj”

exit exit

http://www.xilinx.com

30 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

About Reading Cores

The synthesis tools discussed in this section support incorporating the information in
CORE Generator NDF files when performing design timing and area analysis.

Including the IP core NDF files in a design when analyzing a design results in better timing
and resource optimizations for the surrounding logic. The NDF is used to estimate the
delay through the logic elements associated with the IP core. The synthesis tools do not
optimize the IP core itself, nor do they integrate the IP core netlist into the synthesized
design output netlist.

Reading Cores (XST)

Run XST using the read_cores switch. When the switch is set to on (the default), XST
reads in Electronic Data Interchange Format (EDIF) and NGC netlists. For more
information, see:

• Xilinx XST User Guide at http://www.xilinx.com/support/software_manuals.htm

• Project Navigator help

Reading Cores (Synplify Pro)

When reading cores in Synplify Pro, Electronic Data Interchange Format (EDIF) is treated
as another source format, but when reading in EDIF, you must specify the top level VHDL
or Verilog in your project.

Reading Cores (Precision RTL Synthesis)

Precision RTL Synthesis can add Electronic Data Interchange Format (EDIF) and NGC files
to your project as source files. For more information, see the Precision RTL Synthesis help.

Setting Constraints
This section discusses Setting Constraints, and includes:

• “Advantages of Setting Constraints”

• “Specifying Constraints in the User Constraints File (UCF)”

• “Setting Constraints in ISE”

Advantages of Setting Constraints
Setting constraints:

• Allows you to control timing optimization

• Uses synthesis tools and implementation processes more efficiently

• Helps minimize runtime and achieve your design requirements

Precision RTL Synthesis and Synplify constraints editors allow you to apply constraints to
your Hardware Description Language (HDL) design. For more information, see your
synthesis tool documentation.

You can add the following constraints:

• Clock frequency or cycle and offset

• Input and Output timing

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 31
10.1

Evaluating Design Size and Performance
R

• Signal Preservation

• Module constraints

• Buffering ports

• Path timing

• Global timing

Specifying Constraints in the User Constraints File (UCF)
Constraints defined for synthesis can also be passed to implementation in a Netlist
Constraints File (NCF) or the output Electronic Data Interchange Format (EDIF) file.
However, Xilinx recommends that you do not pass these constraints to implementation.
Instead, specify your constraints separately in a User Constraints File (UCF). The UCF
gives you tight control over the overall specifications by giving you the ability to:

• Access more types of constraints

• Define precise timing paths

• Prioritize signal constraints

For recommendations on constraining synthesis and implementation, see “Design
Considerations.”For information on specific timing constraints, together with syntax
examples, see the Xilinx Constraints Guide at
http://www.xilinx.com/support/software_manuals.htm.

Setting Constraints in ISE
You can set constraints in ISE with:

• Constraints Editor

• Floorplanner

• PACE

• Floorplan Editor

For more information, see the ISE Help.

Evaluating Design Size and Performance
This section discusses Evaluating Design Size and Performance, and includes:

• “Meeting Design Parameters”

• “Estimating Device Utilization and Performance”

• “Determining Actual Device Utilization and Pre-Routed Performance”

Meeting Design Parameters
Your design must:

• Function at the specified speed

• Fit in the targeted device

After your design is compiled, use the reporting options of your synthesis tool to
determine preliminary device utilization and performance. After your design is mapped
by the Xilinx tools, you can determine the actual device utilization.

http://www.xilinx.com

32 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

At this point, you should verify that:

• Your chosen device is large enough to accommodate any future changes or additions

• Your design performs as specified

Estimating Device Utilization and Performance
Use the area and timing reporting options of your synthesis tool to estimate device
utilization and performance. After compiling, use the report area command to obtain a
report of device resource utilization. Some synthesis tools provide area reports
automatically. For correct command syntax, see your synthesis tool documentation.

The device utilization and performance report lists the compiled cells in your design, as
well as information on how your design is mapped in the FPGA. These reports are usually
accurate because the synthesis tool creates the logic from your code and maps your design
into the FPGA. These reports are different for the various synthesis tools. Some reports
specify the minimum number of CLBs required, while other reports specify the
“unpacked” number of CLBs to make an allowance for routing. For an accurate
comparison, compare reports from the Xilinx mapper tool after implementation.

Any instantiated components, such as CORE Generator modules, Electronic Data
Interchange Format (EDIF) files, or other components that your synthesis tool does not
recognize during compilation, are not included in the report file. If you include these
components, you must include the logic area used by these components when estimating
design size. Sections may be trimmed during mapping, resulting in a smaller design.

Use the timing report command of your synthesis tool to obtain a report with estimated
data path delays. For more information, see your synthesis tool documentation.

The timing report is based on the logic level delays from the cell libraries and estimated
wire-load models. While this report estimates how close you are to your timing goals, it is
not the actual timing. An accurate timing report is available only after the design is placed
and routed.

Determining Actual Device Utilization and Pre-Routed Performance
This section discusses Determining Actual Device Utilization and Pre-Routed
Performance, and includes:

• “Determining If Your Design Fits the Specified Device”

• “Mapping Your Design Using Project Navigator”

• “Mapping Your Design Using the Command Line”

Determining If Your Design Fits the Specified Device

To determine if your design fits the specified device, map it using the Xilinx Map program.
The generated report file design_name.mrp contains the implemented device utilization
information. To read the report file, double-click Map Report in the Project Navigator
Processes window. Run the Map program from Project Navigator or from the command
line.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 33
10.1

Evaluating Design Size and Performance
R

Mapping Your Design Using Project Navigator

To map your design using Project Navigator:

1. Go to the Processes window.

2. Click the plus (+) symbol in front of Implement Design.

3. Double-click Map.

4. To view the Map Report, double-click Map Report.

If the report does not exist, it is generated at this time. A green check mark in front of
the report name indicates that the report is up-to-date, and no processing is performed.

5. If the report is not up-to-date:

a. Click the report name.

b. Select Process > Rerun to update the report.

The auto-make process automatically runs only the necessary processes to update the
report before displaying it.

Alternatively, you may select Process > Rerun All to re-run all processes (even
those processes that are up-to-date) from the top of the design to the stage where the
report would be.

6. View the Logic Level Timing Report with the Report Browser. This report shows
design performance based on logic levels and best-case routing delays.

7. Run the integrated Timing Analyzer to create a more specific report of design paths
(optional).

8. Use the Logic Level Timing Report and any reports generated with the Timing
Analyzer or the Map program to evaluate how close you are to your performance and
utilization goals.

Use these reports to decide whether to proceed to the place and route phase of
implementation, or to go back and modify your design or implementation options to attain
your performance goals. You should have some slack in routing delays to allow the place
and route tools to successfully complete your design. Use the verbose option in the Timing
Analyzer to see block-by-block delay. The timing report of a mapped design (before place
and route) shows block delays, as well as minimum routing delays.

A typical Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-4, or Virtex-5 design should allow
40% of the delay for logic, and 60% of the delay for routing. If most of your time is taken by
logic, the design will probably not meet timing after place and route.

Mapping Your Design Using the Command Line

For available options, enter the trce command at the command line without any
arguments.

To map your design using the command line:

1. To translate your design, run:

ngdbuild -p target_device design_name.edf (or ngc)

2. To map your design, run:

map design_name.ngd

http://www.xilinx.com

34 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

3. Use a text editor to view the Device Summary section of the Map Report
<design_name.mrp>.

The Device Summary section contains the device utilization information.

4. Run a timing analysis of the logic level delays from your mapped design as follows:

trce [options] design_name.ncd

Use the Trace reports to:

• See how well the design meets performance goals

• Decide whether to proceed to place and route, or to modify your design or
implementation options

Leave some slack in routing delays to allow the place and route tools to successfully
complete your design.

Evaluating Coding Style and System Features
This section discusses Evaluating Coding Style and System Features, and includes:

• “Modifying Code to Improve Design Performance”

• “Using FPGA System Features”

• “Using Xilinx-Specific Features of Your Synthesis Tool”

If you are not satisfied with your design performance, re-evaluate your code and make any
necessary improvements. Modifying your code and selecting different compiler options
can dramatically improve device utilization and speed.

Modifying Code to Improve Design Performance
To improve design performance:

1. Reduce levels of logic to improve timing by:

a. Using pipelining and retiming techniques

b. Rewriting the Hardware Description Language (HDL) descriptions

c. Enabling or disabling resource sharing

2. Restructure logic to redefine hierarchical boundaries to help the compiler optimize
design logic

3. Perform logic replication to reduce critical nets fanout to improve placement and
reduce congestion

4. Take advantage of device resource with the CORE Generator modules

Using FPGA System Features
After correcting any coding problems, use the following FPGA system features to improve
resource utilization and enhance the speed of critical paths:

• Use clock enables.

• Use one-hot encoding for large or complex state machines.

• Use I/O registers when applicable.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 35
10.1

Placing and Routing
R

• Use dedicated shift registers.

• In Virtex-II and Virtex-II Pro devices, use dedicated multipliers.

• In Virtex-4 and Virtex-5 devices, use the dedicated DSP blocks.

Each device family has a unique set of system features. For more information about the
system features available for your target device, see the device data sheet.

Using Xilinx-Specific Features of Your Synthesis Tool
Using the Xilinx-specific features of your synthesis tool allows better control over:

• The logic generated

• The number of logic levels

• The architecture elements used

• Fanout

If design performance is more than a few percentage points away from design
requirements, advanced algorithms in the place and route (PAR) tool now make it more
efficient to use your synthesis tool to achieve design performance. Most synthesis tools
have special options for Xilinx-specific features.

For more information, see your synthesis tool documentation.

Placing and Routing
The overall goal when placing and routing your design is fast implementation and high-
quality results. You may not always accomplish this goal:

• Early in the design cycle, run time is usually more important than quality of results.
Later in the design cycle, the reverse is usually true.

• If the targeted device is highly utilized, the routing may become congested, and your
design may be difficult to route. In this case, the placer and router may take longer to
meet your timing requirements.

• If design constraints are rigorous, it may take longer to correctly place and route your
design, and meet the specified timing.

For more information, see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm

Timing Simulation
Timing simulation is important in verifying circuit operation after the worst-case placed
and routed delays are calculated. In many cases, you can use the same test bench that you
used for functional simulation to perform a more accurate simulation with less effort.
Compare the results from the two simulations to verify that your design is performing as
initially specified. The Xilinx tools create a VHDL or Verilog simulation netlist of your
placed and routed design, and provide libraries that work with many common Hardware
Description Language (HDL) simulators. For more information, see “Simulating Your
Design.”

Timing-driven PAR is based on TRACE, the Xilinx timing analysis tool. TRACE is an
integrated static timing analysis, and does not depend on input stimulus to the circuit.
Placement and routing are executed according to the timing constraints that you specified

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

36 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 2: FPGA Design Flow
R

at the beginning of the design process. TRACE interacts with PAR to make sure that the
timing constraints you imposed are met.

If there are timing constraints, TRACE generates a report based on those constraints. If
there are no timing constraints, TRACE can optionally generate a timing report containing:

• An analysis that enumerates all clocks and the required OFFSETs for each clock

• An analysis of paths having only combinatorial logic, ordered by delay

For more information on TRACE, see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm. For more information on Timing
Analysis, see the ISE Timing Analyzer Help.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 37
10.1

R

Chapter 3

General Recommendations for Coding
Practices

This chapter (General Recommendations for Coding Practices) contains general information
relating to HDL coding styles and design examples to help you develop an efficient coding
style. For specific information relating to coding for FPGA devices, see “Coding for FPGA
Flow.” This chapter includes:

• “Designing With Hardware Description Languages (HDLs)”

• “Naming, Labeling, and General Coding Styles”

• “Specifying Constants”

• “TRANSLATE_OFF and TRANSLATE_ON”

Designing With Hardware Description Languages (HDLs)
Hardware Description Languages (HDLs) contain many complex constructs that may be
difficult to understand at first. The methods and examples included in HDL guides do not
always apply to the design of FPGA devices. If you currently use HDLs to design ASIC
devices, your established coding style may unnecessarily increase the number of logic
levels in FPGA designs.

HDL synthesis tools implement logic based on the coding style of your design. To learn
how to efficiently code with HDLs, you can:

• Attend training classes

• Read reference and methodology notes

• See synthesis guidelines and templates available from Xilinx® and synthesis tool
vendors

When coding your designs, remember that HDLs are mainly hardware description
languages. You should try to find a balance between the quality of the end hardware
results and the speed of simulation.

This chapter will not teach you every aspect of VHDL or Verilog, but it should help you
develop an efficient coding style.

http://www.xilinx.com

38 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 3: General Recommendations for Coding Practices
R

Naming, Labeling, and General Coding Styles
This section discusses Naming, Labeling, and General Coding Styles, and includes:

• “Common Coding Style”

• “Xilinx Naming Conventions”

• “Reserved Names”

• “Naming Guidelines for Signals and Instances”

• “Matching File Names to Entity and Module Names”

• “Naming Identifiers”

• “Instantiating Sub-Modules”

• “Recommended Length of Line”

• “Common File Headers”

• “Indenting and Spacing”

Common Coding Style
Xilinx recommends that you and your design team agree on a coding style at the beginning
of your project. An established coding style allows you to read and understand code
written by your team members. Inefficient coding styles can adversely impact synthesis
and simulation, resulting in slow circuits. Because portions of existing HDL designs are
often used in new designs, you should follow coding standards that are understood by the
majority of HDL designers. This chapter describes recommended coding styles that you
should establish before you begin your designs.

Xilinx Naming Conventions
Use Xilinx naming conventions for naming signals, variables, and instances that are
translated into nets, buses, and symbols.

• Avoid VHDL keywords (such as entity, architecture, signal, and component), even
when coding in Verilog.

• Avoid Verilog keywords (such as module, reg, and wire), even when coding in VHDL.
See Annex B of System Verilog Spec version 3.1a.

• A user-generated name should not contain a forward slash (/). The forward slash is
usually used to denote a hierarchy separator.

• Names must contain at least one non-numeric character.

• Names must not contain a dollar sign ($).

• Names must not use less-than (<) or greater-than signs (>). These signs are sometimes
used to denote a bus index.

Reserved Names
The following FPGA resource names are reserved. Do not use them to name nets or
components.

• Device architecture names (such as CLB, IOB, PAD, and Slice)

• Dedicated pin names (such as CLK and INIT)

• GND and VCC

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 39
10.1

Naming, Labeling, and General Coding Styles
R

• UNISIM primitive names such as BUFG, DCM, and RAMB16

• Do not use pin names such as P1 or A4 for component names

For language-specific naming restrictions, see the VHDL and Verilog reference manuals.
Xilinx does not recommend using escape sequences for illegal characters. If you plan to
import schematics, or to use mixed language synthesis or verification, use the most
restrictive character set.

Naming Guidelines for Signals and Instances
Naming conventions help you achieve:

• Maximum line length

• Coherent and legible code

• Allowance for mixed VHDL and Verilog design

• Consistent HDL code

To achieve these goals, Xilinx recommends that you follow the naming conventions in:

• “General Naming Rules for Signals and Instances”

• “Recommendations for VHDL and Verilog Capitalization”

General Naming Rules for Signals and Instances

Xilinx recommends that you observe the following general naming rules:

• Do not use reserved words for signal or instance names.

• Do not exceed 16 characters for the length of signal and instance names, whenever
possible.

• Create signal and instance names that reflect their connection or purpose.

• Do not use mixed case for any particular name or keyword. Use either all capitals, or
all lowercase.

Recommendations for VHDL and Verilog Capitalization

Xilinx recommends that you observe the guidelines shown in Table 3-1, “HDL and Verilog
Capitalization,” when naming signals and instances in VHDL and Verilog.

Since Verilog is case sensitive, module and instance names can be made unique by
changing their capitalization. For compatibility with file names, mixed language support,

Table 3-1: HDL and Verilog Capitalization

lower case UPPER CASE Mixed Case

library names USER PORTS Comments

keywords INSTANCE NAMES

module names UNISIM COMPONENT
NAMES

 entity names PARAMETERS

user component names GENERICS

internal signals

http://www.xilinx.com

40 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 3: General Recommendations for Coding Practices
R

and other tools, Xilinx recommends that you rely on more than just capitalization to make
instances unique.

Matching File Names to Entity and Module Names
When you name your HDL files:

• Make sure that the VHDL or Verilog source code file name matches the designated
name of the entity (VHDL) or module (Verilog) specified in your design file. This is
less confusing, and usually makes it easier to create a script file for compiling your
design.

• If your design contains more than one entity or module, put each in a separate file
with the appropriate file name. For VHDL designs, Xilinx recommends grouping the
entity and the associated architecture into the same file.

• Use the same name as your top-level design file for your synthesis script file with
either a .do, .scr, .script, or other appropriate default script file extension for
your synthesis tool.

Naming Identifiers
Follow these naming practices to make design code easier to debug and reuse:

• Use concise but meaningful identifier names.

• Use meaningful names for wires, regs, signals, variables, types, and any identifier in
the code

Example: CONTROL_REGISTER

• Use underscores to make the identifiers easier to read.

Instantiating Sub-Modules
This section discusses Instantiating Sub-Modules, and includes:

• “Instantiating Sub-Modules Recommendations”

• “Incorrect and Correct VHDL and Verilog Coding Examples”

• “Instantiating Sub-Modules Coding Examples”

Instantiating Sub-Modules Recommendations

Xilinx recommends the following when using instantiating sub-modules:

• Use named association. Named association prevents incorrect connections for the
ports of instantiated components.

• Never combine positional and named association in the same statement.

• Use one port mapping per line to:

♦ Improve readability

♦ Provide space for a comment

♦ Allow for easier modification

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 41
10.1

Naming, Labeling, and General Coding Styles
R

Incorrect and Correct VHDL and Verilog Coding Examples

Instantiating Sub-Modules Coding Examples

This section gives the following Instantiating Sub-Modules coding examples:

• “Instantiating Sub-Modules VHDL Coding Example”

• “Instantiating Sub-Modules Verilog Coding Example”

Instantiating Sub-Modules VHDL Coding Example

 -- FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set
and
 -- Clock Enable (posedge clk). All families.
 -- Xilinx HDL Language Template

 FDCPE_inst : FDCPE
 generic map (
 INIT => '0') -- Initial value of register ('0' or '1')
 port map (
 Q => Q, -- Data output
 C => C, -- Clock input
 CE => CE, -- Clock enable input
 CLR => CLR, -- Asynchronous clear input
 D => D, -- Data input
 PRE => PRE -- Asynchronous set input
);

 -- End of FDCPE_inst instantiation

Instantiating Sub-Modules Verilog Coding Example

// FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
 // Clock Enable (posedge clk). All families.
 // Xilinx HDL Language Template

 FDCPE #(
 .INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDCPE_inst (
 .Q(Q), // Data output
 .C(C), // Clock input
 .CE(CE), // Clock enable input
 .CLR(CLR), // Asynchronous clear input

Table 3-2: Incorrect and Correct VHDL and Verilog Coding Examples

VHDL Verilog

Incorrect

CLK_1: BUFG
 port map (
 I=>CLOCK_IN,
 CLOCK_OUT
);

BUFG CLK_1 (
 .I(CLOCK_IN),
 CLOCK_OUT
);

Correct

CLK_1: BUFG
 port map(
 I=>CLOCK_IN,
 O=>CLOCK_OUT
);

BUFG CLK_1 (
 .I(CLOCK_IN),
 .O(CLOCK_OUT)
);

http://www.xilinx.com

42 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 3: General Recommendations for Coding Practices
R

 .D(D), // Data input
 .PRE(PRE) // Asynchronous set input
);

 // End of FDCPE_inst instantiation

Recommended Length of Line
Xilinx recommends that a line of VHDL or Verilog code not exceed 80 characters. Choose
signal and instance names carefully in order to not exceed the 80 character limit.

If a line must exceed 80 characters, break it with the continuation character, and align the
subsequent lines with the preceding code.

Avoid excessive nests in the code, such as nested if and case statements. Excessive
nesting can make the line too long, as well as inhibit optimization. By limiting nested
statements, code is usually more readable and more portable, and can be more easily
formatted for printing.

Common File Headers
Xilinx recommends that you use a common file header surrounded by comments at the
beginning of each file. A common file header:

• Allows better documentation

• Improves code revision tracking

• Enhances reuse

The header contents depend on personal and company standards.

VHDL File Header Example

--
-- Copyright (c) 1996-2003 Xilinx, Inc.
-- All Rights Reserved
--
-- ____ ____
-- / /\/ / Company: Xilinx
-- /___/ \ / Design Name: MY_CPU
-- \ \ \/ Filename: my_cpu.vhd
-- \ \ Version: 1.1.1
-- / / Date Last Modified: Fri Sep 24 2004
-- /___/ /\ Date Created: Tue Sep 21 2004
-- \ \ / \
-- ___\/___\
--
--Device: XC3S1000-5FG676
--Software Used: ISE 8.1i
--Libraries used: UNISIM
--Purpose: CPU design
--Reference:
-- CPU specification found at: http://www.mycpu.com/docs
--Revision History:
-- Rev 1.1.0 - First created, joe_engineer, Tue Sep 21 2004.
-- Rev 1.1.1 - Ran changed architecture name from CPU_FINAL
-- john_engineer, Fri Sep 24 2004.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 43
10.1

Naming, Labeling, and General Coding Styles
R

Indenting and Spacing
Proper indentation in code offers these benefits:

• More readable and comprehensible code by showing grouped constructs at the same
indentation level

• Fewer coding mistakes

• Easier debugging

Code Indentation VHDL Coding Example

entity AND_OR is
 port (
 AND_OUT : out std_logic;
 OR_OUT : out std_logic;
 I0 : in std_logic;
 I1 : in std_logic;
 CLK : in std_logic;
 CE : in std_logic;
 RST : in std_logic);
end AND_OR;
architecture BEHAVIORAL_ARCHITECTURE of AND_OR is
 signal and_int : std_logic;
 signal or_int : std_logic;
begin
 AND_OUT <= and_int;
 OR_OUT <= or_int;
 process (CLK)
 begin
 if (CLK'event and CLK='1') then
 if (RST='1') then
 and_int <= '0';
 or_int <= '0';
 elsif (CE ='1') then
 and_int <= I0 and I1;
 or_int <= I0 or I1;
 end if;
 end if;
 end process;
end AND_OR;

Code Indentation Verilog Coding Example

module AND_OR (AND_OUT, OR_OUT, I0, I1, CLK, CE, RST);
 output reg AND_OUT, OR_OUT;
 input I0, I1;
 input CLK, CE, RST;
 always @(posedge CLK)
 if (RST) begin
 AND_OUT <= 1'b0;
 OR_OUT <= 1'b0;
 end else (CE) begin
 AND_OUT <= I0 and I1;
 OR_OUT <= I0 or I1;
 end
endmodule

http://www.xilinx.com

44 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 3: General Recommendations for Coding Practices
R

Specifying Constants
This section discusses Specifying Constants, and includes:

• “Using Constants and Parameters to Clarify Code”

• “Using Constants and Parameters VHDL Coding Examples”

Using Constants and Parameters to Clarify Code
Use constants in your design to substitute numbers with more meaningful names.
Constants make a design more readable and portable.

Specifying constants can be a form of in-code documentation that allows for easier
understanding of code function.

• For VHDL, Xilinx recommends not using variables for constants. Define constant
numeric values as constants, and use them by name.

• For Verilog, parameters can be used as constants in the code in a similar manner. This
coding convention allows you to easily determine if several occurrences of the same
literal value have the same meaning.

In the “Using Constants and Parameters VHDL Coding Examples,” the OPCODE values
are declared as constants or parameters, and the names refer to their function. This method
produces readable code that may be easier to understand and modify.

Using Constants and Parameters VHDL Coding Examples
This section gives the following Constants and Parameters VHDL coding examples:

• “Using Constants and Parameters VHDL Coding Example”

• “Using Constants and Parameters Verilog Coding Example”

Using Constants and Parameters VHDL Coding Example

constant ZERO : STD_LOGIC_VECTOR (1 downto 0):=”00”;
constant A_AND_B: STD_LOGIC_VECTOR (1 downto 0):=“01”;
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):=“10”;
constant ONE : STD_LOGIC_VECTOR (1 downto 0):=“11”;
process (OPCODE, A, B)
begin

if (OPCODE = A_AND_B)then OP_OUT <= A and B;
elsif (OPCODE = A_OR_B) then

OP_OUT <= A or B;
elsif (OPCODE = ONE) then

OP_OUT <= ‘1’;
else

OP_OUT <= ‘0’;
end if;

end process;

Using Constants and Parameters Verilog Coding Example

//Using parameters for OPCODE functions
parameter ZERO = 2'b00;
parameter A_AND_B = 2'b01;
parameter A_OR_B = 2'b10;
parameter ONE = 2'b11;
always @ (*)

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 45
10.1

Specifying Constants
R

begin
if (OPCODE == ZERO)

OP_OUT = 1'b0;
else if (OPCODE == A_AND_B)

OP_OUT=A&B;
else if (OPCODE == A_OR_B)

OP_OUT = A|B;
else

OP_OUT = 1'b1;
end

Using Generics and Parameters to Specify Dynamic Bus and Array
Widths

This section discusses Using Generics and Parameters to Specify Dynamic Bus and Array
Widths, and includes:

• “About Using Generics and Parameters to Specify Dynamic Bus and Array Widths”

• “Generics and Parameters Coding Examples”

About Using Generics and Parameters to Specify Dynamic Bus and Array
Widths

To specify a dynamic or paramatizable bus width for a VHDL or Verilog design module:

• Define a generic (VHDL) or parameter (Verilog).

• Use the generic (VHDL) or parameter (Verilog) to define the bus width of a port or
signal.

The generic (VHDL) or parameter (Verilog) can contain a default which can be overridden
by the instantiating module. This can make the code easier to reuse, as well as making it
more readable.

Generics and Parameters Coding Examples

This section gives the following Generics and Parameters coding examples:

• “VHDL Generic Coding Example”

• “Verilog Parameter Coding Example”

VHDL Generic Coding Example

-- FIFO_WIDTH data width (number of bits)
-- FIFO_DEPTH by number of address bits
-- for the FIFO RAM i.e. 9 -> 2**9 -> 512 words
-- FIFO_RAM_TYPE: BLOCKRAM or DISTRIBUTED_RAM
-- Note: DISTRIBUTED_RAM suggested for FIFO_DEPTH
-- of 5 or less
entity async_fifo is
 generic (FIFO_WIDTH: integer := 16;)
 FIFO_DEPTH: integer := 9; FIFO_RAM_TYPE: string := "BLOCKRAM");
port (din : in std_logic_vector(FIFO_WIDTH-1 downto 0);
 rd_clk : in std_logic;
 rd_en : in std_logic;
 ainit : in std_logic;
 wr_clk : in std_logic;
 wr_en : in std_logic;

http://www.xilinx.com

46 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 3: General Recommendations for Coding Practices
R

 dout : out std_logic_vector(FIFO_WIDTH-1 downto 0) := (others=>
'0');
 empty : out std_logic := '1';
 full : out std_logic := '0';
 almost_empty : out std_logic := '1';
 almost_full : out std_logic := '0');
end async_fifo;
architecture BEHAVIORAL of async_fifo is
 type ram_type is array ((2**FIFO_DEPTH)-1 downto 0) of
std_logic_vector (FIFO_WIDTH-1 downto 0);

Verilog Parameter Coding Example

-- FIFO_WIDTH data width(number of bits)
-- FIFO_DEPTH by number of address bits
-- for the FIFO RAM i.e. 9 -> 2**9 -> 512 words
-- FIFO_RAM_TYPE: BLOCKRAM or DISTRIBUTED_RAM
-- Note: DISTRIBUTED_RAM suggested for FIFO_DEPTH
-- of 5 or less
module async_fifo (din, rd_clk, rd_en, ainit, wr_clk, wr_en, dout,
empty, full, almost_empty, almost_full, wr_ack);
 parameter FIFO_WIDTH = 16;
 parameter FIFO_DEPTH = 9;

 parameter FIFO_RAM_TYPE = "BLOCKRAM";
 input [FIFO_WIDTH-1:0] din;
 input rd_clk;
 input rd_en;
 input ainit;
 input wr_clk;
 input wr_en;
 output reg [FIFO_WIDTH-1:0] dout;
 output empty;
 output full;
 output almost_empty;
 output almost_full;
 output reg wr_ack;
 reg [FIFO_WIDTH-1:0] fifo_ram [(2**FIFO_DEPTH)-1:0];

TRANSLATE_OFF and TRANSLATE_ON
The synthesis directives TRANSLATE_OFF and TRANSLATE_ON were formerly used
when passing generics or parameters for synthesis tools, since most synthesis tools were
unable to read generics or parameters. These directives were also used for library
declarations such as library UNISIM, since synthesis tools did not understand that library.

Since most synthesis tools can now read generics and parameters and understand the
UNISIM library, you no longer need to use these directives in synthesizable code.
TRANSLATE_OFF and TRANSLATE_ON can also be used to embed simulation-only code
in synthesizable files. Xilinx recommends that any simulation-only constructs reside in
simulation-only files or test benches.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 47
10.1

R

Chapter 4

Coding for FPGA Flow

This chapter (Coding for FPGA Flow) contains specific information relating to coding for
FPGA devices. For general information relating to HDL coding styles and design examples
to help you develop an efficient coding style, see “General Recommendations for Coding
Practices.” This chapter includes:

• “VHDL and Verilog Limitations”

• “Design Hierarchy”

• “Choosing Data Type”

• “Using `timescale”

• “Mixed Language Designs”

• “If Statements and Case Statements”

• “Sensitivity List in Process and Always Statements”

• “Delays in Synthesis Code”

• “Registers and Latches in FPGA Design”

• “Implementing Shift Registers”

• “Control Signals”

• “Initial State of the Registers, Latches, Shift Registers, and RAMs”

• “Multiplexers”

• “Finite State Machines (FSMs)”

• “Implementing Memory”

• “Block RAM Inference”

• “Distributed RAM Inference”

• “Arithmetic Support”

• “Synthesis Tool Naming Conventions”

• “Instantiating Components and FPGA Primitives”

• “Attributes and Constraints”

• “Pipelining and Retiming”

VHDL and Verilog Limitations
VHDL and Verilog were not originally intended as inputs to synthesis. For this reason,
synthesis tools do not support many hardware description and simulation constructs. In
addition, synthesis tools may use different subsets of VHDL and Verilog. VHDL and
Verilog semantics are well defined for design simulation. The synthesis tools must adhere
to these semantics to ensure that designs simulate the same way before and after synthesis.

http://www.xilinx.com

48 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Follow the guidelines in the following sections to create code that is most suitable for
Xilinx design flow.

Design Hierarchy
This section discusses Design Hierarchy, and includes:

• “Advantages and Disadvantages of Hierarchical Designs”

• “Using Synthesis Tools with Hierarchical Designs”

Advantages and Disadvantages of Hierarchical Designs
Hardware Description Language (HDL) designs can either be described (synthesized) as a
large flat module, or as many small modules. Each methodology has its advantages and
disadvantages. As higher density FPGA devices are created, the advantages of hierarchical
designs outweigh many of the disadvantages.

Some advantages of hierarchical designs are:

• Provide easier and faster verification and simulation

• Allow several engineers to work on one design at the same time

• Speed up design compilation

• Produce designs that are easier to understand

• Manage the design flow efficiently

Some disadvantages of hierarchical designs are:

• Design mapping into the FPGA may not be optimal across hierarchical boundaries.
This can cause lesser device utilization and decreased design performance. If special
care is taken, the effect of this can be minimized.

• Design file revision control becomes more difficult.

• Designs become more verbose.

You can overcome most of these disadvantages with careful design consideration when
you choose the design hierarchy.

Using Synthesis Tools with Hierarchical Designs
Effectively partitioning your designs can significantly reduce compile time and improve
synthesis results. To effectively partition your design:

• “Restrict Shared Resources”

• “Compile Multiple Instances”

• “Restrict Related Combinatorial Logic”

• “Separate Speed Critical Paths”

• “Restrict Combinatorial Logic”

• “Restrict Module Size”

• “Register All Outputs”

• “Restrict One Clock to Each Module or to Entire Design”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 49
10.1

Design Hierarchy
R

Restrict Shared Resources

Place resources that can be shared on the same hierarchy level. If these resources are not on
the same hierarchy level, the synthesis tool cannot determine if they should be shared.

Compile Multiple Instances

Compile multiple occurrences of the same instance together to reduce the gate count. To
increase design speed, do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic

Keep related combinatorial logic in the same hierarchical level to allow the synthesis tool
to optimize an entire critical path in a single operation. Boolean optimization does not
operate across hierarchical boundaries. If a critical path is partitioned across boundaries,
logic optimization is restricted. Constraining modules is difficult if combinatorial logic is
not restricted to the same hierarchy level.

Separate Speed Critical Paths

To achieve satisfactory synthesis results, locate design modules with different functions at
different hierarchy levels. Design speed is the first priority of optimization algorithms. To
achieve a design that efficiently utilizes device area, remove timing constraints from
design modules.

Restrict Combinatorial Logic

To reduce the number of CLBs used, restrict combinatorial logic that drives a register to the
same hierarchical block.

Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on:

• Your computer configuration

• Whether the design is worked on by a design team

• The target FPGA routing resources

Although smaller blocks give you more control, you may not always obtain the most
efficient design. During final compilation, you may want to compile fully from the top
down. For more information, see your synthesis tool documentation.

Register All Outputs

Arrange your design hierarchy so that registers drive the module output in each
hierarchical block. Registering outputs makes your design easier to constrain, since you
only need to constrain the clock period and the ClockToSetup of the previous module. If
you have multiple combinatorial blocks at different hierarchy levels, you must manually
calculate the delay for each module. Registering the outputs of your design hierarchy can
eliminate any possible problems with logic optimization across hierarchical boundaries.

Restrict One Clock to Each Module or to Entire Design

By restricting one clock to each module, you need only to describe the relationship
between the clock at the top hierarchy level and each module clock.

http://www.xilinx.com

50 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

By restricting one clock to the entire design, you need only to describe the clock at the top
hierarchy level.

For more information on optimizing logic across hierarchical boundaries and compiling
hierarchical designs, see your synthesis tool documentation.

For more information, see Using Partitions in the ISE™ Help.

Choosing Data Type
This section applies to VHDL only.

This section discusses Choosing Data Type, and includes:

• “Use Std_logic (IEEE 1164)”

• “Declaring Ports”

• “Arrays in Port Declarations.”

• “Minimize Ports Declared as Buffers”

Use Std_logic (IEEE 1164)
Use the Std_logic (IEEE 1164) standards for hardware descriptions when coding your
design. These standards are recommended for the following reasons:

1. Std_logic applies as a wide range of state values

Std_logic has nine different values that represent most of the states found in digital
circuits.

2. Std_logic allows indication of all possible logic states within the FPGA

a. Std_logic not only allows specification of logic high (1) and logic low (0), but
also whether a pullup (H) or pulldown (L) is used, or whether an output is in high
impedance (Z).

b. Std_logic allows the specification of unknown values (X) due to possible
contention, timing violations, or other occurrences, or whether an input or signal
is unconnected (U).

c. Std_logic allows a more realistic representation of the FPGA logic for both
synthesis and simulation, frequently giving more accurate results.

3. Std_logic easily performs board-level simulation

For example, if you use an integer type for ports for one circuit and standard logic for ports
for another circuit, your design can be synthesized. However, you must perform time-
consuming type conversions for a board-level simulation.

The back-annotated netlist from Xilinx implementation is in Std_logic. If you do not use
Std_logic type to drive your top-level entity in the test bench, you cannot reuse your
functional test bench for timing simulation. Some synthesis tools can create a wrapper for
type conversion between the two top-level entities. Xilinx does not recommend this
practice.

Declaring Ports
Use the Std_logic type for all entity port declarations.The Std_logic type makes it
easier to integrate the synthesized netlist back into the design hierarchy without requiring

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 51
10.1

Choosing Data Type
R

conversion functions for the ports. The following VHDL coding example uses the
Std_logic for port declarations:

Entity alu is
port(

A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR(3 downto 0)
);

end alu;

If a top-level port is specified as a type other than STD_LOGIC, software generated
simulation models (such as timing simulation) may no longer bind to the test bench. This
is due to the following factors:

• Type information cannot be stored for a particular design port.

• Simulation of FPGA hardware requires the ability to specify the values of
STD_LOGIC such as high-Z (tristate), and X (unknown) in order to properly display
hardware behavior.

Xilinx recommends that you not declare arrays as ports. This information cannot be
properly represented or re-created. For this reason, Xilinx recommends that you use
STD_LOGIC and STD_LOGIC_VECTOR for all top-level port declarations.

Arrays in Port Declarations
Although VHDL allows you to declare a port as an array type, Xilinx recommends that you
not do so, for the following reasons:

• “Incompatibility with Verilog”

• “Inability to Store and Re-Create Original Array Declaration”

• “Mis-Correlation of Software Pin Names”

Incompatibility with Verilog

There is no equivalent way to declare a port as an array type in Verilog. Verilog does not
allow ports to be declared as arrays. This limits portability across languages. It also limits
as the ability to use the code for mixed-language projects.

Inability to Store and Re-Create Original Array Declaration

When you declare a port as an array type in VHDL, the original array declaration cannot
be stored and re-created. The Electronic Data Interchange Format (EDIF) netlist format, as
well as the Xilinx database, are unable to store the original type declaration for the array.

As a result, when NetGen or another netlister attempts to re-create the design, there is no
information as to how the port was originally declared. The resulting netlist generally has
mis-matched port declarations and resulting signal names. This is true not only for the top-
level port declarations, but also for the lower-level port declarations of a hierarchical
design since “KEEP_HIERARCHY” can be used to attempt to preserve those net names.

Mis-Correlation of Software Pin Names

Array port declarations can cause a mis-correlation of the software pin names from the
original source code. Since the software must treat each I/O as a separate label, the
corresponding name for the broken-out port may not match your expectation. This makes

http://www.xilinx.com

52 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

design constraint passing, design analysis, and design reporting more difficult to
understand.

Minimize Ports Declared as Buffers
Do not use buffers when a signal is used internally and as an output port. See the following
VHDL coding examples:

• “Signal C Used Internally and As Output Port VHDL Coding Example”

• “Dummy Signal with Port C Declares as Output VHDL Coding Example”

Signal C Used Internally and As Output Port VHDL Coding Example

In the following VHDL coding example, signal C is used internally and as an output port:

Entity alu is
port(

A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : buffer STD_LOGIC_VECTOR(3 downto 0));

end alu;
architecture BEHAVIORAL of alu is
begin

process begin
if (CLK'event and CLK='1') then

C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);
end if;

end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every level of hierarchy in
your design that connects to port C must be declared as a buffer. Buffer types are not
commonly used in VHDL designs because they can cause errors during synthesis.

Dummy Signal with Port C Declares as Output VHDL Coding Example

To reduce buffer coding in hierarchical designs, insert a dummy signal and declare port C
as an output, as shown in the following VHDL coding example:

Entity alu is
port(

A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR(3 downto 0)
);

end alu;
architecture BEHAVIORAL of alu is
-- dummy signal

signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin
C <= C_INT;
process begin
if (CLK'event and CLK='1') then

C_INT <= A and B and C_INT;
end if;

end process;
end BEHAVIORAL;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 53
10.1

Using `timescale
R

Using `timescale
This section applies to Verilog only.

All Verilog test bench and source files should contain a ̀ timescale directive, or reference
an include file containing a `timescale directive. Place the `timescale directive or
reference near the beginning of the source file, and before any module or other design unit
definitions in the source file.

Xilinx recommends that you use a `timescale with a resolution of 1ps. Some Xilinx
primitive components such as DCM require a 1ps resolution in order to work properly in
either functional or timing simulation. There is little or no simulation speed difference for
a 1ps resolution as compared to a coarser resolution.

The following `timescale directive is a typical default:

`timescale 1ns / 1ps

Mixed Language Designs
Most FPGA synthesis tools allow you to create projects containing both VHDL and Verilog
files. Mixing VHDL and Verilog is restricted to design unit (cell) instantiation only. A
VHDL design can instantiate a Verilog module, and a Verilog design can instantiate a
VHDL entity.

Since VHDL and Verilog have different features, it is important to follow the rules for
creating mixed language projects, including:

• Case sensitivity rules

• How to instantiate a VHDL design unit in a Verilog design

• How to instantiate a Verilog module in a VHDL design

• What data types are permitted

• How generics and parameters must be used

Synthesis tools may differ in mixed language support. For more information, see your
synthesis tool documentation.

If Statements and Case Statements
This section discusses If Statements and Case Statements, and includes:

• “Comparing If Statements and Case Statements”

• “4–to–1 Multiplexer Design With If Statement”

• “4–to–1 Multiplexer Design With Case Statement”

http://www.xilinx.com

54 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Comparing If Statements and Case Statements

Most synthesis tools can determine whether the if-elsif conditions are mutually
exclusive, and do not create extra logic to build the priority tree.

When writing if statements:

• Make sure that all outputs are defined in all branches of an if statement. If not, it can
create latches or long equations on the CE signal. A good way to prevent this is to
have default values for all outputs before the if statements.

• Remember that limiting the input signals into an if statement can reduce the
number of logic levels. If there are a large number of input signals, determine whether
some can be pre-decoded and registered before the if statement.

• Avoid bringing the dataflow into a complex if statement. Only control signals
should be generated in complex if-elsif statements.

4–to–1 Multiplexer Design With If Statement
The following coding examples use an if statement in a 4–to–1 multiplexer design:

• “4–to–1 Multiplexer Design With If Statement VHDL Coding Example”

• “4–to–1 Multiplexer Design With If Statement Verilog Coding Example”

4–to–1 Multiplexer Design With If Statement VHDL Coding Example

-- IF_EX.VHD
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity if_ex is

port (
SEL: in STD_LOGIC_VECTOR(1 downto 0);
A,B,C,D: in STD_LOGIC;
MUX_OUT: out STD_LOGIC);

end if_ex;
architecture BEHAV of if_ex is
begin

IF_PRO: process (SEL,A,B,C,D)
begin
if (SEL="00") then MUX_OUT <= A;
elsif (SEL="01") then

MUX_OUT <= B;
elsif (SEL="10") then

MUX_OUT <= C;
elsif (SEL="11") then

MUX_OUT <= D;

Table 4-1: Comparing If Statements and Case Statements

If Statement Case Statement

Creates priority-encoded logic Creates balanced logic

Can contain a set of different expressions Evaluated against a common controlling
expression

Use for speed critical paths Use for complex decoding

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 55
10.1

If Statements and Case Statements
R

else
MUX_OUT <= '0';

end if;
end process; --END IF_PRO

end BEHAV;

4–to–1 Multiplexer Design With If Statement Verilog Coding Example

///
// IF_EX.V //
// Example of a if statement showing a //
// mux created using priority encoded logic //
// HDL Synthesis Design Guide for FPGA devices //
///
module if_ex (
input A, B, C, D,
input [1:0] SEL,
output reg MUX_OUT);
always @ (*)

begin
if (SEL == 2'b00)

MUX_OUT = A;
else if (SEL == 2'b01)

MUX_OUT = B;
else if (SEL == 2'b10)

MUX_OUT = C;
else if (SEL == 2'b11)

MUX_OUT = D;
else

MUX_OUT = 0;
end

endmodule

4–to–1 Multiplexer Design With Case Statement
The following coding examples use a case statement for the same multiplexer:

• “4–to–1 Multiplexer Design With Case Statement VHDL Coding Example”

• “4–to–1 Multiplexer Design With Case Statement Verilog Coding Example”

In these examples, the case statement requires only one slice, while the if statement
requires two slices in some synthesis tools. In this instance, design the multiplexer using
the case statement. Fewer resources are used and the delay path is shorter. When writing
case statements, make sure all outputs are defined in all branches.

Figure 4-1, “Case_Ex Implementation Diagram,” shows the implementation of these
designs.

4–to–1 Multiplexer Design With Case Statement VHDL Coding Example

-- CASE_EX.VHD
-- May 2001
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity case_ex is

port (
SEL : in STD_LOGIC_VECTOR(1 downto 0);
A,B,C,D: in STD_LOGIC;
MUX_OUT: out STD_LOGIC);

http://www.xilinx.com

56 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

end case_ex;
architecture BEHAV of case_ex is
begin

CASE_PRO: process (SEL,A,B,C,D)
begin

case SEL is
when “00” => MUX_OUT <= A;
when “01” => MUX_OUT <= B;
when “10” => MUX_OUT <= C;
when “11” => MUX_OUT <= D;
when others => MUX_OUT <= '0';

end case;
end process; --End CASE_PRO

end BEHAV;

4–to–1 Multiplexer Design With Case Statement Verilog Coding Example

///
// CASE_EX.V //
// Example of a Case statement showing //
// A mux created using parallel logic //
// HDL Synthesis Design Guide for FPGA devices //
///
module case_ex (
input A, B, C, D,
input [1:0] SEL,
output reg MUX_OUT);

always @ (*)
begin
case (SEL)
2'b00: MUX_OUT = A;
2'b01: MUX_OUT = B;
2'b10: MUX_OUT = C;
2'b11: MUX_OUT = D;
default: MUX_OUT = 0;

endcase
end

endmodule

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 57
10.1

Sensitivity List in Process and Always Statements
R

Sensitivity List in Process and Always Statements
A sensitivity list in a process statement (VHDL) or always block (Verilog) is a list of signals
to which the process (always block) is sensitive. When any of the listed signals changes its
value, the process (always block) resumes and executes its statements. Depending on the
sensitivity list and set of statements, the process (always block) can describe sequential
elements as flip-flops and latches or combinatorial elements, or a mix of them.

When working with sensitivity lists, be sure to specify all necessary signals. If you do not
do so, hardware generated from the HDL code may behave differently as compared to the
RTL description. This behavior arises from the synthesis tool for the following reasons:

• In some cases, it is impossible to model the RTL description using existing hardware.

• The HDL code requires additional logic in the final implementation in order to exactly
model the RTL description.

In order to avoid these two problems, synthesis may assume that the sensitivity list
contains other signals which were not explicitly listed in the HDL code. As a result, while
you will get the hardware you intended, the RTL and post-synthesis simulation will differ.
In this case, some synthesis tools may issue a message warning of an incomplete sensitivity
list. In that event, check the synthesis LOG file and, if necessary, fix the RTL code.

The following example describes a simple AND function using a process and always
block. The sensitivity list is complete and a single LUT is generated.

Figure 4-1: Case_Ex Implementation Diagram

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

SEL [1:0]

A

B

C

D

logic_0

logic_0

LUT4

LUT4
OBUF

MUX_OUT

SEL [1]

SEL [0]

X9999

One CLB

MUXF5

http://www.xilinx.com

58 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

VHDL Process Coding Example One

process (a,b)
begin

 c <= a and b;
end process;

Verilog Always Block Coding Example One

always @(a or b)
c <= a & b;

The following examples are based on the previous two coding examples, but signal b is
omitted from the sensitivity list. In this case, the synthesis tool assumes the presence of b in
the sensitivity list and still generates the combinatorial logic (AND function).

VHDL Process Coding Example Two

process (a)
begin

 c <= a and b;
end process;

Verilog Always Block Coding Example One

always @(a)
c <= a & b;

Delays in Synthesis Code
This section discusses Delays in Synthesis Code, and includes:

• “About Delays in Synthesis Code”

• “Delays in Synthesis Code Coding Examples”

About Delays in Synthesis Code
Do not use the Wait for XX ns (VHDL) or the #XX (Verilog) statement in your code. XX
specifies the number of nanoseconds that must pass before a condition is executed. This
statement does not synthesize to a component. In designs that include this construct, the
functionality of the simulated design does not always match the functionality of the
synthesized design.

Delays in Synthesis Code Coding Examples
This section gives the following Delays in Synthesis Code coding examples:

• “Wait for XX ns Statement VHDL Coding Example”

• “Wait for XX ns Statement Verilog Coding Example”

• “After XX ns Statement VHDL Coding Example”

• “Delay Assignment Verilog Coding Example”

Wait for XX ns Statement VHDL Coding Example

wait for XX ns;

Wait for XX ns Statement Verilog Coding Example

#XX;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 59
10.1

Registers and Latches in FPGA Design
R

Do not use the ...After XX ns statement in your VHDL code or the Delay assignment
in your Verilog code.

After XX ns Statement VHDL Coding Example

(Q <=0 after XX ns)

Delay Assignment Verilog Coding Example

assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a condition is executed. This
statement is usually ignored by the synthesis tool. In this case, the functionality of the
simulated design does not match the functionality of the synthesized design.

Registers and Latches in FPGA Design
This chapter discusses Registers and Latches in FPGA Design and includes:

• “Registers in FPGA Design”

• “IOB Registers”

• “Latches in FPGA Design”

Registers in FPGA Design
This section discusses Registers in FPGA Design and includes:

• “About Registers in FPGA Design”

• “Registers in FPGA Design Coding Examples”

About Registers in FPGA Design

Xilinx FPGA devices have abundant flip-flops. FPGA architectures support flip-flops with
the following control signals:

• Clock Enable

• Asynchronous Set/Reset

• Synchronous Set/Reset

All synthesis tools targeting Xilinx FPGA devices are capable to infer registers with all
mentioned above control signals. For more information on control signal usage in FPGA
design, see “Control Signals.”

In addition, the value of a flip-flop at device start-up can be set to a logical value 0 or 1.
This is known as the initialization state, or INIT. For more information on flip-flop
initialization, see ““Initial State of the Registers, Latches, Shift Registers, and RAMs.”

Registers in FPGA Design Coding Examples

This section contains the following Registers in FPGA Design coding examples:

• “Flip-Flop with Positive Edge Clock VHDL Coding Example”

• “Flip-Flop with Positive Edge Clock Verilog Coding Example”

• “Flip-Flop with Positive Edge Clock and Clock Enable VHDL Coding Example”

• “Flip-Flop with Positive Edge Clock and Clock Enable Verilog Coding Example”

http://www.xilinx.com

60 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

• “Flip-Flop with Negative Edge Clock and Asynchronous Reset VHDL Coding
Example”

• “Flip-Flop with Negative Edge Clock and Asynchronous Reset Verilog Coding
Example”

• “Flip-Flop with Positive Edge Clock and Synchronous Set VHDL Coding Example”

• “Flip-Flop with Positive Edge Clock and Synchronous Set Verilog Coding Example”

Flip-Flop with Positive Edge Clock VHDL Coding Example

process (C)
begin
 if (C'event and C='1') then
 Q <= D;
 end if;
end process;

Flip-Flop with Positive Edge Clock Verilog Coding Example

always @(posedge C)
begin
 Q <= D;
end

Flip-Flop with Positive Edge Clock and Clock Enable VHDL Coding Example

process (C)
begin
 if (C'event and C='1') then
 if (CE='1') then
 Q <= D;
 end if;
 end if;
end process;

Flip-Flop with Positive Edge Clock and Clock Enable Verilog Coding Example

always @(posedge C)
begin
 if (CE)
 Q <= D;
end

Flip-Flop with Negative Edge Clock and Asynchronous Reset VHDL Coding Example

process (C, CLR)
begin
 if (CLR = '1')then
 Q <= '0';
 elsif (C'event and C='0')then
 Q <= D;
 end if;
end process;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 61
10.1

Registers and Latches in FPGA Design
R

Flip-Flop with Negative Edge Clock and Asynchronous Reset Verilog Coding Example

always @(negedge C or posedge CLR)
begin
 if (CLR)
 Q <= 1'b0;
 else
 Q <= D;
end

Flip-Flop with Positive Edge Clock and Synchronous Set VHDL Coding Example

process (C)
begin
 if (C'event and C='1') then
 if (S='1') then
 Q <= '1';
 else
 Q <= D;
 end if;
 end if;
end process;

Flip-Flop with Positive Edge Clock and Synchronous Set Verilog Coding Example

always @(posedge C)
begin
 if (S)
 Q <= 1'b1;
 else
 Q <= D;
end

IOB Registers
This section discusses IOB Registers and includes:

• “About IOB Registers”

• “Dual-Data Rate IOB Registers”

About IOB Registers

Input Output Blocks (IOBs) contain several storage elements that can be configured as
regular flip-flops or, depending on the FPGA family, as Dual-Data Rate (DDR) registers.

All flip-flops that are to be pushed into the IOB must have a fanout of 1. This applies to
output and tristate enable registers. For example, for a 32-bit bidirectional bus, the tristate
enable signal must be replicated in the original design so that it has a fanout of 1.

In order to push flip-flops to IOBs, you may use the following methods:

• Use synthesis specific constraint

• Apply IOB=TRUE constraint in UCF file

• Use the –pr command line option in map

Synthesis tools may automatically push flip-flops to IOBs. For more information, see your
synthesis tool documentation.

http://www.xilinx.com

62 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Dual-Data Rate IOB Registers

This section discusses Dual-Data Rate IOB Register and includes:

• “About Dual-Data Rate IOB Register”

• “Dual-Data Rate IOB Register Coding Examples”

About Dual-Data Rate IOB Register

In order to take advantage of DDR registers, you must instantiate the corresponding
UNISIM primitives. However, some synthesis tools are able to infer DDR registers directly
from the HDL code. For more information, see your synthesis tool documentation.

Dual-Data Rate IOB Register Coding Examples

This section includes the following Dual-Data Rate IOB Register coding examples:

• “Dual Data Rate IOB Registers VHDL Coding Example”

• “Dual Data Rate IOB Registers Verilog Coding Example”

Dual Data Rate IOB Registers VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
entity ddr_input is
port (clk : in std_logic;
 d : in std_logic;
 rst : in std_logic;
 q1 : out std_logic;
 q2 : out std_logic
);
end ddr_input;

architecture behavioral of ddr_input is
begin
 q1reg : process (clk, rst)
 begin
 if rst = ’1’ then
 q1 <= ’0’;
 elsif clk’event and clk=’1’ then
 q1 <= d;
 end if;
 end process;

 q2reg : process (clk, rst)
 begin
 if rst = ’1’ then
 q2 <= ’0’;
 elsif clk’event and clk=’0’ then
 q2 <= d;
 end if;
end process;
end behavioral;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 63
10.1

Registers and Latches in FPGA Design
R

Dual Data Rate IOB Registers Verilog Coding Example

module ddr_input (
 input data_in, clk, rst,
 output data_out);

 reg q1, q2;

 always @ (posedge clk, posedge rst)
 begin
 if (rst)
 q1 <=1'b0;
 else
 q1 <= data_in;
 end

 always @ (negedge clk, posedge rst)
 begin
 if (rst)
 q2 <=1'b0;
 else
 q2 <= data_in;
 end
 assign data_out = q1 & q2;
end module

Latches in FPGA Design
Synthesizers infer latches from incomplete conditional expressions, such as:

• An if statement without an else clause

• An intended register without a rising edge or falling edge construct

If Statement Without an else Clause VHDL Coding Example

process (G, D)
begin
 if (G='1') then
 Q <= D;
 end if;
end process;

If Statement Without an else Clause Verilog Coding Example

always @(G or D)
begin
 if (G)
 Q = D;
end

Many times this is done by mistake. The design may still appear to function properly in
simulation. This can be problematic for FPGA designs, since timing for paths containing
latches can be difficult to analyze. Synthesis tools usually report in the log files when a
latch is inferred to alert you to this occurrence.

Xilinx recommends that you avoid using latches in FPGA designs, due to the more difficult
timing analyses that take place when latches are used.

Some synthesis tools can determine the number of latches in your design. For more
information, see your synthesis tool documentation.

http://www.xilinx.com

64 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

You should convert all if statements without corresponding else statements and
without a clock edge to registers or logic gates. Use the recommended coding styles in the
synthesis tool documentation to complete this conversion.

Implementing Shift Registers
This section discusses Implementing Shift Registers and includes:

• “About Implementing Shift Registers”

• “Describing Shift Registers”

• “Shift Registers Coding Examples”

About Implementing Shift Registers
In general, a shift register is characterized by the following control and data signals:

• Clock

• Serial input

• Asynchronous set/reset

• Synchronous set/reset

• Synchronous/asynchronous parallel load

• Clock enable

• Serialor parallel output

The shift register output mode may be:

• Serial

Only the contents of the last flip-flop are accessed by the rest of the circuit

• Parallel

The contents of one or several flip-flops, other than the last one, are accessed as Shift
modes: for example, left, right.

Xilinx FPGA defvices contain dedicated SRL16 and SRL32 resources (integrated in LUTs)
allowing efficiently implement shift registers without using flip-flop resources. However
these elements support only LEFT shift operations, and have a limited number of IO
signals:

• Clock

• Clock Enable

• Serial Data In

• Serial Data Out

In addition, SRLs have address inputs (LUT A3, A2, A1, A0 inputs for SRL16) determining
the length of the shift register. The shift register may be of a fixed, static length, or it may be
dynamically adjusted. In dynamic mode each time a new address is applied to the address
pins, the new bit position value is available on the Q output after the time delay to access
the LUT.

As it was mentioned before Synchronous and Asynchronous set/reset control signals are
not available in the SLRs primitives. However some synthesis tools are able to take
advantage oaf dedicated SRL resources and propose implementation allowing a
significant area savings. For more information, see your synthesis tool documentation.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 65
10.1

Implementing Shift Registers
R

Describing Shift Registers
This section discusses Describing Shift Registers and includes:

• “About Describing Shift Registers”

• “Shift Registers Coding Examples”

About Describing Shift Registers

There are several ways to describe shift registers in VHDL:

• Concatenation Operators

shreg <= shreg (6 downto 0) & SI;

• For loop constructs

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);
end loop;
shreg(0) <= SI;

• Predefined shift operators

For example, SLL or SRL

Shift Registers Coding Examples

This section contains the following shift registers coding examples:

• “8-Bit Shift-Left Register Serial In and Serial Out VHDL Coding Example”

• “8-Bit Shift-Left Register Serial In and Serial Out Verilog Coding Example”

• “16-Bit Dynamic Shift Register With Serial In and Serial Out VHDL Coding Example”

• “16-Bit Dynamic Shift Register With Serial In and Serial Out Verilog Coding Example”

8-Bit Shift-Left Register Serial In and Serial Out VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;

entity shift_registers_1 is
 port(C, SI : in std_logic;
 SO : out std_logic);
end shift_registers_1;

architecture archi of shift_registers_1 is
 signal tmp: std_logic_vector(7 downto 0);
begin

 process (C)
 begin
 if (C'event and C='1') then
 tmp <= tmp(6 downto 0) & SI;
 end if;
 end process;

 SO <= tmp(7);

end archi;

http://www.xilinx.com

66 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

8-Bit Shift-Left Register Serial In and Serial Out Verilog Coding Example

module v_shift_registers_1 (C, SI, SO);
 input C,SI;
 output SO;
 reg [7:0] tmp;

 always @(posedge C)
 begin
 tmp = {tmp[6:0], SI};
 end

 assign SO = tmp[7];

endmodule

16-Bit Dynamic Shift Register With Serial In and Serial Out VHDL Coding Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity dynamic_shift_registers_1 is
 port(CLK : in std_logic;
 DATA : in std_logic;
 CE : in std_logic;
 A : in std_logic_vector(3 downto 0);
 Q : out std_logic);
end dynamic_shift_registers_1;

architecture rtl of dynamic_shift_registers_1 is
 constant DEPTH_WIDTH : integer := 16;

 type SRL_ARRAY is array (0 to DEPTH_WIDTH-1) of std_logic;
 -- The type SRL_ARRAY can be array
 -- (0 to DEPTH_WIDTH-1) of
 -- std_logic_vector(BUS_WIDTH downto 0)
 -- or array (DEPTH_WIDTH-1 downto 0) of
 -- std_logic_vector(BUS_WIDTH downto 0)
 -- (the subtype is forward (see below))
 signal SRL_SIG : SRL_ARRAY;

begin
 PROC_SRL16 : process (CLK)
 begin
 if (CLK'event and CLK = '1') then
 if (CE = '1') then
 SRL_SIG <= DATA & SRL_SIG(0 to DEPTH_WIDTH-2);
 end if;
 end if;
 end process;

 Q <= SRL_SIG(conv_integer(A));

end rtl;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 67
10.1

Control Signals
R

16-Bit Dynamic Shift Register With Serial In and Serial Out Verilog Coding Example

module v_dynamic_shift_registers_1 (Q,CE,CLK,D,A);
 input CLK, D, CE;
 input [3:0] A;
 output Q;
 reg [15:0] data;

 assign Q = data[A];

 always @(posedge CLK)
 begin
 if (CE == 1'b1)
 data <= {data[14:0], D};
 end

endmodule

Control Signals
This section discusses Control Signals, and includes:

• “Set, Resets, and Synthesis Optimization”

• “Asynchronous Resets Coding Examples”

• “Synchronous Resets Coding Examples”

• “Using Clock Enable Pin Instead of Gated Clocks”

• “Converting the Gated Clock to a Clock Enable”

Set, Resets, and Synthesis Optimization
This section discusses Set, Resets, and Synthesis Optimization, and includes:

• “About Set, Resets, and Synthesis Optimization”

• “Global Set/Reset (GSR)”

• “Shift Register LUT (SRL)”

• “Synchronous and Asynchronous Resets”

About Set, Resets, and Synthesis Optimization

Xilinx FPGA devices have abundant flip-flops. All architectures support an asynchronous
reset for those registers and latches. Even though this capability exists, Xilinx does not
recommend that you code for it. Using asynchronous resets may result in:

• More difficult timing analysis

• Less optimal optimization by the synthesis tool

The timing hazard which an asynchronous reset poses on a synchronous system is well
known. Less well known is the optimization trade-off which the asynchronous reset poses
on a design.

Global Set/Reset (GSR)

All Xilinx FPGA devices have a dedicated asynchronous reset called Global Set/Reset
(GSR). GSR is automatically asserted at the end of FPGA configuration, regardless of the
design. For gate-level simulation, this GSR signal is also inserted to mimic this operation to

http://www.xilinx.com

68 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

allow accurate simulation of the initialized design as it happens in the silicon. Adding
another asynchronous reset to the actual code only duplicates this dedicated feature. It is
not necessary for device initialization or simulation initialization.

Shift Register LUT (SRL)

All current Xilinx FPGA devices contain LUTs that may be configured to act as a 16-bit shift
register called a Shift Register LUT (SRL). Using any reset when inferring shift registers
prohibits the inference of the SRL.

The SRL is an efficient structure for building static and variable length shift registers. A
reset (either synchronous or asynchronous) would preclude using this component. This
generally leads to a less efficient structure using a combination of registers and, sometimes,
logic.

Synchronous and Asynchronous Resets

The choice between synchronous and asynchronous resets can also change the choices of
how registers are used within larger IP blocks. For instance, DSP48 in Virtex™-4 and
Virtex-5 devices has several registers within the block which, if used, may result in a
substantial area savings, as well as improve overall circuit performance.

DSP48 has only a synchronous reset. If a synchronous reset is inferred in registers around
logic that could be packed into a DSP48, the registers can also be packed into the
component, resulting in a smaller and faster design. If an asynchronous reset is used, the
register must remain outside the block, resulting in a less optimal design. Similar
optimization applies to the block RAM registers and other components within the FPGA
device.

The flip-flops within the FPGA device are configurable to be either an asynchronous
set/reset, or a synchronous set/reset. If an asynchronous reset is described in the code, the
synthesis tool must configure the flip-flop to use the asynchronous set/reset. This
precludes the using any other signals using this resource.

If a synchronous reset (or no reset at all) is described for the flip-flop, the synthesis tool can
configure the set/reset as a synchronous operation. Doing so allows the synthesis tool to
use this resource as a set/reset from the described code. It may also use this resource to
break up the data path. This may result in fewer resources and shorter data paths to the
register. Details of these optimizations depend on the code and synthesis tools used.

Asynchronous Resets Coding Examples
This section gives the following Asynchronous Resets coding examples:

• “Asynchronous Resets VHDL Coding Example”

• “Asynchronous Resets Verilog Coding Example”

For the same code re-written for synchronous reset, see “Synchronous Resets Coding
Examples.”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 69
10.1

Control Signals
R

Asynchronous Resets VHDL Coding Example

process (CLK, RST)
begin
 if (RST = '1') then
 Q <= '0';
 elsif (CLK'event and CLK = '1') then
 Q <= A or (B and C and D and E);
 end if;
end process;

Asynchronous Resets Verilog Coding Example

To implement the following code, the synthesis tool has no choice but to infer two LUTs for
the data path, since there are five signals used to create this logic

always @(posedge CLK or posedge RST)
 if (RST)
 Q <= 1'b0;
 else
 Q <= A | (B & C & D & E);

For a possible implementation of this code, see Figure 4-2, “Asynchronous Resets Verilog
Coding Example Diagram.”

Synchronous Resets Coding Examples
For the code shown under “Asynchronous Resets Coding Examples” re-written for
synchronous reset, see:

• “Synchronous Resets VHDL Coding Example One”

• “Synchronous Resets Verilog Coding Example One”

• “Synchronous Resets VHDL Coding Example Two”

• “Synchronous Resets Verilog Coding Example Two”

• “Synchronous Resets VHDL Coding Example Three”

• “Synchronous Resets Verilog Coding Example Three”

Figure 4-2: Asynchronous Resets Verilog Coding Example Diagram

A

B

C

D

E

LUT4

LUT4

CLK

RST

CLR

FDCE

x10299

http://www.xilinx.com

70 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Synchronous Resets VHDL Coding Example One

process (CLK)
begin
 if (CLK'event and CLK = '1') then
 if (RST = '1') then
 Q <= '0';
 else
 Q <= A or (B and C and D and E);
 end if;
 end if;
end process;

Synchronous Resets Verilog Coding Example One

always @(posedge CLK)
 if (RST)
 Q <= 1'b0;
 else
 Q <= A | (B & C & D & E);

The synthesis tool now has more flexibility as to how this function can be represented. For
a possible implementation of this code, see Figure 4-3, “Synchronous Resets Verilog
Coding Example One Diagram.”

In this implementation, the synthesis tool can identify that any time A is active high, Q is
always a logic one. With the register now configured with the set/reset as a synchronous
operation, the set is now free to be used as part of the synchronous data path. This reduces:

• The amount of logic necessary to implement the function

• The data path delays for the D and E signals

Logic could have also been shifted to the reset side as well if the code was written in a way
that was a more beneficial implementation

Figure 4-3: Synchronous Resets Verilog Coding Example One Diagram

C

B

E

D

LUT4

CLK

RST

Q

R

S

FDRSE

x10300

A

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 71
10.1

Control Signals
R

Synchronous Resets VHDL Coding Example Two

Now consider the following addition to the example shown in “Synchronous Resets
VHDL Coding Example One.”

process (CLK, RST)
begin
 if (RST = '1') then
 Q <= '0';
 elsif (CLK'event and CLK = '1') then
 Q <= (F or G or H) and (A or (B and C and D and E));
 end if;
end process;

Synchronous Resets Verilog Coding Example Two

always @(posedge CLK or posedge RST)
 if (RST)
 Q <= 1'b0;
 else
 Q <= (F | G | H) & (A | (B & C & D & E));

Since eight signals now contribute to the logic function, a minimum of three LUTs are
needed to implement this function. For a possible implementation of this code, see
Figure 4-4, “Synchronous Resets Verilog Coding Example Two Diagram.”

Figure 4-4: Synchronous Resets Verilog Coding Example Two Diagram

B

A

C

D

E

LUT4

F

G

H

LUT4

LUT4

CLK

RST

Q

CLR

FDCE

x10301

http://www.xilinx.com

72 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Synchronous Resets VHDL Coding Example Three

If the same code is written with a synchronous reset:

process (CLK)
begin
 if (CLK'event and CLK = '1') then
 if (RST = '1') then
 Q <= '0';
 else
 Q <= (F or G or H) and (A or (B and C and D and E));
 end if;
 end if;
end process;

Synchronous Resets Verilog Coding Example Three

always @(posedge CLK)
 if (RST)
 Q <= 1'b0;
 else
 Q <= (F | G | H) & (A | (B & C & D & E));

For a possible implementation of this code, see Figure 4-5, “Synchronous Resets Verilog
Coding Example Three Diagram.”

The resulting implementation not only uses fewer LUTs to implement the same logic
function, but may result in a faster design due to the reduction of logic levels for nearly
every signal that creates this function. While these are simple examples, they do show how
asynchronous resets force all synchronous data signals on the data input to the register,
resulting in a potentially less optimal implementation.

In general, the more signals that fan into a logic function, the more effective using
synchronous sets/resets (or no resets at all) can be in minimizing logic resources and in
maximizing design performance.

Figure 4-5: Synchronous Resets Verilog Coding Example Three Diagram

LUT4
CLK

A

B

C

D

E

RST

F

G

H

Q
S

R

LUT4

FDRSE

x10302

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 73
10.1

Control Signals
R

Using Clock Enable Pin Instead of Gated Clocks
This section discusses Using Clock Enable Pin Instead of Gated Clocks, and includes:

• “About Using Clock Enable Pin Instead of Gated Clocks”

• “Using Clock Enable Pin Instead of Gated Clocks Coding Examples”

About Using Clock Enable Pin Instead of Gated Clocks

Xilinx recommends that you use the CLB clock enable pin instead of gated clocks. Gated
clocks can cause glitches, increased clock delay, clock skew, and other undesirable effects.
Using clock enable saves clock resources, and can improve timing characteristic and
analysis of the design.

If you want to use a gated clock for power reduction, most FPGA devices now have a clock
enabled global buffer resource called BUFGCE. However, a clock enable is still the
preferred method to reduce or stop the clock to portions of the design.

Using Clock Enable Pin Instead of Gated Clocks Coding Examples

This section gives the following Using Clock Enable Pin Instead of Gated Clock coding
examples:

• “Gated Clock VHDL Coding Example” and “Gated Clock Verilog Coding Example”
show a design that uses a gated clock.

• “Clock Enable VHDL Coding Example” and “Clock Enable Verilog Coding Example”
show how to modify the gated clock design to use the clock enable pin of the CLB.

Gated Clock VHDL Coding Example

-- The following code is for demonstration purposes only
-- Xilinx does not suggest using the following coding style in FPGAs
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity gate_clock is

port (DATA, IN1, IN2, LOAD, CLOCK: in STD_LOGIC;
 OUT1: out STD_LOGIC);

end gate_clock;
architecture BEHAVIORAL of gate_clock is
signal GATECLK: STD_LOGIC;
begin

GATECLK <= (IN1 and IN2 and LOAD and CLOCK);
GATE_PR: process (GATECLK)
begin
if (GATECLK'event and GATECLK='1') then

OUT1 <= DATA;
end if;

end process; -- End GATE_PR
end BEHAVIORAL;

http://www.xilinx.com

74 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Gated Clock Verilog Coding Example

// The following code is for demonstration purposes only
// Xilinx does not suggest using the following coding style in FPGAs
module gate_clock(
 input DATA, IN1, IN2, LOAD, CLOCK,
 output reg OUT1
);
 wire GATECLK;
 assign GATECLK = (IN1 & IN2 & LOAD & CLOCK);
 always @(posedge GATECLK)
 OUT1 <= DATA;
endmodule

Converting the Gated Clock to a Clock Enable
For VHDL and Verilog coding examples for converting the gated clock to a clock enable,
see:

• “Clock Enable VHDL Coding Example”

• “Clock Enable Verilog Coding Example”

Clock Enable VHDL Coding Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity clock_enable is

port (DATA, IN1, IN2, LOAD, CLOCK: in STD_LOGIC;
 OUT1: out STD_LOGIC);

end clock_enable;
architecture BEHAVIORAL of clock_enable is

signal ENABLE: std_logic;
begin
 ENABLE <= IN1 and IN2 and LOAD;

EN_PR: process (CLOCK)
begin
if (CLOCK'event and CLOCK='1') then
if (ENABLE = '1') then
OUT1 <= DATA;

end if;
end if;

end process;
end BEHAVIORAL;

Clock Enable Verilog Coding Example

module clock_enable (
 input DATA, IN1, IN2, LOAD, CLOCK,
 output reg OUT1
);
 wire ENABLE;

 assign ENABLE = (IN1 & IN2 & LOAD);
 always @(posedge CLOCK)
 if (ENABLE)
 OUT1 <= DATA;
endmoduleI

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 75
10.1

Initial State of the Registers, Latches, Shift Registers, and RAMs
R

Initial State of the Registers, Latches, Shift Registers, and RAMs
This section discusses Initial State of the Registers, Latches, Shift Registers, and RAMs, and
includes:

• “Initial State of the Registers and Latches”

• “Initial State of the Shift Registers”

• “Initial State of the RAMs”

Initial State of the Registers and Latches
FPGA flip-flops are configured as either preset (asynchronous set) or clear (asynchronous
reset) during startup. This is known as the initialization state, or INIT. The initial state of
the register can be specified as follows:

• If the register is instantiated, it can be specified by setting the INIT generic/parameter
value to either a 1 or 0, depending on the desired state. For more information, see the
Xilinx Libraries Guides at http://www.xilinx.com/support/software_manuals.htm.

• If the register is inferred, the initial state can be specified by initializing the VHDL
signal declaration or the Verilog reg declaration as shown in the following coding
examples:

♦ “Initial State of the Registers and Latches VHDL Coding Example One”

♦ “Initial State of the Registers and Latches Verilog Coding Example One”

♦ “Initial State of the Registers and Latches Verilog Coding Example Two”

Initial State of the Registers and Latches VHDL Coding Example One

signal register1 : std_logic := '0'; -- specifying register1 to start as
a zero
signal register2 : std_logic := '1'; -- specifying register2 to start as
a one
signal register3 : std_logic_vector(3 downto 0):="1011"; -- specifying
INIT value for 4-bit register

Initial State of the Registers and Latches Verilog Coding Example One

reg register1 = 1'b0; // specifying regsiter1 to start as a zero
reg register2 = 1'b1; // specifying register2 to start as a one
reg [3:0] register3 = 4'b1011; //specifying INIT value for 4-bit
register

X-Ref Target - Figure 4-6

Figure 4-7: Implementation of Clock Enable Diagram

D

DATA

IN1

IN2

LOAD

CLOCK

ENABLE
AND3

OUT1
DFF

CE

C

Q

X4976

http://www.xilinx.com

76 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Initial State of the Registers and Latches Verilog Coding Example Two

Another possibility in Verilog is to use an initial statement:

reg [3:0] register3;
initial begin
 register3= 4'b1011;
end

Not all synthesis tools support this initialization. To determine whether it is supported, see
your synthesis tool documentation. If this initialization is not supported, or if it is not
specified in the code, the initial value is determined by the presence or absence of an
asynchronous preset in the code. If an asynchronous preset is present, the register
initializes to a one. If an asynchronous preset is not present, the register initializes to a logic
zero.

Initial State of the Shift Registers
The definition method of initial values for shift registers is the same used for Registers and
Latches. For more information, see “Initial State of the Registers and Latches.”

Initial State of the RAMs
This section discusses Initial State of the RAMs, and includes:

• “About Initial State of the RAMs”

• “Initial State of the RAMs Coding Examples”

About Initial State of the RAMs

The definition method of initial values for RAMs (block or distributed) is similar to the one
used for Registers and Latches. The initial state of the RAM can be specified as follows:

• If the RAM is instantiated, it can be specified by setting the INIT_00, INIT_01, …
generic/parameter values, depending on the desired state. For more information, see
the Xilinx Libraries Guides at http://www.xilinx.com/support/software_manuals.htm.

• If the RAM is inferred, the initial state can be specified by initializing the VHDL signal
declaration or using Verilog initial statement as shown in the following coding
examples. The initial values could be specified directly in the HDL code, or in an
external file containing the initialization data.

Initial State of the RAMs Coding Examples

This section gives the following Initial State of the RAMs coding examples:

• “Initial State of the RAMs VHDL Coding Example”

• “Initial State of the RAMs Verilog Coding Example”

Initial State of the RAMs VHDL Coding Example

type ram_type is array (0 to 63) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=(
 X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",
 X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
 X"08201", X"00500", ...);

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 77
10.1

Multiplexers
R

Initial State of the RAMs Verilog Coding Example

reg [19:0] ram [63:0];
initial begin
 ram[63] = 20'h0200A; ram[62] = 20'h00300; ram[61] = 20'h08101;
 ram[60] = 20'h04000; ram[59] = 20'h08601; ram[58] = 20'h0233A;
 ...
 ram[2] = 20'h02341; ram[1] = 20'h08201; ram[0] = 20'h0400D;
end

Not all synthesis tools support this initialization. To determine whether it is supported, see
your synthesis tool documentation.

Multiplexers
This section discusses Multiplexers and includes:

• “About Multiplexers”

• “Multiplexers Coding Examples”

About Multiplexers
There are several ways to implement multiplexers on Xilinx FPGA devices:

• Using dedicated resources such as MUXF5, MUXF6 ...

• Using Carry chains

• Using LUTs only

The implementation choice is automatically taken by synthesis tool and driven by speed or
area design requirements. However some synthesis tools allow the user to control
implementation style of multiplexers. For more information, see your synthesis tool
documentation.

There are different description styles for multiplexers (MUXs), such as If-Then-Else or
Case. When writing MUXs, pay special attention in order to avoid common traps. For
example, if you describe a MUX using a Case statement, and you do not specify all values
of the selector, the result may be latches instead of a multiplexer.

If you use Verilog, remember that Verilog Case statements can be full or not full, and
they can also be parallel or not parallel. A Case statement is:

• FULL if all possible branches are specified

• PARALLEL if it does not contain branches that can be executed simultaneously

Synthesis tools automatically determine the characteristics of the Case statements and
generate corresponding logic. In addition they provide a way allowing to guide
interpretation of Case statements via special directives. For more information, see your
synthesis tool documentation.

http://www.xilinx.com

78 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Multiplexers Coding Examples
This section indudes the following Multiplexers coding examples:

• “4-to-1 1-Bit MUX Using Case Statement VHDL Coding Example”

• “4-to-1 1-Bit MUX Using Case Statement Verilog Coding Example”

• “4-to-1 1-Bit MUX Using IF Statement VHDL Coding Example”

• “4-to-1 1-Bit MUX Using IF Statement Verilog Coding Example”

4-to-1 1-Bit MUX Using Case Statement VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_2 is
 port (a, b, c, d : in std_logic;
 s : in std_logic_vector (1 downto 0);
 o : out std_logic);
end multiplexers_2;

architecture archi of multiplexers_2 is
begin
 process (a, b, c, d, s)
 begin
 case s is
 when "00" => o <= a;
 when "01" => o <= b;
 when "10" => o <= c;
 when others => o <= d;
 end case;
 end process;
end archi;

4-to-1 1-Bit MUX Using Case Statement Verilog Coding Example

module v_multiplexers_2 (a, b, c, d, s, o);
 input a,b,c,d;
 input [1:0] s;
 output o;
 reg o;

 always @(a or b or c or d or s)
 begin
 case (s)
 2'b00 : o = a;
 2'b01 : o = b;
 2'b10 : o = c;
 default : o = d;
 endcase
 end
endmodule

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 79
10.1

Finite State Machines (FSMs)
R

4-to-1 1-Bit MUX Using IF Statement VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_1 is
 port (a, b, c, d : in std_logic;
 s : in std_logic_vector (1 downto 0);
 o : out std_logic);
end multiplexers_1;

architecture archi of multiplexers_1 is
begin
 process (a, b, c, d, s)
 begin
 if (s = "00") then o <= a;
 elsif (s = "01") then o <= b;
 elsif (s = "10") then o <= c;
 else o <= d;
 end if;
 end process;
end archi;

4-to-1 1-Bit MUX Using IF Statement Verilog Coding Example

module v_multiplexers_1 (a, b, c, d, s, o);
 input a,b,c,d;
 input [1:0] s;
 output o;
 reg o;

 always @(a or b or c or d or s)
 begin
 if (s == 2'b00) o = a;
 else if (s == 2'b01) o = b;
 else if (s == 2'b10) o = c;
 else o = d;
 end
endmodule

Finite State Machines (FSMs)
This section discusses Finite State Machines (FSMs), and includes:

• “FSM Description Style”

• “FSM With One Process”

• “FSM With Two or Three Processes”

• “FSM Recognition and Optimization”

• “Other FSM Features”

FSM Description Style
Most FPGA synthesis tools propose a large set of templates to describe Finite State
Machines (FSMs). There are many ways to describe FSMs. A traditional FSM
representation incorporates Mealy and Moore machines, as shown in Figure 4-9, “Mealy
and Moore Machines Diagram.”

http://www.xilinx.com

80 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

For HDL, process (VHDL) and always blocks (Verilog) are the best ways to describe FSMs.
Xilinx® uses process to refer to both VHDL processes and Verilog always blocks.

You may have several processes (1, 2 or 3) in your description, consider and decompose the
different parts of the preceding model.

The following example shows the Moore Machine with an Asynchronous Reset (RESET):

• 4 states: s1, s2, s3, s4

• 5 transitions

• 1 input: "x1"

• 1 output: "outp"

This model is represented by the bubble diagram shown in Figure 4-11, “Bubble Diagram.”

X-Ref Target - Figure 4-8

Figure 4-9: Mealy and Moore Machines Diagram

Inputs

Next
State

Function

RESET

CLOCK

State
Register

Output
Function

Outputs

Only for Mealy Machine

X10899

X-Ref Target - Figure 4-10

Figure 4-11: Bubble Diagram

RESET

outp=’1’

outp=’1’ outp=’0’

S1

S4

S2 S3

x1 x1

X10900

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 81
10.1

Finite State Machines (FSMs)
R

FSM With One Process
In these examples, output signal outp is a register:

• “FSM With One Process VHDL Coding Example”

• “FSM With a Single Always Block Verilog Coding Example”

FSM With One Process VHDL Coding Example

--
-- State Machine with a single process.
--
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
 port (clk, reset, x1 : IN std_logic;
 outp : OUT std_logic);
end entity;

architecture beh1 of fsm_1 is
 type state_type is (s1,s2,s3,s4);
 signal state: state_type ;

begin
 process (clk,reset)
 begin
 if (reset ='1') then
 state <=s1;
 outp<='1';
 elsif (clk='1' and clk'event) then
 case state is
 when s1 => if x1='1' then
 state <= s2;
 outp <= '1';
 else
 state <= s3;
 outp <= '0';
 end if;
 when s2 => state <= s4; outp <= '0';
 when s3 => state <= s4; outp <= '0';
 when s4 => state <= s1; outp <= '1';
 end case;
 end if;
 end process;
end beh1;

FSM With a Single Always Block Verilog Coding Example

//
// State Machine with a single always block.
//
module v_fsm_1 (clk, reset, x1, outp);
 input clk, reset, x1;
 output outp;
 reg outp;
 reg [1:0] state;

 parameter s1 = 2'b00; parameter s2 = 2'b01;
 parameter s3 = 2'b10; parameter s4 = 2'b11;

http://www.xilinx.com

82 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

 initial begin
 state = 2'b00;
 end

 always@(posedge clk or posedge reset)
 begin
 if (reset)
 begin
 state <= s1; outp <= 1'b1;
 end
 else
 begin
 case (state)
 s1: begin
 if (x1==1'b1)
 begin
 state <= s2;
 outp <= 1'b1;
 end
 else
 begin
 state <= s3;
 outp <= 1'b0;
 end
 end
 s2: begin
 state <= s4; outp <= 1'b1;
 end
 s3: begin
 state <= s4; outp <= 1'b0;
 end
 s4: begin
 state <= s1; outp <= 1'b0;
 end
 endcase
 end
 end
endmodule

In VHDL, the type of a state register can be a different type, such as:

• integer

• bit_vector

• std_logic_vector

But Xilinx recommends that you use an enumerated type containing all possible state
values and to declare your state register with that type. This method was used in the
previous VHDL Coding Example.

In Verilog, the type of state register can be an integer or a set of defined parameters. Xilinx
recommends using a set of defined for state register definition. This method was used in
the previous Verilog coding example.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 83
10.1

Finite State Machines (FSMs)
R

FSM With Two or Three Processes
The “FSM With One Process” can be described using two processes using the FSM
decomposition shown in Figure 4-13, “FSM Using Two Processes Diagram.”

The “FSM With One Process” can be described using three processes using the FSM
decomposition shown Figure 4-15, “FSM Using Three Processes Diagram.”

FSM Recognition and Optimization
FPGA synthesis tools can automatically recognize FSMs from HDL code and perform FSM
dedicated optimization. Depending on your synthesis tool, recognizing an FSM may be
conditioned by specific requirements, such as the presence of initialization on a state
register. For more information, see your synthesis tool documentation.

In general, in the default mode, a synthesis tries to search for the best encoding method for
an FSM in order to reach best speed or smallest area. Many encoding methods such as One-
Hot, Sequential or Gray methods are supported. In general, One-Hot encoding allows you
to create state machine implementations that are efficient for FPGA architectures.

If are not satisfied with the automatic solution, you may force your synthesis tool to use a
specific encoding method. Another possibility is to directly specify binary codes synthesis
tool must apply for each state using specific synthesis constraints.

X-Ref Target - Figure 4-12

Figure 4-13: FSM Using Two Processes Diagram

Inputs

Next
State

Function

RESET

CLOCK

State
Register

Output
Function

Outputs

Only for Mealy Machine

PROCESS 1 PROCESS 2
X10901

X-Ref Target - Figure 4-14

Figure 4-15: FSM Using Three Processes Diagram

Inputs

Next
State

Function

RESET

CLOCK

State
Register

Output
Function

Outputs

Only for Mealy Machine

PROCESS 1 PROCESS 2 PROCESS 3

X10902

http://www.xilinx.com

84 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Other FSM Features
Some synthesis tools offer additional FSM-related features, such as implementing Safe
State machines, and implementing FSMs on BRAMs. For more information, see your
synthesis tool documentation.

Implementing Memory
Xilinx FPGA devices provide two types of RAM:

• Distributed RAM (SelectRAM)

• Block RAM (Block SelectRAM)

There are three ways to incorporate RAM into a design:

• Use the automatic inference capability of the synthesis tool

• Use CORE Generator™

• Instantiate dedicated elements from a UNISIM or UNIMACRO Library

Each of these methods has its advantages and disadvantages as shown in Table 4-2,
“Incorporating RAM into a Design.”

Block and Distributed RAMs offer synchronous write capabilities. Read operation of the
Block RAM is synchronous, while the distributed RAM can be configured for either
asynchronous or synchronous reads.

In general, the selection of distributed RAM versus block RAM depends on the size of the
RAM. If the RAM is not very deep, it is generally advantageous to use the distributed
RAM. If you require a deeper RAM, it is generally more advantageous to use the block
memory.

If a memory description can be implemented using Block and Distributed RAM resources,
the synthesis tool automatically chooses how to implement RAM. This choice is driven by
RAM size, speed, and area design requirements. If the automatic implementation choice
does not meet your requirements, synthesis tools offer dedicated constraints allowing you
to select the RAM type. For more information, see your synthesis tool documentation.

Table 4-2: Incorporating RAM into a Design

Method Advantages Disadvantages

Inference • Most generic way to incorporate
RAMs into the design, allowing
easy/automatic design migration
from one FPGA family to another

• FAST simulation

• Requires specific coding styles
• Not all RAMs modes are supported
• Gives you the least control over

implementation

CORE Generator • Gives more control over the RAM
creation

• May complicate design migration from one
FPGA family to another

• Slower simulation comparing to Inference

Instantiation • Offers the most control over the
implementation

• Limit and complicates design migration from
one FPGA family to another

• Requires multiple instantiations to properly
create the right RAM configuration

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 85
10.1

Block RAM Inference
R

Since all Xilinx RAMs have the ability to be initialized, the RAMs may also be configured
either as a ROM (Read Only Memory), or as a RAM with pre-defined contents.

Initialization of RAMs can be done directly from HDL code. For more information, see
“Initial State of the Registers, Latches, Shift Registers, and RAMs.”

Some synthesis tools provide additional control over RAM inference and optimization
process, such as pipelining, automatic Block RAM packing, and automatic Block RAM
resource management. For more information, see your synthesis tool documentation.

For additional information about Implementing Memory, see:

• “Block RAM Inference”

• “Distributed RAM Inference”

Block RAM Inference
This section discusses Block RAM Inference and includes:

• “About Block RAM Inference”

• “Block RAM Inference Coding Examples”

About Block RAM Inference
Xilinx Block RAMs are True Dual-Port Block resources. Each port is totally independent
and can be configured with different depth and width. Read and write operations are
synchronous. Beginning with the Virtex-II device family, Block RAM resources offer
different read/write synchronization modes:

• Read-First

• Write-First

• No-Change

The latest FPGA device families such as Virtex-5 offer additional enhancements, including:

• Cascadable Block RAMs

• Pipelined output registers

• Byte-Wide Write Enable

BRAM inference capabilities differ from one synthesis tool to another. For more
information, see your synthesis tool documentation.

Block RAM Inference Coding Examples
The coding examples shown in this section provide coding styles for the most frequently
used Block RAM configurations, which are supported by most synthesis tools. This section
includes the following Block RAM Inference coding examples:

• “Single-Port RAM in Read-First Mode”

• “Single-Port RAM in Write-First Mode”

• “Single-Port RAM In No-Change Mode”

• “Dual-Port RAM in Read-First Mode with One Write Port”

• “Dual-Port Block RAM in Read-First Mode With Two Write Ports”

http://www.xilinx.com

86 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Single-Port RAM in Read-First Mode

This section discusses Single-Port RAM in Read-First Mode and includes:

• “Single-Port RAM in Read-First Mode Pin Descriptions”

• “Single-Port RAM in Read-First Mode VHDL Coding Example”

• “Single-Port RAM in Read-First Mode Verilog Coding Example”

Single-Port RAM in Read-First Mode Pin Descriptions

Single-Port RAM in Read-First Mode VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01 is
 port (clk : in std_logic;
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0));
end rams_01;

architecture syn of rams_01 is
 type ram_type is array (63 downto 0) of std_logic_vector (15 downto
0);
 signal RAM: ram_type;
begin

 process (clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(conv_integer(addr)) <= di;
 end if;
 do <= RAM(conv_integer(addr)) ;
 end if;
 end if;
 end process;

end syn;

Table 4-3: Single-Port RAM in Read-First Mode Pin Descriptions

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 87
10.1

Block RAM Inference
R

Single-Port RAM in Read-First Mode Verilog Coding Example

module v_rams_01 (clk, en, we, addr, di, do);

 input clk;
 input we;
 input en;
 input [5:0] addr;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] RAM [63:0];
 reg [15:0] do;

 always @(posedge clk)
 begin
 if (en)
 begin
 if (we)
 RAM[addr]<=di;
 do <= RAM[addr];
 end
 end
endmodule

Single-Port RAM in Write-First Mode

This section discusses Single-Port RAM in Write-First Mode and includes:

• “Single-Port RAM in Write-First Mode Pin Descriptions”

• “Single-Port RAM in Write-First Mode VHDL Coding Example One”

• “Single-Port RAM in Write-First Mode Verilog Coding Example One”

• “Single-Port RAM in Write-First Mode VHDL Coding Example Two”

• “Single-Port RAM in Write-First Mode Verilog Coding Example Two”

Single-Port RAM in Write-First Mode Pin Descriptions

Single-Port RAM in Write-First Mode VHDL Coding Example One

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02a is
 port (clk : in std_logic;

Table 4-4: Single-Port RAM in Write-First Mode Pin Descriptions

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

http://www.xilinx.com

88 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0));
end rams_02a;

architecture syn of rams_02a is
 type ram_type is array (63 downto 0)
 of std_logic_vector (15 downto 0);
 signal RAM : ram_type;
begin

 process (clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(conv_integer(addr)) <= di;
 do <= di;
 else
 do <= RAM(conv_integer(addr));
 end if;
 end if;
 end if;
 end process;

end syn;

Single-Port RAM in Write-First Mode Verilog Coding Example One

module v_rams_02a (clk, we, en, addr, di, do);

 input clk;
 input we;
 input en;
 input [5:0] addr;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] RAM [63:0];
 reg [15:0] do;

 always @(posedge clk)
 begin
 if (en)
 begin
 if (we)
 begin
 RAM[addr] <= di;
 do <= di;
 end
 else
 do <= RAM[addr];
 end
 end
endmodule

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 89
10.1

Block RAM Inference
R

Single-Port RAM in Write-First Mode VHDL Coding Example Two

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02b is
port (clk : in std_logic;
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0));
end rams_02b;

architecture syn of rams_02b is
 type ram_type is array (63 downto 0) of std_logic_vector (15 downto
0);
 signal RAM : ram_type;
 signal read_addr: std_logic_vector(5 downto 0);
begin
process (clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 ram(conv_integer(addr)) <= di;
 end if;
 read_addr <= addr;
 end if;
 end if;
 end process;

 do <= ram(conv_integer(read_addr));

end syn;

Single-Port RAM in Write-First Mode Verilog Coding Example Two

module v_rams_02b (clk, we, en, addr, di, do);

 input clk;
 input we;
 input en;
 input [5:0] addr;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] RAM [63:0];
 reg [5:0] read_addr;

 always @(posedge clk)
 begin
 if (en)
 begin
 if (we)
 RAM[addr] <= di;
 read_addr <= addr;
 end
 end

http://www.xilinx.com

90 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

 assign do = RAM[read_addr];

endmodule

Single-Port RAM In No-Change Mode

This section discusses Single-Port RAM In No-Change Mode and includes:

• “Single-Port RAM In No-Change Mode Pin Descriptions”

• “Single-Port RAM In No-Change Mode VHDL Coding Example”

• “Single-Port RAM In No-Change Mode Verilog Coding Example”

Single-Port RAM In No-Change Mode Pin Descriptions

Single-Port RAM In No-Change Mode VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_03 is
 port (clk : in std_logic;
 we : in std_logic;
 en : in std_logic;
 addr : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0));
end rams_03;

architecture syn of rams_03 is
 type ram_type is array (63 downto 0) of std_logic_vector (15 downto
0);
 signal RAM : ram_type;
begin

 process (clk)
 begin
 if clk'event and clk = '1' then
 if en = '1' then
 if we = '1' then
 RAM(conv_integer(addr)) <= di;
 else
 do <= RAM(conv_integer(addr));
 end if;

Table 4-5: Single-Port RAM In No-Change Mode Pin Descriptions

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 91
10.1

Block RAM Inference
R

 end if;
 end if;
 end process;

end syn;

Single-Port RAM In No-Change Mode Verilog Coding Example

module v_rams_03 (clk, we, en, addr, di, do);

 input clk;
 input we;
 input en;
 input [5:0] addr;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] RAM [63:0];
 reg [15:0] do;

 always @(posedge clk)
 begin
 if (en)
 begin
 if (we)
 RAM[addr] <= di;
 else
 do <= RAM[addr];
 end
 end

endmodule

Dual-Port RAM in Read-First Mode with One Write Port

This section discusses Dual-Port RAM in Read-First Mode with One Write Port and
includes:

• “Dual-Port RAM in Read-First Mode With One Write Port Pin Descriptions”

• “Dual-Port RAM in Read-First Mode with One Write Port VHDL Coding Example”

• “Dual-Port RAM in Read-First Mode with One Write Port Verilog Coding Example”

http://www.xilinx.com

92 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Dual-Port RAM in Read-First Mode With One Write Port Pin Descriptions

Dual-Port RAM in Read-First Mode with One Write Port VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01_1 is
 port (clka, clkb : in std_logic;
 wea : in std_logic;
 ena, enb : in std_logic;
 addra, addrb : in std_logic_vector(5 downto 0);
 dia : in std_logic_vector(15 downto 0);
 doa, dob : out std_logic_vector(15 downto 0));
end rams_01_1;

architecture syn of rams_01_1 is
 type ram_type is array (63 downto 0) of std_logic_vector (15 downto
0);
 signal RAM: ram_type;
begin

 process (clka)
 begin
 if clka'event and clka = '1' then
 if ena = '1' then
 if wea = '1' then
 RAM(conv_integer(addra)) <= dia;
 end if;
 doa <= RAM(conv_integer(addra)) ;
 end if;
 end if;
 end process;

 process (clkb)
 begin
 if clkb'event and clkb = '1' then
 if enb = '1' then
 dob <= RAM(conv_integer(addrb)) ;

Table 4-6: Dual-Port RAM in Read-First Mode With One Write Port Pin Descriptions

IO Pins Description

clka, clkb Positive-Edge Clock

ena Primary Global Enable (Active High)

enb Dual Global Enable (Active High)

wea Primary Synchronous Write

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

doa Primary Output Port

dob Dual Output Port

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 93
10.1

Block RAM Inference
R

 end if;
 end if;
 end process;

end syn;

Dual-Port RAM in Read-First Mode with One Write Port Verilog Coding Example

module v_rams_01_1 (clka, clkb, ena, enb, wea, addra, addrb, dia, doa,
dob);

 input clka, clkb;
 input wea;
 input ena, enb;
 input [5:0] addra, addrb;
 input [15:0] dia;
 output [15:0] doa, dob;
 reg [15:0] RAM [63:0];
 reg [15:0] doa, dob;

 always @(posedge clka)
 begin
 if (ena)
 begin
 if (wea)
 RAM[addra]<=dia;
 doa <= RAM[addra];
 end
 end

 always @(posedge clkb)
 begin
 if (enb)
 begin
 dob <= RAM[addrb];
 end
 end

endmodule

Dual-Port Block RAM in Read-First Mode With Two Write Ports

This section discusses Dual-Port RAM in Read-First Mode with Two Write Ports and
includes:

• “About Dual-Port Block RAM in Read-First Mode With Two Write Ports”

• “Dual-Port Block RAM in Read-First Mode With Two Write Ports Pin Descriptions”

• “Dual-Port Block RAM in Read-First Mode With Two Write Ports VHDL Coding
Example”

• “Dual-Port Block RAM in Read-First Mode With Two Write Ports VHDL Coding
Example”

About Dual-Port Block RAM in Read-First Mode With Two Write Ports

Some synthesis tools support dual-port block RAMs with two write ports for VHDL and
Verilog. The concept of dual-write ports implies not only distinct data ports, but also the
possibility of having distinct write clocks and write enables. Distinct write clocks also
mean distinct read clocks, since the dual-port block RAM offers two clocks, one shared by

http://www.xilinx.com

94 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

the primary read and write port, the other shared by the secondary read and write port. In
VHDL, the description of this type of block RAM is based on the usage of shared variables.

Because of the shared variable, the description of the different read/write
synchronizations may be different from coding examples recommended for single-write
RAMs. The order of appearance of the different lines of code is significant. In the next
VHDL example describing read-first synchronization the read statement must come
BEFORE the write statement.

Dual-Port Block RAM in Read-First Mode With Two Write Ports Pin Descriptions

Dual-Port Block RAM in Read-First Mode With Two Write Ports VHDL Coding Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16 is
 port(clka : in std_logic;
 clkb : in std_logic;
 ena : in std_logic;
 enb : in std_logic;
 wea : in std_logic;
 web : in std_logic;
 addra : in std_logic_vector(5 downto 0);
 addrb : in std_logic_vector(5 downto 0);
 dia : in std_logic_vector(15 downto 0);
 dib : in std_logic_vector(15 downto 0);
 doa : out std_logic_vector(15 downto 0);
 dob : out std_logic_vector(15 downto 0));
end rams_16;

architecture syn of rams_16 is
 type ram_type is array (63 downto 0) of std_logic_vector(15 downto
0);
 shared variable RAM : ram_type;

Table 4-7: Dual-Port Block RAM in Read-First Mode With Two Write Ports Pin
Descriptions

IO Pins Description

clka, clkb Positive-Edge Clock

ena Primary Global Enable (Active High)

enb Dual Global Enable (Active High)

wea, web Primary Synchronous Write Enable (Active
High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

dib Dual Data Input

doa Primary Output Port

dob Dual Output Port

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 95
10.1

Block RAM Inference
R

begin

 process (CLKA)
 begin
 if CLKA'event and CLKA = '1' then
 if ENA = '1' then
 DOA <= RAM(conv_integer(ADDRA));
 if WEA = '1' then
 RAM(conv_integer(ADDRA)) := DIA;
 end if;
 end if;
 end if;
 end process;

 process (CLKB)
 begin
 if CLKB'event and CLKB = '1' then
 if ENB = '1' then
 DOB <= RAM(conv_integer(ADDRB));
 if WEB = '1' then
 RAM(conv_integer(ADDRB)) := DIB;
 end if;
 end if;
 end if;
 end process;

end syn;

Dual-Port Block RAM in Read-First Mode With Two Write Ports VHDL Coding Example

module v_rams_16
(clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

 input clka,clkb,ena,enb,wea,web;
 input [5:0] addra,addrb;
 input [15:0] dia,dib;
 output [15:0] doa,dob;
 reg [15:0] ram [63:0];
 reg [15:0] doa,dob;

 always @(posedge clka) begin
 if (ena)
 begin
 if (wea)
 ram[addra] <= dia;
 doa <= ram[addra];
 end
 end

 always @(posedge clkb) begin
 if (enb)
 begin
 if (web)
 ram[addrb] <= dib;
 dob <= ram[addrb];
 end
 end

endmodule

http://www.xilinx.com

96 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Distributed RAM Inference
The coding examples shown in this section provide coding styles for the most frequently
used Distributed RAM configurations, which are supported by most synthesis tools.

• “Single-Port Distributed RAM”

• “Dual-Port Distributed RAM”

Single-Port Distributed RAM
This section discusses Single-Port Distributed RAM and includes:

• “Single-Port Distributed RAM Pin Descriptions”

• “Single-Port Distributed RAM VHDL Coding Example”

• “Single-Port Distributed RAM Verilog Coding Example”

Single-Port Distributed RAM Pin Descriptions

Single-Port Distributed RAM VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_04 is
 port (clk : in std_logic;
 we : in std_logic;
 a : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 do : out std_logic_vector(15 downto 0));
end rams_04;

architecture syn of rams_04 is
 type ram_type is array (63 downto 0) of std_logic_vector (15 downto
0);
 signal RAM : ram_type;
begin

 process (clk)
 begin
 if (clk'event and clk = '1') then
 if (we = '1') then
 RAM(conv_integer(a)) <= di;
 end if;
 end if;

Table 4-8: Single-Port Distributed RAM Pin Descriptions

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

a Read/Write Address

di Data Input

do Data Output

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 97
10.1

Distributed RAM Inference
R

 end process;

 do <= RAM(conv_integer(a));

end syn;

Single-Port Distributed RAM Verilog Coding Example

module v_rams_04 (clk, we, a, di, do);

 input clk;
 input we;
 input [5:0] a;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] ram [63:0];

 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 end

 assign do = ram[a];

endmodule

Dual-Port Distributed RAM
This section discusses Dual-Port Distributed RAM and includes:

• “Dual-Port Distributed RAM Pin Descriptions”

• “Dual-Port Distributed RAM VHDL Coding Example”

• “Dual-Port Distributed RAM Verilog Coding Example”

Dual-Port Distributed RAM Pin Descriptions

Dual-Port Distributed RAM VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_09 is

Table 4-9: Dual-Port Distributed RAM Pin Descriptions

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port

http://www.xilinx.com

98 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

 port (clk : in std_logic;
 we : in std_logic;
 a : in std_logic_vector(5 downto 0);
 dpra : in std_logic_vector(5 downto 0);
 di : in std_logic_vector(15 downto 0);
 spo : out std_logic_vector(15 downto 0);
 dpo : out std_logic_vector(15 downto 0));
end rams_09;

architecture syn of rams_09 is
 type ram_type is array (63 downto 0) of std_logic_vector (15 downto
0);
 signal RAM : ram_type;
begin

 process (clk)
 begin
 if (clk'event and clk = '1') then
 if (we = '1') then
 RAM(conv_integer(a)) <= di;
 end if;
 end if;
 end process;

 spo <= RAM(conv_integer(a));
 dpo <= RAM(conv_integer(dpra));

end syn;

Dual-Port Distributed RAM Verilog Coding Example

module v_rams_09 (clk, we, a, dpra, di, spo, dpo);

 input clk;
 input we;
 input [5:0] a;
 input [5:0] dpra;
 input [15:0] di;
 output [15:0] spo;
 output [15:0] dpo;
 reg [15:0] ram [63:0];

 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 end

 assign spo = ram[a];
 assign dpo = ram[dpra];

endmodule

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 99
10.1

Arithmetic Support
R

Arithmetic Support
This section discusses Arithmetic Support and includes:

• “About Arithmetic Support”

• “Arithmetic Support Coding Examples”

• “Order and Group Arithmetic Functions”

• “Order and Group Arithmetic Functions”

About Arithmetic Support
Xilinx FPGA devices traditionally contain several hardware resources such as LUTs and
Carry Chains. These hardware resources efficiently implement various arithmetic
operations such as adders, subtractors, counters, accumulators, and comparators.

With the release of the Virtex-4 device, Xilinx introduced a new primitive called DSP48.
This block was further enhanced in later families such as Virtex-5 and Spartan-3A DSP.
DSP48 allows you to create numerous functions, including multipliers, adders, counters,
barrel shifters, comparators, accumulators, multiply accumulate, complex multipliers, and
others.

Currently, synthesis tools support the most important and frequently used DSP48 modes
for DSP applications such as multipliers, adders/subtractors, multiply
adders/subtractors, and multiply accumulate. The synthesis tools also take advantage of
the internal registers available in DSP48, as well as the dynamic OPMODE port.

DSP48 fast connections allow you to efficiently build fast DSP48 chains as filters. These fast
connections are automatically supported by synthesis tools today.

The level of DSP48 support may differ from one synthesis tool to another. For more
information, see your synthesis tool documentation.

Since there are several ways to implement the same arithmetic operation on the target
device, synthesis tools make automatic choices depending on the operation type, size,
context usage, or timing requirements. In some situations, the automatic choice may not
meet your goals. Synthesis tools therefore offer several constraints to control
implementation process such as use_dsp48 in XST or syn_dspstyle in Synplicity. For
more information, see your synthesis tool documentation.

If you migrate a design previously implemented using an older and FPGA device family to
a newer one with a DSP48 block, and you want to take advantage of available DSP48
blocks, you must be aware of the following rules in order to get the best performance.

• DSP48 blocks give you the best performance when fully pipelined. You should add
additional pipelining stages in order to get the best performance.

• Internal DSP48 registers support synchronous set and reset signals. Asynchronous set
and reset signals are not supported. You must replace asynchronous initialization
signals by synchronous ones. Some synthesis tools may automatically make this
replacement. This operation renders the generated netlist NOT equivalent to the
initial RTL description. For more information, see your synthesis tool documentation.

• For DSP applications, use chain structures instead of tree structures in your RTL
description in order to take full advantage of the DSP48 capabilities.

For more information on DSP48 blocks and specific DSP application coding style, see the
ExtremeDSP User Guide for your target family

http://www.xilinx.com

100 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Arithmetic Support Coding Examples
This section gives the following Arithmetic Support coding examples:

• “Unsigned 8-bit Adder with Registered Input/Outputs VHDL Coding Example”

• “Unsigned 8-bit Adder with Registered Input/Outputs Verilog Coding Example”

• “Unsigned 8-bit Adder/Subtractor VHDL Coding Example”

• “Unsigned 8-bit Adder/Subtractor Verilog Coding Example”

• “Unsigned 8-Bit Greater or Equal Comparator VHDL Coding Example”

• “Unsigned 8-Bit Greater or Equal Comparator Verilog Coding Example”

• “Unsigned 17x17-Bit Multiplier with Registered Input/Outputs VHDL Coding
Example”

• “Unsigned 17x17-Bit Multiplier with Registered Input/Outputs Verilog Coding
Example”

• “Unsigned 8-Bit Up Counter with an Synchronous Reset VHDL Coding Example”

• “Unsigned 8-Bit Up Counter with an Synchronous Reset Verilog Coding Example”

• “Unsigned 8-Bit Up Accumulator With Synchronous Reset VHDL Coding Example”

• “Unsigned 8-Bit Up Accumulator With Synchronous Reset Verilog Coding Example”

• “Multiplier Adder With 2 Register Levels on Multiplier Inputs, 1 Register Level after
Multiplier and 1 Register Level after Adder VHDL Coding Example”

• “Multiplier Adder With 2 Register Levels on Multiplier Inputs, 1 Register Level after
Multiplier and 1 Register Level after Adder Verilog Coding Example”

• “Multiplier Up Accumulator With 2 Register Levels on Multiplier Inputs, 1 Register
Level after Multiplier and 1 Register Level after Accumulator VHDL Coding
Example”

• “Multiplier Up Accumulator With 2 Register Levels on Multiplier Inputs, 1 Register
Level after Multiplier and 1 Register Level after Accumulator Verilog Coding
Example”

Unsigned 8-bit Adder VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_01 is
 port(A,B : in std_logic_vector(7 downto 0);
 SUM : out std_logic_vector(7 downto 0));
end arith_01;

architecture archi of arith_01 is
begin

 SUM <= A + B;

end archi;

Unsigned 8-bit Adder Verilog Coding Example

module v_arith_01(A, B, SUM);
 input [7:0] A;
 input [7:0] B;
 output [7:0] SUM;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 101
10.1

Arithmetic Support
R

 assign SUM = A + B;

Endmodule

Signed 8-bit Adder VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity arith_02 is
 port(A,B : in std_logic_vector(7 downto 0);
 SUM : out std_logic_vector(7 downto 0));
end arith_02;

architecture archi of arith_02 is
begin

 SUM <= A + B;

end archi;

Signed 8-bit Adder Verilog Coding Example

module v_arith_02 (A,B,SUM);
 input signed [7:0] A;
 input signed [7:0] B;
 output signed [7:0] SUM;
 wire signed [7:0] SUM;

 assign SUM = A + B;

Endmodule

Unsigned 8-bit Adder with Registered Input/Outputs VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_03 is
 port(clk : in std_logic;
 A,B : in std_logic_vector(7 downto 0);
 SUM : out std_logic_vector(7 downto 0));
end arith_03;

architecture archi of arith_03 is
 signal reg_a, reg_b: std_logic_vector(7 downto 0);
begin
 process (clk)
 begin
 if (clk'event and clk='1') then
 reg_a <= A;
 reg_b <= B;
 SUM <= reg_a + reg_b;
 end if;
 end process;

end archi;

http://www.xilinx.com

102 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

Unsigned 8-bit Adder with Registered Input/Outputs Verilog Coding Example

module v_arith_03 (clk, A, B, SUM);
 input clk;
 input [7:0] A;
 input [7:0] B;
 output [7:0] SUM;

 reg [7:0] reg_a, reg_b, SUM;

 always @(posedge clk)
 begin
 reg_a <= A;
 reg_b <= B;
 SUM <= reg_a + reg_b;
 end

endmodule

Unsigned 8-bit Adder/Subtractor VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_04 is
 port(A,B : in std_logic_vector(7 downto 0);
 OPER: in std_logic;
 RES : out std_logic_vector(7 downto 0));
end arith_04;

architecture archi of arith_04 is
begin

 RES <= A + B when OPER='0'
 else A - B;

end archi;

Unsigned 8-bit Adder/Subtractor Verilog Coding Example

module v_arith_04 (A, B, OPER, RES);
 input OPER;
 input [7:0] A;
 input [7:0] B;
 output [7:0] RES;
 reg [7:0] RES;

 always @(A or B or OPER)
 begin
 if (OPER==1'b0) RES = A + B;
 else RES = A - B;
 end

endmodule

Unsigned 8-Bit Greater or Equal Comparator VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 103
10.1

Arithmetic Support
R

entity arith_05 is
 port(A,B : in std_logic_vector(7 downto 0);
 CMP : out std_logic);
end arith_05;

architecture archi of arith_05 is
begin

 CMP <= '1' when A >= B else '0';

end archi;

Unsigned 8-Bit Greater or Equal Comparator Verilog Coding Example

module v_arith_05 (A, B, CMP);
 input [7:0] A;
 input [7:0] B;
 output CMP;

 assign CMP = (A >= B) ? 1'b1 : 1'b0;

endmodule

Unsigned 17x17-Bit Multiplier with Registered Input/Outputs VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity arith_06 is
 port(clk : in std_logic;
 A : in unsigned (16 downto 0);
 B : in unsigned (16 downto 0);
 MULT : out unsigned (33 downto 0));
end arith_06;

architecture beh of arith_06 is
 signal reg_a, reg_b : unsigned (16 downto 0);

begin

 process (clk)
 begin
 if (clk'event and clk='1') then
 reg_a <= A; reg_b <= B;
 MULT <= reg_a * reg_b;
 end if;
 end process;

end beh;

Unsigned 17x17-Bit Multiplier with Registered Input/Outputs Verilog Coding Example

module v_arith_06(clk, A, B, MULT);

 input clk;
 input [16:0] A;
 input [16:0] B;
 output [33:0] MULT;

http://www.xilinx.com

104 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

 reg [33:0] MULT;
 reg [16:0] reg_a, reg_b;

 always @(posedge clk)
 begin
 reg_a <= A;
 reg_b <= B;
 MULT <= reg_a * reg_b;
 end
endmodule

Unsigned 8-Bit Up Counter with an Synchronous Reset VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_07 is
 port(clk, reset : in std_logic;
 Res : out std_logic_vector(7 downto 0));
end arith_07;

architecture archi of arith_07 is
 signal cnt: std_logic_vector(7 downto 0);
begin
 process (clk)
 begin
 if (clk'event and clk='1') then
 if (reset = '1') then
 cnt <= "00000000";
 else
 cnt <= cnt + 1;
 end if;
 end if;
 end process;

 Res <= cnt;

end archi;

Unsigned 8-Bit Up Counter with an Synchronous Reset Verilog Coding Example

module v_arith_07 (clk, reset, Res);
 input clk, reset;
 output [7:0] Res;

 reg [7:0] cnt;

 always @(posedge clk)
 begin
 if (reset)
 cnt <= 8'b00000000;
 else
 cnt <= cnt + 1'b1;
 end

 assign Res = cnt;
endmodule

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 105
10.1

Arithmetic Support
R

Unsigned 8-Bit Up Accumulator With Synchronous Reset VHDL Coding Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_08 is
 port(clk, reset : in std_logic;
 din : in std_logic_vector(7 downto 0);
 Res : out std_logic_vector(7 downto 0));
end arith_08;

architecture archi of arith_08 is
 signal accu: std_logic_vector(7 downto 0);
begin
 process (clk)
 begin
 if (clk'event and clk='1') then
 if (reset = '1') then
 accu <= "00000000";
 else
 accu <= accu + din;
 end if;
 end if;
 end process;

 Res <= accu;

end archi;

Unsigned 8-Bit Up Accumulator With Synchronous Reset Verilog Coding Example

module v_arith_08 (clk, reset, din, Res);
 input clk, reset;
 input [7:0] din;
 output [7:0] Res;

 reg [7:0] accu;

 always @(posedge clk)
 begin
 if (reset)
 accu <= 8'b00000000;
 else
 accu <= accu + din;
 end

 assign Res = accu;
endmodule

Multiplier Adder With 2 Register Levels on Multiplier Inputs, 1 Register Level after Multiplier
and 1 Register Level after Adder VHDL Coding Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity arith_09 is
 generic (p_width: integer:=8);
 port (clk : in std_logic;

http://www.xilinx.com

106 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

 A, B : in std_logic_vector(7 downto 0);
 C : in std_logic_vector(15 downto 0);
 RES : out std_logic_vector(15 downto 0));
end arith_09;

architecture beh of arith_09 is
 signal reg1_A, reg2_A,
 reg1_B, reg2_B : std_logic_vector(7 downto 0);
 signal reg_C, reg_mult : std_logic_vector(15 downto 0);
begin

 process (clk)
 begin
 if (clk'event and clk='1') then
 reg1_A <= A; reg2_A <= reg1_A;
 reg1_B <= B; reg2_B <= reg1_B;
 reg_C <= C;
 reg_mult <= reg2_A * reg2_B;
 RES <= reg_mult + reg_C;
 end if;
 end process;

end beh;

Multiplier Adder With 2 Register Levels on Multiplier Inputs, 1 Register Level after Multiplier
and 1 Register Level after Adder Verilog Coding Example

module v_arith_09 (clk, A, B, C, RES);

 input clk;
 input [7:0] A;
 input [7:0] B;
 input [15:0] C;
 output [15:0] RES;
 reg [7:0] reg1_A, reg2_A, reg1_B, reg2_B;
 reg [15:0] reg_C, reg_mult, RES;

 always @(posedge clk)
 begin
 reg1_A <= A; reg2_A <= reg1_A;
 reg1_B <= B; reg2_B <= reg1_B;
 reg_C <= C;
 reg_mult <= reg2_A * reg2_B;
 RES <= reg_mult + reg_C;
 end

endmodule

Multiplier Up Accumulator With 2 Register Levels on Multiplier Inputs, 1 Register Level after
Multiplier and 1 Register Level after Accumulator VHDL Coding Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity arith_10 is
 port (clk : in std_logic;
 A, B : in std_logic_vector(7 downto 0);
 RES : out std_logic_vector(15 downto 0));
end arith_10;

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 107
10.1

Arithmetic Support
R

architecture beh of arith_10 is
 signal reg1_A, reg2_A,
 reg1_B, reg2_B : std_logic_vector(7 downto 0);
 signal reg_mult, reg_accu : std_logic_vector(15 downto 0);
begin

 process (clk)
 begin
 if (clk'event and clk='1') then
 reg1_A <= A; reg2_A <= reg1_A;
 reg1_B <= B; reg2_B <= reg1_B;
 reg_mult <= reg2_A * reg2_B;
 reg_accu <= reg_accu + reg_mult;
 end if;
 end process;

 RES <= reg_accu;

end beh;

Multiplier Up Accumulator With 2 Register Levels on Multiplier Inputs, 1 Register Level after
Multiplier and 1 Register Level after Accumulator Verilog Coding Example

module v_arith_10 (clk, A, B, RES);

 input clk;
 input [7:0] A;
 input [7:0] B;
 output [15:0] RES;
 reg [7:0] reg1_A, reg2_A, reg1_B, reg2_B;
 reg [15:0] reg_mult, reg_accu;
 wire [15:0] RES;

 always @(posedge clk)
 begin
 reg1_A <= A; reg2_A <= reg1_A;
 reg1_B <= B; reg2_B <= reg1_B;
 reg_mult <= reg2_A * reg2_B;
 reg_accu <= reg_accu + reg_mult;
 end

 assign RES = reg_accu;

endmodule

Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions can influence design performance. For
example, the following two VHDL statements are not necessarily equivalent:

ADD <= A1 + A2 + A3 + A4;
ADD <= (A1 + A2) + (A3 + A4);

For Verilog, the following two statements are not necessarily equivalent:

ADD = A1 + A2 + A3 + A4;
ADD = (A1 + A2) + (A3 + A4);

http://www.xilinx.com

108 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

The first statement cascades three adders in series. The second statement creates two
adders in parallel: A1 + A2 and A3 + A4. In the second statement, the two additions are
evaluated in parallel and the results are combined with a third adder. Register Transfer
Level (RTL) simulation results are the same for both statements. The second statement
results in a faster circuit after synthesis (depending on the bit width of the input signals).

Although the second statement generally results in a faster circuit, in some cases, you may
want to use the first statement. For example, if the A4 signal reaches the adder later than
the other signals, the first statement produces a faster implementation because the
cascaded structure creates fewer logic levels for A4. This structure allows A4 to catch up to
the other signals. In this case, A1 is the fastest signal followed by A2 and A3. A4 is the
slowest signal.

Most synthesis tools can balance or restructure the arithmetic operator tree if timing
constraints require it. However, Xilinx recommends that you code your design for your
selected structure.

Resource Sharing
This section discusses Resource Sharing, and includes:

• “About Resource Sharing”

• “Resource Sharing Coding Examples”

About Resource Sharing

Resource sharing uses a single functional block (such as an adder or comparator) to
implement several operators in the HDL code. Use resource sharing to improve design
performance by reducing the gate count and the routing congestion. If you do not use
resource sharing, each HDL operation is built with separate circuitry. You may want to
disable resource sharing for speed critical paths in your design.

The following operators can be shared either with instances of the same operator or with
an operator on the same line.

*
+ -
> >= < <=

For example, a + (plus) operator can be shared with instances of other + (plus) operators
or with – (minus) operators. An * (asterisk) operator can be shared only with other *
(asterisk) operators.

You can implement arithmetic functions (+, –, magnitude comparators) with gates or with
your synthesis tool module library. The library functions use modules that take advantage
of the carry logic in the FPGA devices. Carry logic and its dedicated routing increase the
speed of arithmetic functions that are larger than 4 bits. To increase speed, use the module
library if your design contains arithmetic functions that are larger than 4 bits, or if your
design contains only one arithmetic function. Resource sharing of the module library
automatically occurs in most synthesis tools if the arithmetic functions are in the same
process.

Resource sharing adds additional logic levels to multiplex the inputs to implement more
than one function. You may not want to use it for arithmetic functions that are part of a
time critical path.

Since resource sharing allows you to reduce design resources, the device area required for
your design is also decreased. The area used for a shared resource depends on the type and

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 109
10.1

Arithmetic Support
R

bit width of the shared operation. You should create a shared resource to accommodate the
largest bit width and to perform all operations.

Resource Sharing Coding Examples

If you use resource sharing in your designs, you may want to use multiplexers to transfer
values from different sources to a common resource input. In designs that have shared
operations with the same output target, multiplexers are reduced as shown in the
following coding examples:

• “Resource Sharing VHDL Coding Example”

• “Resource Sharing Verilog Coding Example”

The VHDL example is shown implemented with gates in Figure 4-16, “Implementation of
Resource Sharing Diagram.”

Resource Sharing VHDL Coding Example

-- RES_SHARING.VHD
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
entity res_sharing is

port (
A1,B1,C1,D1 : in STD_LOGIC_VECTOR (7 downto 0);
COND_1 : in STD_LOGIC;
Z1 : out STD_LOGIC_VECTOR (7 downto 0));

end res_sharing;
architecture BEHAV of res_sharing is
begin

P1: process (A1,B1,C1,D1,COND_1)
begin
if (COND_1='1') then

Z1 <= A1 + B1;
else

Z1 <= C1 + D1;

Figure 4-16: Implementation of Resource Sharing Diagram

X9462

+

UN1_C1[7:0]
Z1_5[7:0]

0

1

COND_1

C1[7:0]

A1[7:0]

UN1_D1[7:0]

0

1

CLK

D1[7:0]

B1[7:0]

Z1[7:0]

Z1[7:0]

D[7:0] Q[7:0]

http://www.xilinx.com

110 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

end if;
end process; -- end P1

end BEHAV;

Resource Sharing Verilog Coding Example

/* Resource Sharing Example
 * RES_SHARING.V
*/
module res_sharing (
input [7:0] A1, B1, C1, D1,
input COND_1,
output reg [7:0] Z1);
always @(*)

begin
if (COND_1)

Z1 <= A1 + B1;
else

Z1 <= C1 + D1;
end

endmodule

If you disable resource sharing, or if you code the design with the adders in separate
processes, the design is implemented using two separate modules as shown in Figure 4-17,
“Implementation Without Resource Sharing Diagram.”

For more information, see your synthesis tool documentation.

Synthesis Tool Naming Conventions
Some net and logic names are preserved and some are altered by the synthesis tools during
synthesis. This may result in a netlist that may be hard to read or trace back to the original
code. Different synthesis tools generate names from your VHDL or Verilog code in
different ways. It is important to know naming rules your synthesis tool uses for netlist
generation. This helps you determine how nets and component names appearing in the
final netlist relate to the original input design. It also helps determine how nets and names
during your post-synthesis design view of the VHDL or Verilog source relate to the
original input design. For example, it helps you to find objects in the generated netlist and

Figure 4-17: Implementation Without Resource Sharing Diagram

X9463

+

+

UN4_Z1[7:0]

Z1_1[7:0]

CLK

C1[7:0]

D1[7:0]

Z1_5[7:0]

0

1

COND_1

A1[7:0]

B1[7:0]

Z1[7:0]

Z1[7:0]

D[7:0] Q[7:0]

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 111
10.1

Instantiating Components and FPGA Primitives
R

apply implementation constraints by means of the User Constraints File (UCF) to them.
For more information, see your synthesis tool documentation.

Instantiating Components and FPGA Primitives
This section discusses Instantiating Components and FPGA Primitives, and includes:

• “Instantiating FPGA Primitives”

• “Instantiating CORE Generator Modules”

Xilinx provides a set of libraries containing architecture specific and customized
components that can be explicitly instantiated as components in your design.

Instantiating FPGA Primitives
This section discusses Instantiating FPGA Primitives and includes:

• “About Instantiating FPGA Primitives”

• “Declaring Component and Port Map VHDL Coding Example”

• “Declaring Component and Port Map Verilog Coding Example”

About Instantiating FPGA Primitives

Architecture specific components that are built into the implementation tool's library are
available for instantiation without the need to specify a definition. These components are
marked as primitive in the Xilinx Libraries Guides. For more information, see the Xilinx
Libraries Guides at http://www.xilinx.com/support/software_manuals.htm. Components
marked as macro in the Xilinx Libraries Guides are not built into the implementation tool's
library and therefore cannot be instantiated. The macro components in the Xilinx Libraries
Guides define the schematic symbols. When macros are used, the schematic tool
decomposes the macros into their primitive elements when the schematic tool writes out
the netlist. FPGA primitives can be instantiated in VHDL and Verilog. All FPGA primitives
are situated in the UNISIM Library.

Declaring Component and Port Map VHDL Coding Example

library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
entity flops is port(

di : in std_logic;
ce : in std_logic;
clk : in std_logic;
qo : out std_logic;
rst : in std_logic);

end flops;

architecture inst of flops is
begin
U0 : FDCE port map(

D => di,
CE => ce,
C => clk,
CLR => rst,
Q => qo);

http://www.xilinx.com

112 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

end inst;

Declaring Component and Port Map Verilog Coding Example

module flops (
 input d1, ce, clk, rst,
 output q1);
 FDCE u1 (

.D (d1),

.CE (ce),

.C (clk),

.CLR (rst),

.Q (q1));
endmodule

Some synthesis tools may require you to explicitly include a Unisim library to the project.
For more information, see your synthesis tool documentation.

Many Xilinx Primitives have a set of associated properties. These constraints can be added
to the primitive through:

• VHDL attribute passing

• Verilog attribute passing

• VHDL generic passing

• Verilog parameter passing

• User Constraints File (UCF)

For more information on how to use these properties, see “Attributes and Constraints.”

Instantiating CORE Generator Modules
CORE Generator™ generates:

• An Electronic Data Interchange Format (EDIF) or NGC netlist, or both, to describe the
functionality

• A component instantiation template for HDL instantiation

For information on instantiating a CORE Generator module in ISE, see the ISE Help,
especially, “Working with CORE Generator IP.” For more information on CORE Generator,
see the CORE Generator Help.

Attributes and Constraints
This section discusses Attributes and Constraints, and includes:

• “Attributes”

• “Synthesis Constraints”

• “Implementation Constraints”

• “Passing Attributes”

• “Passing Synthesis Constraints”

Some designers use attribute and constraint interchangeably, while other designers give
them different meanings. Language constructs use attribute and directive in similar yet
different senses. Xilinx documentation uses attributes and constraints as defined in this
section.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 113
10.1

Attributes and Constraints
R

Attributes
An attribute is a property associated with a device architecture primitive component that
affects an instantiated component’s functionality or implementation. Attributes are passed
as follows:

• In VHDL, by means of generic maps

• In Verilog, by means of defparams or inline parameter passing

Examples of attributes are:

• The INIT property on a LUT4 component

• The CLKFX_DIVIDE property on a DCM

All attributes are described in the Xilinx Libraries Guides as a part of the primitive
component description. For more information, see the Xilinx Libraries Guides at
http://www.xilinx.com/support/software_manuals.htm.

Synthesis Constraints
Synthesis constraints direct the synthesis tool optimization technique for a particular
design or piece of HDL code. They are either embedded within the VHDL or Verilog code,
or within a separate synthesis constraints file.

Examples of synthesis constraints are:

• USE_DSP48 (XST)

• RAM_STYLE (XST)

For more information, see your synthesis tool documentation.

Implementation Constraints
Implementation constraints are instructions given to the FPGA implementation tools to
direct the mapping, placement, timing, or other guidelines for the implementation tools to
follow while processing an FPGA design. Implementation constraints are generally placed
in the User Constraints File (UCF), but may exist in the HDL code, or in a synthesis
constraints file.

Examples of implementation constraints are:

• “LOC” (placement)

• “PERIOD” (timing)

For more information about implementation constraints, see the Xilinx Constraints Guide at
http://www.xilinx.com/support/software_manuals.htm.

Passing Attributes
Attributes are properties that are attached to Xilinx primitive instantiations in order to
specify their behavior. They should be passed via the generic (VHDL) or parameter
(Verilog) mechanism to ensure that they are properly passed to both synthesis and
simulation.

http://www.xilinx.com

114 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

VHDL Primitive Attribute Coding Example

The following VHDL coding example shows an example of setting the INIT primitive
attribute for an instantiated RAM16X1S which will specify the initial contents of this RAM
symbol to the hexadecimal value of A1B2.

 small_ram_inst : RAM16X1S
 generic map (
 INIT => X"A1B2")
 port map (
 O => ram_out, -- RAM output
 A0 => addr(0), -- RAM address[0] input
 A1 => addr(1), -- RAM address[1] input
 A2 => addr(2), -- RAM address[2] input
 A3 => addr(3), -- RAM address[3] input
 D => data_in, -- RAM data input
 WCLK => clock, -- Write clock input
 WE => we -- Write enable input
);

Verilog Primitive Attribute Coding Example

The following Verilog coding example shows an instantiated IBUFDS symbol in which the
DIFF_TERM and “IOSTANDARD” are specified as "FALSE" and "LVDS_25" respectively.

IBUFDS #(
.CAPACITANCE("DONT_CARE"), // "LOW", "NORMAL", "DONT_CARE"

(Virtex-4/5 only)
.DIFF_TERM("FALSE"), // Differential Termination

(Virtex-4/5, Spartan-3E/3A)
.IBUF_DELAY_VALUE("0"), // Specify the amount of added

input delay for
 // the buffer, "0"-"16" (Spartan-3E/3A only)
.IFD_DELAY_VALUE("AUTO"), // Specify the amount of added

delay for input
 // register, "AUTO", "0"-"8" (Spartan-3E/3A

only)
.IOSTANDARD("DEFAULT") // Specify the input I/O standard

) IBUFDS_inst (
 .O(O), // Buffer output
 .I(I), // Diff_p buffer input (connect directly to top-level port)
 .IB(IB) // Diff_n buffer input (connect directly to top-level port)
);

Passing Synthesis Constraints
This section discusses Passing Synthesis Constraints, and includes:

• “VHDL Synthesis Attributes”

• “Verilog Synthesis Attributes”

A constraint can be attached to HDL objects in your design, or specified from a separate
constraints file. You can pass constraints to HDL objects in two ways:

• Predefine data that describes an object

• Directly attach an attribute to an HDL object

Predefined attributes can be passed with a COMMAND file or constraints file in your
synthesis tool, or you can place attributes directly in your HDL code.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 115
10.1

Attributes and Constraints
R

This section illustrates passing attributes in HDL code only. For information on passing
attributes via the command file, see your synthesis tool documentation.

VHDL Synthesis Attributes

The following are examples of VHDL attributes:

• “Attribute Declaration Example”

• “Attribute Use on a Port or Signal Example”

• “Attribute Use on an Instance Example”

• “Attribute Use on a Component Example”

Attribute Declaration Example

attribute attribute_name : attribute_type;

Attribute Use on a Port or Signal Example

attribute attribute_name of object_name : signal is attribute_value

See the following example:

library IEEE;
use IEEE.std_logic_1164.all;
entity d_register is

port (
CLK, DATA: in STD_LOGIC;
Q: out STD_LOGIC);

attribute FAST : string;
attribute FAST of Q : signal is "true";

end d_register;

Attribute Use on an Instance Example

attribute attribute_name of object_name : label is attribute_value

See the following example:

architecture struct of spblkrams is
attribute LOC: string;
attribute LOC of SDRAM_CLK_IBUFG: label is "AA27";
Begin
 -- IBUFG: Single-ended global clock input buffer
 -- All FPGA
 -- Xilinx HDL Language Template
 SDRAM_CLK_IBUFG : IBUFG
 generic map (
 IOSTANDARD => "DEFAULT")
 port map (
 O => SDRAM_CLK_o, -- Clock buffer output
 I => SDRAM_CLK_i -- Clock buffer input
);
 -- End of IBUFG_inst instantiation

Attribute Use on a Component Example

attribute attribute_name of object_name : component is attribute_value

See the following example:

architecture xilinx of tenths_ex is
attribute black_box : boolean;

http://www.xilinx.com

116 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

component tenths
port (

CLOCK : in STD_LOGIC;
CLK_EN : in STD_LOGIC;
Q_OUT : out STD_LOGIC_VECTOR(9 downto 0)
);

end component;
attribute black_box of tenths : component is true;
begin

Verilog Synthesis Attributes

Most vendors adopt identical syntax for passing attributes in VHDL, but not in Verilog.
Historically attribute passing in Verilog was done via method called meta-comments. Each
synthesis tool adopted its own syntax for meta-comments. For meta-comment syntax, see
your synthesis tool documentation.

Verilog 2001 provides a uniform syntax for passing attributes. Since the attribute is
declared immediately before the object is declared, the object name is not mentioned
during the attribute declaration.

(* attribute_name = "attribute_value" *)
Verilog_object;

See the following example:

 (* RLOC = "R1C0.S0" *) FDCE #(
 .INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) U2 (
 .Q(q1), // Data output
 .C(clk), // Clock input
 .CE(ce), // Clock enable input
 .CLR(rst), // Asynchronous clear input
 .D(q0) // Data input
);

Not all synthesis tools support this method of attribute passing. For more information, see
your synthesis tool documentation.

Pipelining and Retiming
This section discusses Pipelining and Retiming, and includes:

• “About Pipelining”

• “Before Pipelining”

• “After Pipelining”

• “About Retiming”

About Pipelining
You can use pipelining to:

• Dramatically improve device performance at the cost of added latency (more clock
cycles to process the data)

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 117
10.1

Pipelining and Retiming
R

• Increase performance by restructuring long data paths with several levels of logic,
and breaking it up over multiple clock cycles

• Achieve a faster clock cycle, and, as a result, an increased data throughput at the
expense of added data latency

Because Xilinx FPGA devices are register-rich, the pipeline is created at no cost in device
resources. Since data is now on a multi-cycle path, you must account for the added path
latency in the rest of your design. Use care when defining timing specifications for these
paths.

Before Pipelining
In Figure 4-18, “Before Pipelining Diagram,” the clock speed is limited by:

• The clock-to out-time of the source flip-flop

• The logic delay through four levels of logic

• The routing associated with the four function generators

• The setup time of the destination register

After Pipelining
Figure 4-19, “After Pipelining Diagram,” is an example of the same data path shown in
Figure 4-18, “Before Pipelining Diagram,” after pipelining. Because the flip-flop is
contained in the same CLB as the function generator, the clock speed is limited by:

• The clock-to-out time of the source flip-flop

• The logic delay through one level of logic: one routing delay

• The setup time of the destination register

In this example, the system clock runs much faster after pipelining than before pipelining.

Figure 4-18: Before Pipelining Diagram

X8339

Function
Generator

QD
QDFunction

Generator
Function

Generator

Slow_Clock

Function
Generator

Figure 4-19: After Pipelining Diagram

X8340

Function
Generator

QD
QD QDFunction

Generator
Function

Generator

Fast_Clock

Function
Generator

QD QD

http://www.xilinx.com

118 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 4: Coding for FPGA Flow
R

About Retiming
Several synthesis tools can automatically move available registers in the design across
logic (move forward or backward) in order to increase design speed. This process,
depending on the synthesis tool, is called Retiming or Register Balancing.

The advantage of this optimization is that you do not need to modify your design in order
to increase design speed. However, this process may significantly increase the number of
flip-flops in the design.

For more information, see your synthesis tool documentation.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 119
10.1

R

Chapter 5

Using SmartModels

This chapter (Using SmartModels) describes special considerations when simulating
designs for Virtex™-II Pro, Virtex-4, and Virtex-5 FPGA devices. These devices are
platform FPGA devices for designs based on IP cores and customized modules. The family
incorporates RocketIO™ and PowerPC™ CPU and Ethernet MAC cores in the FPGA
architecture.

This chapter includes:

• “Using SmartModels with ISE Simulator”

• “Using SmartModels with ISE Simulator”

• “SmartModel Simulation Flow”

• “About SmartModels”

• “SmartModel Supported Simulators and Operating Systems”

• “Installing SmartModels”

• “Setting Up and Running Simulation”

Using SmartModels with ISE Simulator
There is no need to set up SmartModels for ISE™ Simulator. The HARD IP Blocks in these
devices is fully supported in ISE Simulator without any additional setup.

Using SmartModels to Simulate Designs
This section discusses Using SmartModels to Simulate Designs. It assumes familiarity with
the Xilinx® FPGA simulation flow.

SmartModels are an encrypted version of the actual Hardware Description Language
(HDL) code. SmartModels allow you to simulate functionality without access to the code
itself. Simulating these new features requires using Synopsys SmartModels along with the
user design.

Table 5-1: Architecture Specific SmartModels

SmartModel Virtex-II Pro Virtex-4 Virtex-5 FPGACore

DCC_FPGACORE N/A N/A N/A √

EMAC N/A √ N/A N/A

GT √ N/A N/A N/A

GT10 N/A N/A N/A N/A

http://www.xilinx.com

120 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 5: Using SmartModels
R

SmartModel Simulation Flow
The Hardware Description Language (HDL) simulation flow using Synopsys
SmartModels consists of two steps:

1. Instantiate the SmartModel wrapper used for simulation and synthesis. During
synthesis, the SmartModels are treated as black box components. This requires that a
wrapper be used that describes the modules port.

2. Use the SmartModels along with your design in an HDL simulator that supports the
SWIFT interface.

The wrapper files for the SmartModels are automatically referenced when using CORE
Generator™.

About SmartModels
Since Xilinx SmartModels are simulator-independent models derived from the actual
design, they are accurate evaluation models. To simulate these models, you must use a
simulator that supports the SWIFT interface.

Synopsys Logic Modeling uses the SWIFT interface to deliver models. SWIFT is a
simulator- and platform-independent API from Synopsys. SWIFT has been adopted by all
major simulator vendors, including Synopsys, Cadence, and Mentor Graphics, as a way of
linking simulation models to design tools.

When running a back-annotated simulation, the precompiled SmartModels support:

• Gate-Level Timing

Gate-level timing distributes the delays throughout the design. All internal paths are
accurately distributed. Multiple timing versions can be provided for different speed
parts.

• Pin-to-Pin Timing

Pin-to-pin timing is less accurate, but it is faster since only a few top-level delays must
be processed.

• Back-Annotation Timing

Back-annotation timing allows the model to accurately process the interconnect delays
between the model and the rest of the design. Back-annotation timing can be used with
either gate-level or pin-to-pin timing, or by itself.

GT11 N/A √ N/A N/A

PPC405 √ N/A N/A N/A

PPC405_ADV N/A √ N/A N/A

PCIe N/A N/A √ N/A

TEMAC N/A N/A √ N/A

GTP_DUAL N/A N/A √ N/A

Table 5-1: Architecture Specific SmartModels (Cont’d)

SmartModel Virtex-II Pro Virtex-4 Virtex-5 FPGACore

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 121
10.1

SmartModel Supported Simulators and Operating Systems
R

SmartModel Supported Simulators and Operating Systems
A simulator with SmartModel capability is required to use the SmartModels. Any
Hardware Description Language (HDL) simulator that supports the Synopsys SWIFT
interface should be able to handle the SmartModel simulation flow, the HDL simulators
shown in Table 5-2, “SmartModel Supported Simulators and Operating Systems,” are
officially supported by Xilinx for SmartModel simulation.

Xilinx does not support the Unix operating system.

Table 5-2: SmartModel Supported Simulators and Operating Systems

Installing SmartModels
The following software is required to install and run SmartModels:

• The Xilinx implementation tools

• An HDL Simulator that can simulate either VHDL or Verilog, and the SWIFT interface

Simulator

R
H

 L
in

u
x

R
H

 L
in

u
x-64

S
u

S
e L

in
u

x

S
u

S
e L

in
u

x-64

W
in

d
ow

s X
P

W
in

d
ow

s X
P

-64

W
in

d
ow

s V
ista

W
in

d
o

w
s V

ista-64

ModelSim SE (6.3c and
newer)

√ √ √ √ √ N/A N/A N/A

ModelSim PE

SWIFT enabled

(6.3c and newer) *

N/A N/A N/A N/A √ N/A N/A N/A

* The SWIFT interface is not enabled by default on ModelSim PE (5.7 or later). Contact MTI to enable this option. Not
required if using Modelsim 6.3c and above and targeting Virtex-5 architecture only.

Cadence NC-Verilog
(6.1 and newer)

√ √ √ √ N/A N/A N/A N/A

Cadence NC-VHDL
(6.1 and newer)

√ √ √ √ N/A N/A N/A N/A

Synopsys VCS-MX
(Verilog only. Y2006.06
and newer)

√ √ * * N/A N/A N/A N/A

* SuSe 10 is not supported

Synopsys VCS-MXi
(Verilog only. Y2006-06
and newer)

√ √ * * N/A N/A N/A N/A

* SuSe 10 is not supported

http://www.xilinx.com

122 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 5: Using SmartModels
R

SmartModels are installed with the Xilinx implementation tools, but they are not
immediately ready for use. There are two ways to use them:

• In “Installing SmartModels (Method One),” use the precompiled models. Use this
method if your design does not use any other vendors’ SmartModels.

• In “Installing SmartModels (Method Two),” install the SmartModels with additional
SmartModels incorporated in the design. Compile all SmartModels into a common
library for the simulator to use.

Installing SmartModels (Method One)
The Xilinx ISE™ installer sets the correct environment to work with SmartModels by
default. If this fails, you must make the following settings for the SmartModels to function
correctly.

Installing SmartModels (Method One on Linux)

To use the SmartModels on Linux, set the following variables:

setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin

Installing SmartModels (Method One on Linux 64)

To use the SmartModels on Linux 64, set the following variables:

setenv LMC_HOME $XILINX/smartmodel/lin64/installed_lin64

Installing SmartModels (Method One on Windows)

To use the SmartModels on Windows, set the following variable:

LMC_HOME = %XILINX%\smartmodel\nt\installed_nt

Installing SmartModels (Method One on Solaris)

To use the SmartModels on Solaris, set the following variables:

setenv LMC_HOME $XILINX/smartmodel/sol/installed_sol

The SmartModels are not extracted by default. The Xilinx ISE installer sets the
environment variable LMC_HOME, which points to the location to which the SmartModels
are extracted. In order to extract the SmartModels, run compxlib with the appropriate
switches. For more information, see “Compiling Xilinx Simulation Libraries
(COMPXLIB)” in the Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 123
10.1

Installing SmartModels
R

Installing SmartModels (Method Two)
Note: The software sl_admin is not developed by Xilinx, which does not support all sl_admin
options. For example, some sl_admin options specify simulators which are not supported by Xilinx

Caution! Use this method only if “Installing SmartModels (Method One)” did not work correctly.

Installing SmartModels (Method Two on Linux)

To install SmartModels on Linux:

1. Run the sl_admin.csh program from the $XILINX/smartmodel/lin/image
directory using the following commands:

a. $ cd $XILINX/smartmodel/lin/image

b. $ sl_admin.csh

2. Select SmartModels To Install.

a. In the Set Library Directory dialog box, change the default directory from
image/linux to installed.

b. Click OK.

c. If the directory does not exist, the program asks if you want to create it. Click OK.

d. In the Install From dialog box, click Open to use the default directory.

e. In the Select Models to Install, click Add All to select all models.

f. Click Continue.

g. In the Select Platforms for Installation dialog box:

- For Platforms, select Linux.

- For EDAV Packages, select Other.

h. Click Install.

i. When Install complete appears, and the status line changes to Ready, the
SmartModels have been installed

3. Continue to perform other operations such as accessing documentation and running
checks on your newly installed library (optional).

4. Select File > Exit.

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin

Installing SmartModels (Method Two on Linux 64)

To install SmartModels on Linux 64:

1. Run the sl_admin.csh program from the $XILINX/smartmodel/lin64/image
directory using the following commands:

a. $ cd $XILINX/smartmodel/lin64/image

b. $ sl_admin.csh

2. Select SmartModels To Install.

a. In the Set Library Directory dialog box, change the default directory from
image/amd64 to installed.

b. Click OK.

http://www.xilinx.com

124 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 5: Using SmartModels
R

c. If the directory does not exist, the program asks if you want to create it. Click OK.
In the Install From dialog box, click Open to use the default directory.

d. In the Select Models to Install, click Add All to select all models.

e. Click Continue.

f. In the Select Platforms for Installation dialog box:

- For Platforms, select RHEL 3.0 Linux on amd64.

- For EDAV Packages, select Other.

g. Click Install.

h. When Install complete appears, and the status line changes to Ready, the
SmartModels have been installed

3. Continue to perform other operations such as accessing documentation and running
checks on your newly installed library (optional).

4. Select File > Exit.

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

setenv LMC_HOME $XILINX/smartmodel/lin64/installed_lin64

Installing SmartModels (Method Two on Windows)

To install SmartModels on Windows:

1. Run sl_admin.exe from the %XILINX%\smartmodel\nt\image\pcnt directory.

2. Select SmartModels To Install.

a. In the Set Library Directory dialog box, change the default directory from
image\pcnt to installed.

b. Click OK.

c. If the directory does not exist, the program asks if you want to create it. Click OK.

d. Click Install on the left side of the sl_admin window. This allows you choose the
models to install.

e. In the Install From dialog box, click Browse.

f. Select the %XILINX%\smartmodel\nt\image directory. Click OK to select that
directory.

g. In the Select Models to Install dialog box, click Add All.

h. Click OK.

i. In the Choose Platform window:

- For Platforms, select Wintel.

- For EDAV Packages, select Other.

j. Click OK.

k. When Install complete appears, the SmartModels have been installed.

3. Continue to perform other operations such as accessing documentation and running
checks on your newly installed library (optional).

4. Select File > Exit.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 125
10.1

Setting Up and Running Simulation
R

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

Set LMC_HOME=%XILINX%\smartmodel\nt\installed_nt

Installing SmartModels (Method Two on Solaris)

To install SmartModels on Solaris:

1. Run sl_admin.csh from the $XILINX/smartmodel/sol/image directory using
the following commands:

a. $ cd $XILINX/smartmodel/sol/image

b. $ sl_admin.csh

2. Select SmartModels To Install.

a. In the Set Library Directory dialog box , change the default directory from
image/sol to installed.

b. Click OK.

c. If the directory does not exist, the program asks if you want to create it. Click OK.

d. In the Install From dialog box, click Open to use the default directory.

e. In the Select Models to Install dialog box, click Add All to select all models.

f. Click Continue.

g. In the Select Platforms for Installation dialog box:

- For Platforms, select Sun-4.

- For EDAV Packages, select Other.

h. Click Install.

i. When Install complete appears, and the status line changes to Ready, the
SmartModels have been installed.

j. Continue to perform other operations such as accessing documentation and
running checks on your newly installed library (optional).

k. Select File > Exit.

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

setenv LMC_HOME $XILINX/smartmodel/sol/installed_sol

Setting Up and Running Simulation
For information on setting up and running simulation, see:

• Appendix A, “Simulating Xilinx Designs in Modelsim”

• Appendix B, “Simulating Xilinx Designs in NCSIM”

• Appendix C, “Simulating Xilinx Designs in Synopsys VCS-MX and VCS-MXi”

http://www.xilinx.com

126 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 5: Using SmartModels
R

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 127
10.1

R

Chapter 6

Simulating Your Design

This chapter (Simulating Your Design) describes the basic Hardware Description Language
(HDL) simulation flow using Xilinx® and third party tools, and includes:

• “About Simulating Your Design”

• “Adhering to Industry Standards”

• “Simulation Points in HDL Design Flow”

• “Using Test Benches to Provide Stimulus”

• “VHDL and Verilog Libraries and Models”

• “Simulation of Configuration Interfaces”

• “Disabling BlockRAM Collision Checks for Simulation”

• “Global Reset and Tristate for Simulation”

• “Design Hierarchy and Simulation”

• “Register Transfer Level (RTL) Simulation Using Xilinx Libraries”

• “Generating Gate-Level Netlist (Running NetGen)”

• “Disabling X Propagation for Synchronous Elements”

• “MIN/TYP/MAX Simulation”

• “Special Considerations for CLKDLL, DCM, and DCM_ADV”

• “Understanding Timing Simulation”

• “Simulation Using Xilinx-Supported EDA Simulation Tools”

About Simulating Your Design
Increasing design size and complexity, as well as improvements in design synthesis and
simulation tools, have made Hardware Description Languages (HDLs) the preferred
design languages of most integrated circuit designers. The two leading HDL synthesis and
simulation languages are Verilog and VHDL. Both have been adopted as IEEE standards.

The Xilinx ISE™ software is designed to be used with several HDL synthesis and
simulation tools that provide a solution for programmable logic designs from beginning to
end. ISE provides libraries, netlist readers, and netlist writers, along with powerful place
and route tools, that integrate with your HDL design environment on PC and Linux
workstation platforms.

http://www.xilinx.com

128 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Adhering to Industry Standards
Xilinx adheres to relevant industry standards:

• “Simulation Flows”

• “Standards Supported by Xilinx Simulation Flow”

• “Xilinx Supported Simulators and Operating Systems”

• “Xilinx Libraries”

Simulation Flows
Observe the rules shown in Table 6-1, “Compile Order Dependency,” when compiling
source files.

Xilinx recommends that you:

• Specify the test fixture file before the HDL netlist.

• Give the name testbench to the main module in the test fixture file.

This name is consistent with the name used by default in the ISE Project Navigator. If this
name is used, no changes are necessary to the option in ISE in order to perform simulation
from that environment.

Standards Supported by Xilinx Simulation Flow
The standards shown in Table 6-2, “Standards Supported by Xilinx Simulation Flow,” are
supported by the Xilinx simulation flow.

Although the Xilinx HDL netlisters produce IEEE-STD-1076-2000 VHDL code or IEEE-
STD-1364-2001 Verilog code, that does not restrict using newer or older standards for the
creation of test benches or other simulation files. If the simulator supports both older and
newer standards, both standards can generally be used in these simulation files. You must
indicate to the simulator during code compilation which standard was used to create the
file.

Table 6-1: Compile Order Dependency

HDL Dependency Compile Order

Verilog Independent Any order

VHDL Dependent Bottom-up

Table 6-2: Standards Supported by Xilinx Simulation Flow

Description Version

VHDL IEEE-STD-1076-2000

VITAL Modeling Standard IEEE-STD-1076.4-2000

Verilog IEEE-STD-1364-2001

Standard Delay Format (SDF) OVI 3.0

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 129
10.1

Adhering to Industry Standards
R

Xilinx does not support SystemVerilog. For more information, contact the Xilinx EDA
partners listed in the following Appendixes for their SystemVerilog roadmaps:

• Appendix A, “Simulating Xilinx Designs in Modelsim”

• Appendix B, “Simulating Xilinx Designs in NCSIM”

• Appendix C, “Simulating Xilinx Designs in Synopsys VCS-MX and VCS-MXi”

Xilinx Supported Simulators and Operating Systems
Xilinx supports the simulators and operating systems shown in Table 6-3, “Xilinx
Supported Simulators and Operating Systems,” for VHDL and Verilog simulation.

Xilinx does not support the UNIX OS.

In general, you should run the most current version of the simulator.

Since Xilinx develops its libraries and simulation netlists using IEEE standards, you should
be able to use most current VHDL and Verilog simulators. Check with your simulator
vendor to confirm that the standards are supported by your simulator, and to verify the
settings for your simulator.

Table 6-3: Xilinx Supported Simulators and Operating Systems

Simulator

R
H

 L
in

u
x

R
H

 L
in

u
x-64

S
u

S
e L

in
u

x

S
u

S
e L

in
u

x-64

W
in

d
o

w
s X

P

W
in

d
ow

s X
P

-64

W
in

d
ow

s V
ista

W
in

d
ow

s V
ista-64

ISE Simulator √ √ √ √ √ N/A √ N/A

MTI Modelsim Xilinx
Edition III (6.3c)

N/A N/A N/A N/A √ N/A N/A N/A

MTI ModelSim SE
(6.3c and newer)

√ √ √ √ √ N/A N/A N/A

MTI Modelsim PE,
(6.3c and newer)

N/A N/A N/A √ √ N/A N/A N/A

Cadence NC-Verilog
6.1 and newer)

√ √ √ √ N/A N/A N/A N/A

Cadence NC-VHDL
(6.1 and newer)

√ √ √ √ N/A N/A N/A N/A

Synopsys VCS-MX
(Verilog only.
Y2006.06 and newer)

√ √ * * N/A N/A N/A N/A

* SuSe 10 is not supported

Synopsys VCS-MXi
(Verilog only.
Y2006.06 and newer)

√ √ * * N/A N/A N/A N/A

* SuSe 10 is not supported

http://www.xilinx.com

130 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Xilinx Libraries
The Xilinx VHDL libraries are tied to the IEEE-STD-1076.4-2000 VITAL standard for
simulation acceleration. VITAL 2000 is in turn based on the IEEE-STD-1076-93 VHDL
language. Because of this, the Xilinx libraries must be compiled as 1076-93.

VITAL libraries include some additional processing for timing checks and back-annotation
styles. The UNISIM library turns these timing checks off for unit delay functional
simulation. The SIMPRIM back-annotation library keeps these checks on by default to
allow accurate timing simulations.

Simulation Points in HDL Design Flow
This section discusses Simulation Points in Hardware Description Language (HDL)
Design Flow, and includes:

• “About Simulation Points”

• “Register Transfer Level (RTL)”

• “Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation”

• “Post-NGDBuild (Pre-Map) Gate-Level Simulation”

• “Post-Map Partial Timing (Block Delays)”

• “Timing Simulation Post-Place and Route (Block and Net Delays)”

About Simulation Points
This section discusses About Simulation Points, and includes:

• “Primary Simulation Points for HDL Designs Diagram”

• “Five Simulation Points in HDL Design Flow”

• “VHDL Standard Delay Format (SDF) File”

• “Verilog Standard Delay Format (SDF) File”

Xilinx supports functional and timing simulation of Hardware Description Language
(HDL) designs as shown in “Five Simulation Points in HDL Design Flow.”

Primary Simulation Points for HDL Designs Diagram

Figure 6-1, “Primary Simulation Points for HDL Designs Diagram,” shows the points of
the design flow.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 131
10.1

Simulation Points in HDL Design Flow
R

The Post-NGDBuild and Post-Map simulations can be used when debugging synthesis or
map optimization issues.

Figure 6-1: Primary Simulation Points for HDL Designs Diagram
X10018

HDL RTL
Simulation

Synthesis

Xilinx
Implementation

HDL Timing
Simulation

HDL
Design

Testbench
Stimulus

Post-Synthesis Gate-Level
Functional Simulation

SIMPRIM
Library

UNISIM
Library

XilinxCoreLib
Modules

SmartModel
Libraries

SmartModel
Libraries

http://www.xilinx.com

132 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Five Simulation Points in HDL Design Flow

For more information about SecureIP, see “IP Encryption Methodology.”

Simulation Flow Libraries

The libraries required to support the simulation flows are described in detail in “VHDL
and Verilog Libraries and Models.” The flows and libraries support functional equivalence
of initialization behavior between functional and timing simulations.

Different simulation libraries support simulation before and after running NGDBuild:

• Before running NGDBuild, your design is expressed as a UNISIM netlist containing
Unified Library components that represent the logical view of the design.

• After running NGDBuild, your design is a netlist containing SIMPRIMs that represent
the physical view of the design.

Although these library changes are fairly transparent, remember that:

• You must specify different simulation libraries for pre- and post-implementation
simulation.

• There are different gate-level cells in pre- and post-implementation netlists.

VHDL Standard Delay Format (SDF) File

For VHDL, you must specify:

• The location of the Standard Delay Format (SDF) file

• Which instance to annotate during the timing simulation

The method for doing this depends on the simulator being used. Typically, a command line
or program switch is used to read the SDF file. For more information on annotating SDF
files, see your simulation tool documentation.

Table 6-4: Five Simulation Points in HDL Design Flow

UNISIM UniMacro
XilinxCore
Lib Models

SmartModel SecureIP SIMPRIM
Standard
Delay Format
(SDF)

1.“Register Transfer
Level (RTL)”

√ √ √ √ √ N/A N/A

2. “Post-Synthesis (Pre-
NGDBuild) Gate-Level
Simulation” (optional)

√ N/A N/A √ √ N/A N/A

3. “Post-NGDBuild
(Pre-Map) Gate-Level
Simulation” (optional)

N/A N/A N/A √ √ √ N/A

4. “Post-Map Partial
Timing (Block Delays)”
(optional)

N/A N/A N/A √ √ √ √

5. “Timing Simulation
Post-Place and Route
(Block and Net Delays)”

N/A N/A N/A √ √ √ √

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 133
10.1

Simulation Points in HDL Design Flow
R

Verilog Standard Delay Format (SDF) File

For Verilog, within the simulation netlist the Verilog system task $sdf_annotate
specifies the name of the Standard Delay Format (SDF) file to be read.

• If the simulator supports $sdf_annotate, the SDF file is automatically read when
the simulator compiles the Verilog simulation netlist.

• If the simulator does not support $sdf_annotate, in order to apply timing values to
the gate-level netlist, you must manually instruct the simulator to annotate the SDF
file.

Register Transfer Level (RTL)
Register Transfer Level (RTL) may include:

• RTL Code

• Instantiated UNISIM library components

• Instantiated UniMacro components

• XilinxCoreLib and UNISIM gate-level models (CORE Generator™)

• SmartModels

• SecureIP

The RTL-level (behavioral) simulation enables you to verify or simulate a description at the
system or chip level. This first pass simulation is typically performed to verify code syntax,
and to confirm that the code is functioning as intended. At this step, no timing information
is provided, and simulation should be performed in unit-delay mode to avoid the
possibility of a race condition.

RTL simulation is not architecture-specific unless the design contains instantiated UNISIM
or CORE Generator components. To support these instantiations, Xilinx provides the
UNISIM and XilinxCoreLib libraries. You can use CORE Generator components if:

• You do not want to rely on the module generation capabilities of the synthesis tool, or

• The design requires larger structures.

Keep the code behavioral for the initial design creation. Do not instantiate specific
components unless necessary. This allows for:

• More readable code

• Faster and simpler simulation

• Code portability (the ability to migrate to different device families)

• Code reuse (the ability to use the same code in future designs)

You may find it necessary to instantiate components if the component is not inferable.

Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation
Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation may include one of the following
(optional):

• Gate-level netlist containing UNISIM library components

• SmartModels

• SecureIP

http://www.xilinx.com

134 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Most synthesis tools can write out a post-synthesis HDL netlist for a design. If the VHDL
or Verilog netlists are written for UNISIM library components, you may use the netlists to
simulate the design and evaluate the synthesis results.

Caution! Xilinx does not support this method if the netlists are written in terms of the vendor's
own simulation models.

Post-NGDBuild (Pre-Map) Gate-Level Simulation
Post-NGDBuild (Pre-Map) Gate-Level Simulation (optional) may include:

• Gate-level netlist containing SIMPRIM library components

• SmartModels

• SecureIP

The post-NGDBuild (pre-map) gate-level functional simulation is used when it is not
possible to simulate the direct output of the synthesis tool. This occurs when the tool
cannot write UNISIM-compatible VHDL or Verilog netlists. In this case, the NGD file
produced from NGDBUILD is the input into the Xilinx simulation netlister, NetGen.
NetGen creates a structural simulation netlist based on SIMPRIM models.

Like post-synthesis simulation, post-NGDBuild simulation allows you to verify that your
design has been synthesized correctly, and you can begin to identify any differences due to
the lower level of abstraction. Unlike the post-synthesis pre-NGDBuild simulation, there
are Global Set/Reset (GSR) and Global Tristate (GTS) nets that must be initialized, just as
for post-Map and post-PAR simulation. For more information on using the GSR and GTS
signals for post-NGDBuild simulation, see “Global Reset and Tristate for Simulation.”

Post-Map Partial Timing (Block Delays)
Post-Map Partial Timing (Block Delays) may include the following (optional):

• Gate-level netlist containing SIMPRIM library components

• Standard Delay Format (SDF) files

• SmartModels

• SecureIP

You may also perform simulation after mapping the design. Post-Map simulation occurs
before placing and routing. This simulation includes the block delays for the design, but
not the routing delays. Since routing is not taking into consideration, the simulation results
may be inaccurate. Run this simulation as a debug step only if post-place and route
simulation shows failures.

As with the post-NGDBuild simulation, NetGen is used to create the structural simulation.
Running the simulation netlister tool, NetGen, creates a Standard Delay Format (SDF) file.
The delays for the design are stored in the SDF file which contains all block or logic delays.
It does not contain any of the routing delays for the design since the design has not yet
been placed and routed. As with all NetGen created netlists, Global Set/Reset (GSR) and
Global Tristate (GTS) signals must be accounted for. For more information on using the
GSR and GTS signals for post-NGDBuild simulation, see “Global Reset and Tristate for
Simulation.”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 135
10.1

Using Test Benches to Provide Stimulus
R

Timing Simulation Post-Place and Route (Block and Net Delays)
Timing Simulation Post-Place and Route Full Timing (Block and Net Delays) may include:

• Gate-level netlist containing SIMPRIM library components

• Standard Delay Format (SDF) files

• SmartModels

• SecureIP

After your design has completed the place and route process in the Xilinx Implementation
Tools, a timing simulation netlist can be created. You now begin to see how your design
behaves in the actual circuit. The overall functionality of the design was defined in the
beginning, but timing information can not be accurately calculated until the design has
been placed and routed.

The previous simulations that used NetGen created a structural netlist based on SIMPRIM
models. This netlist comes from the placed and routed Native Circuit Description (NCD)
file. This netlist has Global Set/Reset (GSR) and Global Tristate (GTS) nets that must be
initialized. For more information on initializing the GSR and GTS nets, see “Global Reset
and Tristate for Simulation.”

When you run timing simulation, a Standard Delay Format (SDF) file is created as with the
post-Map simulation. This SDF file contains all block and routing delays for the design.

Xilinx highly recommends running this flow. For more information, see “Importance of
Timing Simulation.”

Using Test Benches to Provide Stimulus
This section discusses Using Test Benches to Provide Stimulus, and includes:

• “About Test Benches”

• “Creating a Test Bench”

• “Test Bench Recommendations”

Before you perform simulation, create a test bench or test fixture to apply the stimulus to
the design.

About Test Benches
A test bench is Hardware Description Language (HDL) code written for the simulator that:

• Instantiates the design netlists

• Initializes the design

• Applies stimuli to verify the functionality of the design

You can also set up the test bench to display the desired simulation output to a file,
waveform, or screen.

A test bench can be simple in structure and sequentially apply stimulus to specific inputs.
A test bench can also be complex, and may include:

• Subroutine calls

• Stimulus read in from external files

http://www.xilinx.com

136 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

• Conditional stimulus

• Other more complex structures

The test bench has the following advantages over interactive simulation:

• It allows repeatable simulation throughout the design process.

• It provides documentation of the test conditions.

Creating a Test Bench
Use any of the following to create a test bench and simulate a design:

• Create a Test Bench in ISE Tools

The ISE tools create a template test bench containing the proper structure, library
references, and design instantiation based on your design files from Project Navigator.
This greatly eases test bench development at the beginning stages of the design.

• Create a Test Bench in Waveform Editor

You may use Waveform Editor to automatically create a test bench by drawing the
intended stimulus and the expected outputs in a waveform viewer. For more
information, see the ISE help and the ISE Simulator help.

• Create a Test Bench in NetGen

You can use NetGen to create a test bench file. The -tb switch for NetGen creates a
test fixture or test bench template. The Verilog test fixture file has a .tv extension. The
VHDL test bench file has a .tvhd extension.

Test Bench Recommendations
Xilinx recommends the following when you create and run a test bench:

• Give the name testbench to the main module or entity name in the test bench file.
Always specify the `timescale in Verilog testbench files.

• Specify the instance name for the instantiated top-level of the design in the test bench
as UUT.

These names are consistent with the default names used by ISE for calling the test
bench and annotating the Standard Delay Format (SDF) file when invoking the
simulator.

• Initialize all inputs to the design within the test bench at simulation time zero in order
to properly begin simulation with known values.

• Apply stimulus data after 100 ns in order to account for the default Global Set/Reset
pulse used in SIMPRIM-based simulation. The clock source should begin before the
Global Set/Reset (GSR) is released. For more information, see “Global Reset and
Tristate for Simulation.”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 137
10.1

VHDL and Verilog Libraries and Models
R

VHDL and Verilog Libraries and Models
This section discusses VHDL and Verilog Libraries and Models, and includes:

• “Required Simulation Point Libraries”

• “Simulation Phase Library Information”

• “Library Source Files and Compile Order”

Required Simulation Point Libraries
The five simulation points require the following libraries:

• UNISIM

• UniMacro

• CORE Generator (XilinxCoreLib)

• SmartModel

• SecureIP

• SIMPRIM

The libraries required for each of the five simulation points are:

• “First Simulation Point: Register Transfer Level (RTL)”

• “Second Simulation Point: Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation”

• “Third Simulation Point: Post-NGDBuild (Pre-Map) Gate-Level Simulation”

• “Fourth Simulation Point: Post-Map Partial Timing (Block Delays)”

• “Fifth Simulation Point: Timing Simulation Post-Place and Route (Block and Net
Delays)”

First Simulation Point: Register Transfer Level (RTL)

The first point, “Register Transfer Level (RTL),” is a behavioral description of your design
at the register transfer level. RTL simulation is not architecture-specific unless your design
contains instantiated UNISIM, or CORE Generator components.

To support these instantiations, Xilinx provides the following libraries:

• Unisim UniMacro

• CORE Generator Behavioral XilinxCoreLib

• SecureIP

• SmartModel

Second Simulation Point: Post-Synthesis (Pre-NGDBuild) Gate-Level
Simulation

The second simulation point is “Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation.”

The synthesis tool must write out the HDL netlist using UNISIM primitives. Otherwise,
the synthesis vendor provides its own post-synthesis simulation library, which is not
supported by Xilinx. If there is IP in the design that is a blackbox for the synthesis tools,
ngcbuild must run before netgen. Ngcbuild combines all the ngc and EDIF files into
a single ngc; netgen can be then run on this ngc file. For more information on running

http://www.xilinx.com

138 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

ngcbuild, see the NGCBUILD chapter in the Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

Third Simulation Point: Post-NGDBuild (Pre-Map) Gate-Level Simulation

The third simulation point is “Post-NGDBuild (Pre-Map) Gate-Level Simulation.” This
simulation point requires the SIMPRIM and SmartModel Libraries.

Fourth Simulation Point: Post-Map Partial Timing (Block Delays)

The fourth simulation point is “Post-Map Partial Timing (Block Delays).” This simulation
point requires the SIMPRIM and SmartModel Libraries.

Fifth Simulation Point: Timing Simulation Post-Place and Route
(Block and Net Delays)

The fifth simulation point is “Timing Simulation Post-Place and Route (Block and Net
Delays).” This simulation point requires the SIMPRIM and SmartModel Libraries.

Simulation Phase Library Information
Table 6-5, “Simulation Phase Library Information,”shows the library required for each of
the five simulation points.

Table 6-5: Simulation Phase Library Information

Simulation Point Compilation Order of Library Required

“First Simulation Point: Register Transfer Level (RTL)” UNISIM

UniMacro

XilinxCoreLib

SmartModel/SecureIP

“Second Simulation Point: Post-Synthesis (Pre-NGDBuild)
Gate-Level Simulation”

UNISIM

UniMacro

SmartModel/SecureIP

“Third Simulation Point: Post-NGDBuild (Pre-Map) Gate-
Level Simulation”

SIMPRIM

SmartModel

“Fourth Simulation Point: Post-Map Partial Timing (Block
Delays)”

SIMPRIM

SmartModel/SecureIP

“Fifth Simulation Point: Timing Simulation Post-Place and
Route (Block and Net Delays)”

SIMPRIM

SmartModel/SecureIP

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 139
10.1

VHDL and Verilog Libraries and Models
R

Library Source Files and Compile Order
This section discusses Library Source Files and Compile Order and includes:

• Table 6-6, “Simulation Library VITAL VHDL Location of Source Files,” the location of
the simulation library VITAL VHDL source files

• Table 6-7, “Simulation Library VITAL VHDL Required Compile Order,” the required
compile order for VITAL VHDL source files

• Table 6-8, “Simulation Library Verilog Source Files,” the location of the simulation
library Verilog source files

Xilinx recommends using compxlib for compiling libraries. New libraries such as
unimacro and secureip are handled automatically by compxlib. The ordering for new
libraries is very complex, and is accordingly not listed in the following tables:

• Table 6-6, “Simulation Library VITAL VHDL Location of Source Files”

• Table 6-7, “Simulation Library VITAL VHDL Required Compile Order”

• Table 6-8, “Simulation Library Verilog Source Files”

Simulation Library VITAL VHDL Files

Note: Compilation order is required for all VITAL VHDL source files.

Table 6-6: Simulation Library VITAL VHDL Location of Source Files

Libraries Unix/Linux Windows

UNISIM
Spartan-II
Spartan-IIE
Spartan-3
Spartan-3E
Virtex
Virtex-E
Virtex-II
Virtex-II Pro
Virtex-4
Virtex-5
Xilinx IBM
FPGA Core

$XILINX/vhdl/src/unisims %XILINX%\vhdl\src\unisims

UNISIM 9500
CoolRunner
CoolRunner-II

$XILINX/vhdl/src/unisims %XILINX%\vhdl\src\unisims

XilinxCoreLib
FPGA Families
only

$XILINX/vhdl/src/XilinxCoreLib %XILINX%\vhdl\src\XilinxCoreLib

SmartModel
Virtex-II Pro
Virtex-4
Virtex-5

$XILINX/smartmodel/<platform>/wrappers/<simulator> %XILINX%\smartmodel\<platform>\wrappers\<simulator>

SIMPRIM
(All Xilinx
Technologies)

$XILINX/vhdl/src/simprims %XILINX%\vhdl\src\simprims

http://www.xilinx.com

140 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Table 6-7: Simulation Library VITAL VHDL Required Compile Order

Libraries Compile Order

• UNISIM
• Spartan-II
• Spartan-IIE
• Spartan-
• Spartan-3E
• Virtex
• Virtex-E
• Virtex-II
• Virtex-II Pro
• Virtex-4
• Virtex-5
• Xilinx IBM FPGA Core

• unisim_VCOMP.vhd
• unisim_VPKG.vhd
• unisim_VITAL.vhd

• UNISIM 9500
• CoolRunner
• CoolRunner-II

• unisim_VCOMP.vhd
• unisim_VPKG.vhd
• unisim_VITAL.vhd

• XilinxCoreLib FPGA Families
only

For the required compile order, see vhdl_analyze_order located in the source
files directory

• SmartModel
• Virtex-II Pro
• Virtex-4
• Virtex-5

• Functional Simulation
• unisim_VCOMP.vhd
• smartmodel_wrappers. vhd
• unisim_SMODEL.vhd
• Timing Simulation
• simprim_Vcomponents.vhd
• simprim_Vcomponents _mti.vhd (MTI only)
• smartmodel_wrappers.vhd
• simprim_SMODEL.vhd
• simprim_SMODEL_mti.vhd (MTI only)

• SIMPRIM
(All Xilinx Technologies)

• simprim_Vcomponents.vhd
• simprim_Vcomponents _mti.vhd (MTI only)
• simprim_Vpackage_mt i.vhd (MTI only)
• simprim_Vpackage.vhd
• simprim_VITAL.vhd
• simprim_VITAL_mti.vhd (MTI only)

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 141
10.1

VHDL and Verilog Libraries and Models
R

Simulation Library Verilog Files

No special compilation order is required for Verilog libraries

Simulation Libraries
This section discusses Simulation Libraries, and includes:

• “UNISIM Library”

• “VHDL UNISIM Library”

• “Verilog UNISIM Library”

• “UniMacro Library”

• “VHDL UniMacro Library”

• “Verilog UniMacro Library”

• “CORE Generator XilinxCoreLib Library”

• “SIMPRIM Library”

• “SmartModel Libraries”

• “SecureIP Libraries”

Table 6-8: Simulation Library Verilog Source Files

Libraries Location of Source Files (Unix/Linux) Location of Source Files (Windows)

• UNISIM
• Spartan-II,

Spartan-IIE
• Spartan-3,

Spartan-3E
• Virtex, Virtex-E
• Virtex-II, Virtex-II

Pro
• Virtex-4, Virtex-5
• Xilinx IBM FPGA

Core

$XILINX/verilog/src/unisims %XILINX%\verilog\src\unisims

• UNISIM 9500
• CoolRunner
• CoolRunner-II

$XILINX/verilog/src/uni9000 %XILINX%\verilog\src\uni9000

• XilinxCoreLib
FPGA Families
only

$XILINX/verilog /src/XilinxCoreLib %XILINX%\verilog\src\XilinxCoreLib

• SmartModel
• Virtex-II Pro
• Virtex-4
• Virtex-5

$XILINX/ smartmodel/<platform>/ wrappers/<simulator> %XILINX%\smartmodel\<platform>\wrappers\<simulator>

• SIMPRIM
(All Xilinx
Technologies)

$XILINX/verilog/src/simprims %XILINX%\verilog\src\simprims

http://www.xilinx.com

142 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

• “VHDL SecureIP Library”

• “Verilog SecureIP Library”

• “Xilinx Simulation Libraries (COMPXLIB)”

UNISIM Library

The UNISIM Library is used for functional simulation and synthesis only. This library
includes:

• All Xilinx Unified Library primitives that are inferred by most synthesis tools

• Primitives that are commonly instantiated, such as DCMs, BUFGs, and MGTs

You should infer most design functionality using behavioral Register Transfer Level (RTL)
code unless:

• The desired component is not inferable by your synthesis tool, or

• You want to take manual control of mapping and placement of a function

VHDL UNISIM Library

The VHDL UNISIM library is split into four files containing:

• The component declarations (unisim_VCOMP.vhd)

• Package files (unisim_VPKG.vhd)

• Entity and architecture declarations (unisim_VITAL.vhd)

• SmartModel declarations (unisim_SMODEL.vhd)

All primitives for all Xilinx device families are specified in these files. To use these
primitives, place the following two lines at the beginning of each file:

Library UNISIM;
use UNISIM.vcomponents.all;

Verilog UNISIM Library

For Verilog, each library component is specified in a separate file. This allows automatic
library expansion using the -y library specification switch. All Verilog module names and
file names are all upper case. For example, module BUFG is BUFG.v, and module IBUF is
IBUF.v. Since Verilog is case-sensitive, make sure that all UNISIM primitive instantiations
adhere to this upper-case naming convention.

If you are using pre-compiled libraries, use the correct directive to point to the
precompiled libraries. Following is an example for Modelsim:

-L unisims_ver

UniMacro Library

The UniMacro library:

• Is used for functional simulation only.

• Provides macros to aid the instantiation of complex Xilinx primitives.

• Is an abstraction of the primitives in the unsim library. The synthesis tools
automatically expand the unimacros to their underlying primitives.

For more information, see the Xilinx Libraries Guides at
http://www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 143
10.1

VHDL and Verilog Libraries and Models
R

VHDL UniMacro Library

To use these macros, place the following two lines at the beginning of each file, in addition
to the unisim declarations:

Library UNIMACRO;
use UNIMACRO.vcomponents.all

Verilog UniMacro Library

For Verilog, each macro component is specified in a separate file. This allows automatic
library expansion using the -y library specification switch. All Verilog module names and
file names are all upper case. Since Verilog is case-sensitive, make sure that all UniMacro
instantiations adhere to this upper-case naming convention.

If you are using pre-compiled libraries, use the correct directive to point to the
precompiled libraries. Following is an example for Modelsim:

-L unimacro_ver

CORE Generator XilinxCoreLib Library

The Xilinx CORE Generator is a graphical intellectual property (IP) design tool for creating
high-level modules such as:

• FIR Filters

• FIFOs

• CAMs

• Other advanced IP

You can customize and pre-optimize modules to take advantage of the inherent
architectural features of Xilinx FPGA devices, such as:

• Block multipliers

• SRLs

• Fast carry logic

• On-chip single-port RAM

• On-chip dual-port RAM

You can also select the appropriate HDL model type as output to integrate into your HDL
design.

The CORE Generator HDL library models are used for Register Transfer Level (RTL)
simulation.

SIMPRIM Library

The SIMPRIM library is used for the following simulations:

• Post Ngdbuild (gate level functional)

• Post-Map (partial timing)

• Post-Place-and-Route (full timing)

The SIMPRIM library is architecture independent.

http://www.xilinx.com

144 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

SmartModel Libraries

If you are using ISE Simulator, there is no need to set up SmartModels. The HARD IP
Blocks in these devices is fully supported in ISE Simulator without any additional setup
steps needed. If you are using Modelsim 6.3c and above with Virtex-5 devices, you do not
need to set up SmartModels. For more information, see “IP Encryption Methodology.”.

The SmartModel Libraries are used to model complex functions of modern FPGA devices
such as the PowerPC™ and the RocketIO™. SmartModels are encrypted source files that
communicate with simulators via the SWIFT interface.

The SmartModel Libraries require additional installation steps to properly install on your
system. Additional setup within the simulator may also be required. For more information
on how to install and set up the SmartModel Libraries, see “Using SmartModels.”

SecureIP Libraries

HARD IP Blocks are fully supported in ISE Simulator without additional setup. If you are
using Modelsim 6.3c and above with Virtex-5 devices, you do not need to set up
SmartModels. For more information, see “IP Encryption Methodology.”

VHDL SecureIP Library

If you are using VHDL for your design entry, a mixed-language license is required to run
any Hard-IP simulation. Contact your vendor for pricing options for mixed-language
simulation.

To use SecureIP, place the following two lines at the beginning of each file:

Library UNISIM;
use UNISIM.vcomponents.all;

Verilog SecureIP Library

For Verilog, each component is specified in a separate file. This allows automatic library
expansion using the -y library specification switch.

If you are using pre-compiled libraries, use the correct directive to point to the
precompiled libraries. Following is an example for Modelsim:

-L securip

Xilinx Simulation Libraries (COMPXLIB)

Caution! Do NOT use with ModelSim XE (Xilinx Edition) or ISE Simulator.

Before beginning functional simulation, you must compile the Xilinx Simulation Libraries
for the target simulator. Xilinx provides a tool called COMPXLIB for this purpose. For
more information, see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

Reducing Simulation Runtimes
Xilinx simulation models have an optional generic/parameter (SIM_MODE) that can
reduce the simulation runtimes. SIM_MODE has two settings:

• SIM_MODE = "SAFE"

• SIM_MODE = "FAST"

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 145
10.1

VHDL and Verilog Libraries and Models
R

The different settings impact simulation support of certain features of the primitive. This
setting is supported on the following unisim primitives:

• Virtex-5 BlockRAM

• Virtex-5 FIFO

• Virtex-5 DSP Block

• Virtex-2 DCM

The tables below list the features that are not supported when using FAST mode.

Table 6-9: Virtex-5 BlockRAM features not supported when using FAST mode

Feature Description

Parameter validity checks Checks for the generics/parameters to ensure
that they are legal for the primitive in use

Cascade feature Ability to cascade multiple BlockRAMs
together

ECC feature Error checking and correction

Memory collision checks Checks to ensure that data is not being
written to and read from the same address
location

Table 6-10: Virtex-5 FIFO features not supported when using FAST mode

Feature Description

Parameter checks Checks for the generics/parameters to
ensure that they are legal for the primitive in
use

Design rule checks for reset When doing a reset, the model will not check
for correct number of reset pulses being
applied

ECC feature Error checking and correction

Table 6-11: Virtex-5 DSP Block features not supported when using FAST mode

Feature Description

DRC checks – opmode and alumode The DSP48 block has various design rule
checks for the opmode and alumode settings
that have been removed

http://www.xilinx.com

146 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

For a complete simulation, and to insure that the simulation model functions in hardware
as expected, use SAFE mode.

SIM_MODE applies to unisim - RTL simulation models only. SIM_MODE is not supported
for simprim - gate simulation models. For a simprim-based simulation, the model
performs every check at the cost of simulation runtimes.

Simulation of Configuration Interfaces
This section discusses Simulation of Configuration Interfaces and contains the following
sections:

• “JTAG Simulation”

• “SelectMAP Simulation”

• “Spartan-3AN In-System Flash Simulation”

JTAG Simulation
Simulation of the BSCAN component is supported for Virtex-4, Virtex-5, and Spartan-3A
devices. The simulation supports the interaction of the JTAG ports and some of the JTAG
operation commands. The JTAG interface, including interface to the scan chain, is not yet
fully supported. In order to simulate this interface:

1. Instantiate the BSCAN_VIRTEX4, BSCAN_VIRTEX5, or BSCAN_SPARTAN3A
component and connect it to the design.

2. Instantiate the JTAG_SIM_VIRTEX4, JTAG_SIM_VIRTEX5, or
JTAG_SIM_SPARTAN3A component into the test bench (not the design).

This becomes:

• The interface to the external JTAG signals (such as TDI, TDO, and TCK)

• The communication channel to the BSCAN component

The communication between the components takes place in the VPKG VHDL package file
or the glbl Verilog global module. Accordingly, no implicit connections are necessary
between the JTAG_SIM_VIRTEX4, JTAG_SIM_VIRTEX5, or JTAG_SIM_SPARTAN3A
component and the design, or the BSCAN_VIRTEX4, BSCAN_VIRTEX5, or
BSCAN_SPARTAN3A symbol.

Table 6-12: Virtex-2 DCM features not supported when using FAST mode

Feature Description

DUTY_CYCLE_CORRECTION setting Duty cycle correction is always enabled and
cannot be turned off

CLKIN stop checks There are checks to ensure that CLKIN and
CLKFB are not stopped for longer than a
certain period. These are disabled

CLKIN period checks CLKIN period is measured only once after the
reset, it is not always monitored

STATUS[1] and STATUS[2] This is always at 0 as CLKIN and CLKFB stop
checks are removed

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 147
10.1

Simulation of Configuration Interfaces
R

Stimulus can be driven and viewed from the JTAG_SIM_VIRTEX4, JTAG_SIM_VIRTEX5,
or JTAG_SIM_SPARTAN3A component within the test bench to understand the operation
of the JTAG/BSCAN function. Instantiation templates for both of these components are
available in both the ISE HDL Templates in Project Navigator and the Xilinx Virtex-4 and
Virtex-5 Libraries Guides at http://www.xilinx.com/support/software_manuals.htm.

SelectMAP Simulation
This section discusses SelectMAP Simulation and includes:

• “Slave SelectMAP”

• “System Level Description”

• “Debugging with the Model”

• “Supported Features”

Slave SelectMAP

The configuration simulation model allows supported configuration interfaces to be
simulated ultimately showing the DONE pin going high. This is a model of how the
supported devices will react to stimulus on the supported configuration interface. For a list
of supported interfaces and devices, see Table 6-13, “Supported Configuration Devices and
Modes.” The model is set up to handle control signal activity as well as bit file
downloading. Included are internal register settings such as the CRC, IDCODE, and Status
Registers. The Sync Word can be monitored as it enters the device and the Start Up
Sequence can be monitored as it progresses. Figure 6-3, “Block Diagram of Model
Interaction,”shows how the system should map from the hardware to the simulation
environment. The configuration process is specifically outlined in the Configuration User
Guide for each device family. These guides contain information on the configuration
sequence as well as the configuration interfaces.

Table 6-13: Supported Configuration Devices and Modes

Devices SelectMAP Serial SPI BPI

Virtex-5 Yes No No No

Spartan-3A Yes No No No

http://www.xilinx.com

148 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

System Level Description

This model simulates the entire device and is to be used at a system level. Applications
using a processor to control the configuration logic can leverage this model to ensure
proper wiring, control signal handling, and data input alignment. Applications that
control the data loading process with the CS (SelectMAP Chip Select) or CLK signal can be
tested to ensure proper data alignment. Systems that need to perform a SelectMAP Abort
or Readback can also leverage this model.

There is a zip file associated with this model at
ftp://ftp.xilinx.com/pub/documentation/misc/config_test_bench.zip. This zip file has
sample test benches simulating a processor running the SelectMAP logic. These test
benches have control logic to emulate a processor controlling the SelectMAP interface.
Features such as a full configuration, ABORT, and Readback of the IDCODE and Status
Registers are included. The host system being simulated must have a method for file
delivery as well as control signal management. These control systems should be designed
as set forth in the Configuration User Guide. This model allows the configuration interface
control logic to be tested before the hardware is available.

The model also demonstrates what is occurring inside of the device during the
configuration procedure when a bitfile is loaded into the device. During the bitfile
download, the model is processing each command and changing registers setting that
mirror the hardware changes. The CRC register can be monitored as it actively
accumulates a CRC value. The model also shows the Status Register bits being set as the
device progresses through the different states of configuration.

Debugging with the Model

This model provides an example of a correct configuration. This example can be leveraged
to assist in the debug procedure if problems are encountered. The Status Register contains
information in regards to the current status of the device and is very useful in debugging.
This register can be read out of the device via JTAG using the iMPACT software. If
problems are encountered on the board, the Status Register read from impact should be
one of the first debugging steps taken.

X-Ref Target - Figure 6-2

Figure 6-3: Block Diagram of Model Interaction

Host Controller - Input Stimulus to Model Configuration Simulation Model

IDCODE Parameter
Memory

Controller

Target FPGABit File

User
Memory

SelectMAP
Control
Logic

CCLK
Data [0-n]

RDWR

PROG_B
INIT_B

CS

Mode Pins [2:0]

1 1 0
X10194

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/documentation/misc/config_test_bench.zip

Synthesis and Simulation Design Guide www.xilinx.com 149
10.1

Simulation of Configuration Interfaces
R

Once the status register has been read, it can be mapped to the simulation. This will point
out what stage of configuration the device is in. For example, the GHIGH bit is set after the
data load if this bit has not been set the data loading did not complete. The GTW, GWE,
and DONE signals all set in BitGen that are released in the start up sequence can be
monitored.

The model also allows for error injection. The active CRC logic detects any problems if the
data load is paused and started again with any problems. Bit flips manually inserted in the
bitfile are also detected and handled just as the device would handle this error.

Supported Features

Each device-specific Configuration User Guide outlines the supported methods of
interacting with each configuration interface. This guide outlines items discussed in the
Configuration User Guides which are not supported by the model. Table 6-14, “Spartan-3A
Slave SelectMAP Features Supported by the Model,” and Table 6-15, “Virtex-5 Slave
SelectMAP Features Supported by the Model,” list features discussed in the User Guides
not supported by the model.

Readback of configuration data is not supported by the model. The model does not store
configuration data provided although a CRC value is calculated. Readback can only be
performed on specific registers to ensure a valid command sequence and signal handling
is provided to the device. The model is not intended to allow readback data files to be
produced.

Table 6-14: Spartan-3A Slave SelectMAP Features Supported by the Model

Features (Config User Guide / Software
Manual Sections) Supported

Master mode No

Daisy Chaining - Spartan-3E/Spartan-3A
Slave Parallel Daisy Chains

Yes

Daisy Chaining - Slave Parallel Daisy Chains
Using Any Modern Xilinx FPGA Family

No

SelectMAP Data Loading Yes

Continuous SelectMAP Data Loading Yes

SelectMAP Data Loading Yes

Non-Continuous SelectMAP Data Loading Yes

SelectMAP ABORT Yes

SelectMAP Reconfiguration No

SelectMAP Data Ordering Yes

Reconfiguration and MultiBoot No

Configuration CRC – CRC Checking during
Configuration

Yes

Configuration CRC – Post-Configuration
CRC

No

http://www.xilinx.com

150 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Spartan-3AN In-System Flash Simulation
This section discusses Spartan-3AN In-System Flash Simulation and includes:

• “Spartan-3AN In-System Flash Simulation Overview”

• “SPI_ACCESS Supported Commands”

• “SPI_ACCESS Memory Initialization”

• “SPI_ACCESS Attributes”

Spartan-3AN In-System Flash Simulation Overview

Spartan-3AN devices have an internal memory feature that can be used for initial
configuration, multiboot, user memory, or a combination of these. To access the memory
once the device is configured, the application loaded into the FPGA device must use a

BitGen modifications to DONE_cycle,
GTS_cycle, GWE_cycle

Yes

BitGen modifications other options from the
default value

Altering DONE, GTS, and GWE release
positions affects onlytheir timing

Table 6-15: Virtex-5 Slave SelectMAP Features Supported by the Model

Features (Config User Guide / Software
Manual Sections) Supported

Master mode No

Single Device SelectMAP Configuration Yes

Multiple Device SelectMAP Configuration Yes

Parallel Daisy Chain Yes

Ganged SelectMAP Yes

SelectMAP Data Loading Yes

SelectMAP ABORT Yes

SelectMAP Reconfiguration No

SelectMAP Data Ordering Yes

Readback and Configuration Verification Only the IDCODE and Status Registers can
be readback

Reconfiguration and MultiBoot No

Readback CRC No

BitGen modificaitons to DONE_cycle,
GTS_cycle, GWE_cycle

Altering DONE, GTS, and GWE release
positions affects only their timing

BitGen modifications other options from the
default value

No

Table 6-14: Spartan-3A Slave SelectMAP Features Supported by the Model (Cont’d)

Features (Config User Guide / Software
Manual Sections) Supported

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 151
10.1

Simulation of Configuration Interfaces
R

special design primitive called SPI_ACCESS. All data accesses to and from the ISF (In
System Flash) memory are performed using an SPI (Serial Peripheral Interface) protocol.
Neither the Spartan-3AN FPGA device itself, nor the SPI_ACCESS primitive,includes a
dedicated SPI master controller. Instead, the control logic is implemented using the
programmable logic resources of the FPGA device. The SPI_ACCESS primitive essentially
connects the FPGA device application to the In-System Flash memory array. The
simulation model allows you to test the behavior of this interface in simulation. This
interface consists of the four standard SPI connections:

• MOSI (Master Out Slave In)

• MISO (Master In Slave Out)

• CLK (Clock)

• CSB (Active-Low Chip Select)

SPI_ACCESS Supported Commands

The SPI_ACCESS simulation model supports only a subset of the total commands that can
be run in hardware. The commands that are supported in the model are shown in
Table 6-16, “SPI_ACCESS Supported Commands.” These have been tested and verified to
work in the model and on silicon. All other commands are not supported in the simulation
model, though they will work as expected in hardware and are still discussed in other
documentation. For a complete explanation of all commands, see the Xilinx Spartan-3AN
In-System Flash User Guide at http://direct.xilinx.com/bvdocs/userguides/ug333.pdf

X-Ref Target - Figure 6-4

Figure 6-5: Spartan-3AN SPI_ACCESS Connections to ISF Memory

MOSI

MISO

CSB

CLK

SPI_ACCESS
Design Primitive

User Logic

FPGA Design – Input Stimulus to Model SPI_ACCESS Simulation Model

Possible Applications:
Security Algorithm,

Flash Memory
Interface

In -System
Flash

Memory
Array

X10908

Table 6-16: SPI_ACCESS Supported Commands

Command Common Application Hex Command Code

Fast Read Reading a large block of contiguous
data, if CLK frequency is above 33
MHz

0x0B

Random Read Reading bytes from randomly-
addressed locations, all read
operations at 33 MHz or less

0x03

http://www.xilinx.com
http://direct.xilinx.com/bvdocs/userguides/ug333.pdf

152 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

SPI_ACCESS Memory Initialization

The user-created memory file used to initialize the ISF is a list of Hex bytes in ASCII
format. The file should have one ASCII coded hex byte on each line, where the number of
lines is decided by the memory size. See Table 6-17, “ISF Available Memory Size.” The file
initializes the ISF memory space.

Status Register Read Check ready/busy for programming
commands, result of compare,
protection, addressing mode, and
similar

0xD7

Information Read Read JEDEC Manufacturer and
Device ID

0x9F

Security Register Read Performs a read on the contents of the
security register.

0x77

Security Register Program Programs the User-Defined Field in the
Security Register

0x9B

Buffer Write Write data to SRAM page buffer;
when complete, transfer to ISF
memory using Buffer to Page Program
command

Buffer1- 0x84

Buffer2- 0x87 Buffer to Page Program with Built-in
Erase

First erases selected memory page and
programs page with data from
designated buffer

Buffer1- 0x83 Buffer2- 0x86 Buffer to Page Program without Built-
in Erase

Program a previously erased page
with data from designated buffer

Buffer1- 0x88 Buffer2- 0x89

Page Program Through Buffer with
Erase

Combines Buffer Write with Buffer to
Page Program with Built-in Erase
command

Buffer1- 0x82

Buffer2- 0x85 Page to Buffer Compare Verify that the ISF memory array was
programmed correctly

Buffer1- 0x60 Buffer2- 0x61 Page to Buffer Transfer

Transfers the entire contents of a
selected ISF memory page to the
specified SRAM page buffer

Buffer1- 0x53 Buffer2- 0x55

Sector Erase Erases any unprotected, unlocked
sector in the main memory

0x7C

Page Erase Erases any individual page in the ISF
memory array

0x81

Table 6-16: SPI_ACCESS Supported Commands (Cont’d)

Command Common Application Hex Command Code

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 153
10.1

Simulation of Configuration Interfaces
R

If the size of the memory in the file does not match the size of the memory for the device,
a message warns that the file is either too large or too small.

• If the initialization file is too short, the rest of the memory is filled with 0xFF.

• If the initialization file is too long, the unneeded bytes are left unused.

Table 6-17, “ISF Available Memory Size,” shows the memory size available for each of the
devices.

SPI_ACCESS Attributes

Five attributes can be set for the SPI_ACCESS component.

• “SPI_ACCESS SIM_DEVICE Attribute”

• “SPI_ACCESS SIM_USER_ID Attribute”

• “SPI_ACCESS SIM_MEM_FILE Attribute”

• “SPI_ACCESS SIM_FACTORY_ID Attribute”

• “SPI_ACCESS SIM_DELAY_TYPE Attribute”

SPI_ACCESS SIM_DEVICE Attribute

SIM_DEVICE defines which Spartan-3AN device you are using. This allows the proper SPI
Flash size to be set. SIM_DEVICE is required

SPI_ACCESS SIM_USER_ID Attribute

SIM_USER_ID is used in simulation to initialize the User-Defined Field of the Security
Register. In hardware, it can be programmed with any value at any time. This field is one-
time programmable (OTP). The default delivered state is erased, and all locations are 0xFF.
SIM_USER_ID is a 512 bit reg in Verilog and a 512 bit bit_vector in VHDL with the exact
hex values you want in simulation. Bit 511 is the first bit out of the user portion of the
security register. Bit 0 is the last bit out of the user portion of the security register.

SPI_ACCESS SIM_MEM_FILE Attribute

SIM_MEM_FILE specifies the file and directory name of the memory initialization file. For
more information, see “SPI_ACCESS Memory Initialization.”

SPI_ACCESS SIM_FACTORY_ID Attribute

SIM_FACTORY_ID is used for simulation purposes only. SIM_FACTORY_ID allows you
to set a unique value to the Unique Identifier portion of the security register. This value is
read back by sending an Information Read command. The default for the Factory ID is all
ones.

Table 6-17: ISF Available Memory Size

Device ISF Memory Bits
Available User

Memory (Bytes)
Lines in Initialization

File

3S50AN 1M + 135,168 135,168

3S200AN 4M + 540,672 540,672

3S400AN 4M + 540,672 540,672

3S700AN 8M + 1,081,344 1,081,344

3S1400AN 16M + 2,162,688 2,162,688

http://www.xilinx.com

154 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

In simulation, the FACTORY_ID can be written only once. As soon as a value other than
one is detected in the factory ID, no further writing is allowed.

In the hardware, each individual device has a unique factory programmed ID in this field.
It cannot be reprogrammed or erased.

SPI_ACCESS SIM_DELAY_TYPE Attribute

SIM_DELAY_TYPE is used to scale the chip delays down to more reasonable values for
simulation. If SIM_DELAY_TYPE is set to ACCURATE, the model enforces the real timing
specifications such as five (5) seconds for sector erase. If SIM_DELAY_TYPE is set to
SCALED, it enforces much shorter time delays which are scaled back for faster simulation
runtimes. The device behavior is not affected.

Table 6-18: SPI_ACCESS Available Attributes

Attribute Type Allowed Values Default Description

SIM_DEVICE String “3S50AN”,
“3S200AN”,
“3S400AN”,
“3S700AN” or
“3S1400AN”

“3S1400AN” Specifies the target
device so that the
proper size SPI
Memory is used. This
attribute should be
modified to match the
device under test.

SIM_USER_ID 64-byte Hex Value Any 64-byte hex
value

All locations default
to 0xFF

Specifies the
programmed USER
ID in the Security
Register for the SPI
Memory

SIM_MEM_FILE String Specified file and
directory name

“NONE” Optionally specifies a
hex file containing the
initialization memory
content for the SPI
Memory

SIM_FACTORY_ID 64-byte Hex Value Any 64-byte Hex
Value

All locations default
to 0xFF

Specifies the Unique
Identifier value in the
Security Register for
simulation purposes
(the actual HW value
will be specific to the
particular device
used).

SIM_DELAY_TYPE String “ACCURATE”,
“SCALED”

“SCALED” Scales down some
timing delays for
faster simulation run.
“ACCURATE” =
timing and delays
consistent with
datasheet specs.
“SCALED” = timing
numbers scaled back
to run faster
simulation, behavior
not affected.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 155
10.1

Disabling BlockRAM Collision Checks for Simulation
R

For more information on using the SPI_ACCESS primitive, see the Xilinx Libraries Guides at
http://www.xilinx.com/support/software_manuals.htm.

Disabling BlockRAM Collision Checks for Simulation
This section discusses Disabling BlockRAM Collision Checks for Simulation, and includes:

• “About Disabling BlockRAM Collision Checks for Simulation”

• “SIM_COLLISION_CHECK Strings”

About Disabling BlockRAM Collision Checks for Simulation
Xilinx block RAM memory is a true dual-port RAM where both ports can access any
memory location at any time. Be sure that the same address space is not accessed for
reading and writing at the same time. This will cause a block RAM address collision. These
are valid collisions, since the data that is read on the read port is not valid. In the hardware,
the value that is read might be the old data, the new data, or a combination of the old data
and the new data. In simulation, this is modeled by outputting X since the value read is
unknown. For more information on block RAM collisions, see the device user guide.

In certain applications, this situation cannot be avoided or designed around. In these cases,
the block RAM can be configured not to look for these violations. This is controlled by the
generic (VHDL) or parameter (Verilog) SIM_COLLISION_CHECK in all the Xilinx block
RAM primitives.

SIM_COLLISION_CHECK Strings
Use the strings shown in Table 6-19, “SIM_COLLISION_CHECK Strings,” to control what
happens in the event of a collision.

SIM_COLLISION_CHECK can be applied at an instance level. This enables you to change
the setting for each block RAM instance.

Table 6-19: SIM_COLLISION_CHECK Strings

String
Write Collision

Messages
Write Xs on the Output

ALL Yes Yes

WARNING_ONLY Yes No (Applies only at the time of collision. Subsequent reads of the
same address space may produce Xs on the output.)

GENERATE_X_ONLY No Yes

None No No (Applies only at the time of collision. Subsequent reads of the
same address space may produce Xs on the output.)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

156 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Global Reset and Tristate for Simulation
This section discusses Global Reset and Tristate for Simulation, and includes:

• “About Global Reset and Tristate for Simulation”

• “Using Global Tristate (GTS) and Global Set/Reset (GSR) Signals in an FPGA Device”

• “Global Set/Reset (GSR) and Global Tristate (GTS) in Verilog”

About Global Reset and Tristate for Simulation

Xilinx FPGA devices have dedicated routing and circuitry that connects to every register in
the device. The dedicated global Global Set/Reset (GSR) net is asserted, and is released
during configuration immediately after the device is configured. All the flip-flops and
latches receive this reset, and are either set or reset, depending on how the registers are
defined.

Although you can access the GSR net after configuration, Xilinx does not recommend
using the GSR circuitry in place of a manual reset. This is because the FPGA devices offer
high-speed backbone routing for high fanout signals such as a system reset. This backbone
route is faster than the dedicated GSR circuitry, and is easier to analyze than the dedicated
global routing that transports the GSR signal.

In back-end simulations, a GSR signal is automatically pulsed for the first 100 ns to
simulate the reset that occurs after configuration. A GSR pulse can optionally be supplied
in front end functional simulations, but is not necessary if the design has a local reset that
resets all registers. When you create a test bench, remember that the GSR pulse occurs
automatically in the back-end simulation. This holds all registers in reset for the first 100 ns
of the simulation.

In addition to the dedicated global GSR, all output buffers are set to a high impedance state
during configuration mode with the dedicated Global Tristate (GTS) net. All general-
purpose outputs are affected whether they are regular, tristate, or bi-directional outputs
during normal operation. This ensures that the outputs do not erroneously drive other
devices as the FPGA device is configured.

In simulation, the GTS signal is usually not driven. The circuitry for driving GTS is
available in the back-end simulation and can be optionally added for the front end
simulation, but the GTS pulse width is set to 0 by default.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 157
10.1

Design Hierarchy and Simulation
R

Using Global Tristate (GTS) and Global Set/Reset (GSR)
Signals in an FPGA Device

Figure 6-6, “Built-in FPGA Initialization Circuitry Diagram,” shows how Global Tristate
(GTS) and Global Set/Reset (GSR) signals are used in an FPGA device.

Global Set/Reset (GSR) and Global Tristate (GTS) in Verilog
The Global Set/Reset (GSR) and Global Tristate (GTS) signals are defined in the
$XILINX/verilog/src/glbl.v module.

The glbl.v module connects the global signals to the design, which is why it is necessary
to compile this module with the other design files and load it along with the design.v file
and the testfixture.v file for simulation.

In most cases, GSR and GTS need not be defined in the test bench. The glbl.v file declares
the global GSR and GTS signals and automatically pulses GSR for 100 ns. This is all that is
necessary for back-end simulations, and is usually all that is necessary for functional
simulations.

Design Hierarchy and Simulation
This section discusses Design Hierarchy and Simulation, and includes:

• “Advantages of Hierarchy”

• “Improving Design Utilization and Performance”

• “Good Design Practices”

• “Maintaining the Hierarchy”

Figure 6-6: Built-in FPGA Initialization Circuitry Diagram

X8352

User
Programmable
Latch/Register

Global Tri-State
(GTS)

User OutputI/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

General Purpose

I/Os Used for
Initialization

GTS

GSR

User
Async.
Reset Global

Set/Reset
(GSR)

Initialization
Controller

User
Programmable

Logic
Resources

QD

CLR
C

CE

http://www.xilinx.com

158 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Advantages of Hierarchy
Hierarchy:

• Makes the design easier to read

• Makes the design easier to re-use

• Allows partitioning for a multi-engineer team

• Improves verification

Improving Design Utilization and Performance
To improve design utilization and performance, the synthesis tool or the Xilinx®
implementation tools often flatten or modify the design hierarchy. After this flattening and
restructuring of the design hierarchy in synthesis and implementation, it may become
impossible to reconstruct the hierarchy.

As a result, much of the advantage of using the original design hierarchy in Register
Transfer Level (RTL) verification is lost in back-end verification. In order to improve
visibility of the design for back-end simulation, the Xilinx design flow allows for retention
of the original design hierarchy.

To preserve the design hierarchy through implementation with little or no degradation in
performance or increase in design resources:

• Follow stricter design rules.

• Carefully select the design hierarchy so that optimization is not necessary across the
design hierarchy.

Good Design Practices
Some good design practices to follow are:

• Register all outputs exiting a preserved entity or module.

• Do not allow critical timing paths to span multiple entities or modules.

• Keep related or possibly shared logic in the same entity or module.

• Place all logic that is to be placed or merged into the I/O (such as IOB registers,
tristate buffers, and instantiated I/O buffers) in the top-level module or entity for the
design. This includes double-data rate registers used in the I/O.

• Manually duplicate high-fanout registers at hierarchy boundaries if improved timing
is necessary.

Maintaining the Hierarchy
This section discusses Maintaining the Hierarchy, and includes:

• “Instructing the Synthesis Tool to Maintain the Hierarchy”

• “Using the KEEP_HIERARCHY Constraint to Maintain the Hierarchy”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 159
10.1

Design Hierarchy and Simulation
R

Instructing the Synthesis Tool to Maintain the Hierarchy

To maintain the entire hierarchy (or specified parts of the hierarchy) during synthesis, you
must first instruct the synthesis tool to preserve hierarchy for all levels (or for each selected
level of hierarchy). This may be done with:

• A global switch

• A compiler directive in the source files

• A synthesis command

For more information on how to retain hierarchy, see your synthesis tool documentation.

After taking the necessary steps to preserve hierarchy, and properly synthesizing the
design, the synthesis tool creates a hierarchical implementation file (Electronic Data
Interchange Format (EDIF) or NGC) that retains the hierarchy.

Using the KEEP_HIERARCHY Constraint to Maintain the Hierarchy

Before implementing the design with the Xilinx software, place a “KEEP_HIERARCHY”
constraint on each instance in the design in which the hierarchy is to be preserved.
“KEEP_HIERARCHY” tells the Xilinx software which parts of the design should not be
flattened or modified to maintain proper hierarchy boundaries.

“KEEP_HIERARCHY” may be passed in the source code as an attribute, as an instance
constraint in the Netlist Constraints File (NCF) or User Constraints File (UCF), or may be
automatically generated by the synthesis tool. For more information, see your synthesis
tool documentation.

After the design is mapped, placed, and routed, run NetGen using the following
parameters to properly back-annotate the hierarchy of the design.

netgen -sim -ofmt {vhdl|verilog}design_name.ncd netlist_name

This is the NetGen default when you use ISE or XFLOW to generate the simulation files. It
is necessary to know this only if you plan to execute NetGen outside of ISE or XFLOW, or
if you have modified the default options in ISE or XFLOW. When you run NetGen in the
preceding manner, all hierarchy that was specified to “KEEP_HIERARCHY” is
reconstructed in the resulting VHDL or Verilog netlist.

NetGen can write out a separate netlist file and Standard Delay Format (SDF) file for each
level of preserved hierarchy. This capability allows for full timing simulation of individual
portions of the design, which in turn allows for:

• Greater test bench re-use

• Team-based verification methods

• The potential for reduced overall verification times

Use the –mhf switch to produce individual files for each “KEEP_HIERARCHY” instance
in the design. You can also use the –mhf switch together with the –dir switch to place all
associated files in a separate directory.

netgen -sim -ofmt {vhdl|verilog} -mhf -dir

directory_name design_name.ncd

When you run NetGen with the –mhf switch, NetGen produces a text file called
design_mhf_info.txt. The design_mhf_info.txt file lists all produced module
and entity names, their associated instance names, Standard Delay Format (SDF) files, and
sub modules. The design_mhf_info.txt file is useful for determining proper

http://www.xilinx.com

160 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

simulation compile order, SDF annotation options, and other information when you use
one or more of these files for simulation.

Example mhf_info.txt File

Following is an example of an mhf_info.txt file for a VHDL produced netlist:

// Xilinx design hierarchy information file produced by netgen (K.31)
// The information in this file is useful for
// - Design hierarchy relationship between modules
// - Bottom up compilation order (VHDL simulation)
// - SDF file annotation (VHDL simulation)
//
// Design Name : stopwatch
//
// Module : The name of the hierarchical design module.
// Instance : The instance name used in the parent module.
// Design File : The name of the file that contains the module.
// SDF File : The SDF file associated with the module.
// SubModule : The sub module(s) contained within a given module.
// Module, Instance : The sub module and instance names.

 Module : hex2led_1
 Instance : msbled
 Design File : hex2led_1_sim.vhd
 SDF File : hex2led_1_sim.sdf
 SubModule : NONE

 Module : hex2led
 Instance : lsbled
 Design File : hex2led_sim.vhd
 SDF File : hex2led_sim.sdf
 SubModule : NONE

 Module : smallcntr_1
 Instance : lsbcount
 Design File : smallcntr_1_sim.vhd
 SDF File : smallcntr_1_sim.sdf
 SubModule : NONE

 Module : smallcntr
 Instance : msbcount
 Design File : smallcntr_sim.vhd
 SDF File : smallcntr_sim.sdf
 SubModule : NONE

 Module : cnt60
 Instance : sixty
 Design File : cnt60_sim.vhd
 SDF File : cnt60_sim.sdf
 SubModule : smallcntr, smallcntr_1
 Module : smallcntr, Instance : msbcount
 Module : smallcntr_1, Instance : lsbcount

 Module : decode
 Instance : decoder
 Design File : decode_sim.vhd
 SDF File : decode_sim.sdf
 SubModule : NONE

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 161
10.1

Register Transfer Level (RTL) Simulation Using Xilinx Libraries
R

 Module : dcm1
 Instance : Inst_dcm1
 Design File : dcm1_sim.vhd
 SDF File : dcm1_sim.sdf
 SubModule : NONE

 Module : statmach
 Instance : MACHINE
 Design File : statmach_sim.vhd
 SDF File : statmach_sim.sdf
 SubModule : NONE

 Module : stopwatch
 Design File : stopwatch_timesim.vhd
 SDF File : stopwatch_timesim.sdf
 SubModule : statmach, dcm1, decode, cnt60, hex2led, hex2led_1
 Module : statmach, Instance : MACHINE
 Module : dcm1, Instance : Inst_dcm1
 Module : decode, Instance : decoder
 Module : cnt60, Instance : sixty
 Module : hex2led, Instance : lsbled
 Module : hex2led_1, Instance : msbled

Hierarchy created by generate statements may not match the original simulation due to
naming differences between the simulator and synthesis engines for generated instances.

Register Transfer Level (RTL) Simulation Using Xilinx Libraries
This section discusses Register Transfer Level (RTL) Simulation Using Xilinx Libraries, and
includes:

• “Simulating Xilinx Libraries”

• “Delta Cycles and Race Conditions”

• “Recommended Simulation Resolution”

Simulating Xilinx Libraries
Xilinx simulation libraries can be simulated using any simulator that supports the VHDL-
93 and Verilog-2001 language standards. Certain delay and modelling information is built
into the libraries, which is required to correctly simulate the Xilinx hardware devices.

Do not change data signals at clock edges, even for functional simulation. The simulators
add a unit delay between the signals that change at the same simulator time. If the data
changes at the same time as a clock, it is possible that the data input will be scheduled by
the simulator to occur after the clock edge. The data will not go through until the next clock
edge, although it is possible that the intent was to have the data clocked in before the first
clock edge. To avoid such unintended simulation results, do not switch data signals and
clock signals simultaneously.

Delta Cycles and Race Conditions
All Xilinx-supported simulators are event-based simulators. Event-based simulators can
process multiple events at a given simulation time. While these events are being processed,
the simulator may not advance the simulation time. This time is commonly referred to as
delta cycles. There can be multiple delta cycles in a given simulation time. Simulation time

http://www.xilinx.com

162 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

is advanced only when there are no more transactions to process. For this reason,
simulators may give unexpected results. The following VHDL coding example shows how
an unexpected result can occur.

VHDL Coding Example With Unexpected Results

clk_b <= clk;
clk_prcs : process (clk)
begin
 if (clk'event and clk='1') then
 result <= data;
 end if;
end process;

clk_b_prcs : process (clk_b)
begin
 if (clk_b'event and clk_b='1') then
 result1 <= result;
 end if;
end process;

In this example, there are two synchronous processes:

• clk

• clk_b

The simulator performs the clk <= clk_b assignment before advancing the simulation
time. As a result, events that should occur in two clock edges will occur instead in one clock
edge, causing a race condition.

Recommended ways to introduce causality in simulators for such cases include:

• Do not change clock and data at the same time. Insert a delay at every output.

• Be sure to use the same clock.

• Force a delta delay by using a temporary signal as follows:

clk_b <= clk;
clk_prcs : process (clk)
begin
 if (clk'event and clk='1') then
 result <= data;
 result_temp <= result;
 end if;
end process;

clk_b_prcs : process (clk_b)
begin
 if (clk_b'event and clk_b='1') then
 result1 <= result_temp;
 end if;
end process;

Almost every event-based simulator can display delta cycles. Use this to your advantage
when debugging simulation issues.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 163
10.1

Generating Gate-Level Netlist (Running NetGen)
R

Recommended Simulation Resolution
Xilinx recommends that you run simulations using a resolution of 1 ps. Some Xilinx
primitive components, such as DCM, require a 1 ps resolution in order to work properly in
either functional or timing simulation.

There is no simulator performance gain by using coarser resolution with the Xilinx
simulation models. Since much simulation time is spent in delta cycles, and delta cycles are
not affected by simulator resolution, no significant simulation performance can be
obtained.

Xilinx recommends that you not run at a finer resolution such as fs. Some simulators may
round the numbers, while other simulators may truncate the numbers.

Picosecond is used as the minimum resolution since all testing equipment can measure
timing only to the nearest picosecond resolution. Xilinx strongly recommends using ps for
all Hardware Description Language (HDL) simulation purposes.

IP Encryption Methodology
Xilinx leverages the latest encryption methodology as specified in Verilog LRM - IEEE Std
1364™-2005. Virtex-5 simulation models for the Hard-IP such as PowerPC, MGT, and PCIe
leverages this technology. Since this standard is relatively new, simulator vendor support
is currently limited.

Xilinx supports the following simulators for this methodology:

• Mentor Graphics Modelsim 6.3c and above

• Mentor Graphics QuestaSim 6.3c and above

Everything is automatically handled by means of Compxlib, provided the appropriate
version of the simulator is present on your computer. When running a simulation with this
new methodology in Verilog, you must reference the following library:

secureip

For most simulators, this can be done by using the -L switch as an argument to the
simulator, such as -L secureip. For more information, see “SecureIP Libraries.”

For the switch to use with your simulator, see your simulator documentation.

Caution! If using VHDL as the design entry, a mixed-language license is required to run any
Hard-IP simulation using this new IP Encryption Methodology

Generating Gate-Level Netlist (Running NetGen)
NetGen can create a verification netlist file from your design files. You can create a timing
simulation netlist as follows:

• Running NetGen from Project Navigator

For information on creating a back-annotated simulation netlist in Project Navigator,
see the ISE Help.

• Running NetGen from XFLOW

To display the available options for XFLOW, and for a complete list of the XFLOW
option files, type xflow at the prompt without any arguments. For complete
descriptions of the options and the option files, see the Xilinx Development System
Reference Guide at http://www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com

164 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

• Running NetGen from the Command Line or a Script File

To create a simulation netlist from the command line or a script file, see the Netgen
chapter in the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

Disabling X Propagation for Synchronous Elements
This section discusses Disabling X Propagation for Synchronous Elements, and includes:

• “X Propagation During Timing Violations”

• “Using the ASYNC_REG Constraint”

X Propagation During Timing Violations
When a timing violation occurs during a timing simulation, the default behavior of a latch,
register, RAM, or other synchronous element outputs an X to the simulator.

This occurs because the actual output value is not known. The output of the register could:

• Retain its previous value

• Update to the new value

• Go metastable, in which a definite value is not settled upon until some time after the
clocking of the synchronous element

Since this value cannot be determined, and accurate simulation results cannot be
guaranteed, the element outputs an X to represent an unknown value. The X output
remains until the next clock cycle in which the next clocked value updates the output if
another violation does not occur.

X generation can significantly affect simulation. For example, an X generated by one
register can be propagated to others on subsequent clock cycles. This may cause large
portions of the design being tested to become unknown. To correct this:

• On a synchronous path, analyze the path and fix any timing problems associated with
this or other paths to ensure a properly operating circuit.

• On an asynchronous path, if you cannot otherwise avoid timing violations, disable
the X propagation on synchronous elements during timing violations.

When X propagation is disabled, the previous value is retained at the output of the
register. In the actual silicon, the register may have changed to the 'new' value.
Disabling X propagation may yield simulation results that do not match the silicon
behavior.

Caution! Exercise care when using this option. Use it only if you cannot otherwise avoid timing
violations.

Using the ASYNC_REG Constraint
The “ASYNC_REG” constraint:

• Identifies asynchronous registers in the design

• Disables X propagation for those registers

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 165
10.1

MIN/TYP/MAX Simulation
R

“ASYNC_REG” can be attached to a register in the front end design by:

• An attribute in the Hardware Description Language (HDL) code, or

• A constraint in the User Constraints File (UCF)

The registers to which “ASYNC_REG” is attached retain the previous value during timing
simulation, and do not output an X to simulation.

Caution! A timing violation error may still occur. Use care, as the new value may have been
clocked in as well.

“ASYNC_REG” is applicable to CLB and IOB registers and latches only. If you cannot
avoid clocking in asynchronous data, Xilinx recommends that you do so for IOB or CLB
registers only. Clocking in asynchronous signals to RAM, Shift Register LUT (SRL), or
other synchronous elements has less deterministic results, and therefore should be
avoided.

Xilinx highly recommends that you first properly synchronize any asynchronous signal in
a register, latch, or FIFO before writing to a RAM, SRL, or any other synchronous element.

MIN/TYP/MAX Simulation
This section discusses MIN/TYP/MAX Simulation, and includes:

• “About MIN/TYP/MAX Simulation”

• “Obtaining Accurate Timing Simulation Results”

• “Absolute Min Simulation”

About MIN/TYP/MAX Simulation
The Standard Delay Format (SDF) file allows you to specify three sets of delay values for
simulation:

• “Minimum (MIN)”

• “Typical (TYP)”

• “Maximum (MAX)”

Xilinx uses these values to allow the simulation of the target architecture under various
operating conditions. By allowing for the simulation across various operating conditions,
you can perform more accurate setup and hold timing verification.

Minimum (MIN)

Minimum (MIN) represents the device under the best case operating conditions. The base
case operating conditions are defined as the minimum operating temperature, the
maximum voltage, and the best case process variations. Under best case conditions, the
data paths of the device have the minimum delay possible, while the clock path delays are
the maximum possible relative to the data path delays. This situation is ideal for hold time
verification of the device.

Typical (TYP)

Typical (TYP) represents the typical operating conditions of the device. In this situation,
the clock and data path delays are both the maximum possible. This is different from the
“Maximum (MAX)” field, in which the clock paths are the minimum possible relative to

http://www.xilinx.com

166 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

the maximum data paths. Xilinx generated Standard Delay Format (SDF) files do not take
advantage of this field.

Maximum (MAX)

Maximum (MAX) represents the delays under the worst case operating conditions of the
device. The worst case operating conditions are defined as the maximum operating
temperature, the minimum voltage, and the worst case process variations. Under worst
case conditions, the data paths of the device have the maximum delay possible, while the
clock path delays are the minimum possible relative to the data path delays. This situation
is ideal for setup time verification of the device.

Obtaining Accurate Timing Simulation Results
This section discusses Obtaining Accurate Timing Simulation Results. In order to obtain
the most accurate setup and hold timing simulations:

• “Run Netgen”

• “Run Setup Simulation”

• “Run Hold Simulation”

Run Netgen

To obtain accurate Standard Delay Format (SDF) numbers, run netgen with -pcf pointing
to a valid Physical Constraints File (PCF). Netgen must be run with -pcf, since newer
Xilinx devices take advantage of relative mins for timing information. Once netgen is
called with -pcf, the “Minimum (MIN)” and “Maximum (MAX)” numbers in the SDF file
will be different for the components.

Once the correct SDF file is created, two types of simulation must be run for complete
timing closure:

• Setup Simulation

• Hold Simulation

In order to run the different simulations, the simulator must be called with the appropriate
switches.

Run Setup Simulation

To perform a Setup Simulation, specify values in the “Maximum (MAX)” field with the
following command line modifier:

-SDFMAX

Run Hold Simulation

To perform the most accurate Hold Simulation, specify values in the “Minimum (MIN)”
field with the following command line modifier:

-SDFMIN

For more information on how to pass the Standard Delay Format (SDF) switches to the
simulator, see your simulator tool documentation.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 167
10.1

MIN/TYP/MAX Simulation
R

Absolute Min Simulation
NetGen can optionally produce absolute minimum delay values for simulation by
applying the -s min switch. The resulting Standard Delay Format (SDF) file produced
from NetGen has the absolute process minimums populated in all three SDF fields:

• “Minimum (MIN)”

• “Typical (TYP)”

• “Maximum (MAX)”

Absolute process “Minimum (MIN)” values are the absolute fastest delays that a path can
run in the target architecture given the best operating conditions within the specifications
of the architecture:

• Lowest temperature

• Highest voltage

• Best possible silicon

Generally, these process minimum delay values are only useful for checking board-level,
chip-to-chip timing for high-speed data paths in best case and worst case conditions.

By default, the worst case delay values are derived from the worst temperature, voltage,
and silicon process for a particular target architecture. If better temperature and voltage
characteristics can be ensured during the operation of the circuit, you can use prorated
worst case values in the simulation to gain better performance results. The default would
apply worst case timing values over the specified “TEMPERATURE” and “VOLTAGE”
within the operating conditions recommended for the device.

Netgen generates Standard Delay Format (SDF) files with “Minimum (MIN)” numbers
only for devices that support absolute min timing numbers.

Using the VOLTAGE and TEMPERATURE Constraints
This section discusses Using the VOLTAGE and TEMPERATURE Constraints, and
includes:

• “Using the VOLTAGE Constraint”

• “Using the TEMPERATURE Constraint”

• “Determining Valid Operating Temperatures and Voltages”

• “NetGen Options for Different Delay Values”

Prorating is a linear scaling operation. It applies to existing speed file delays, and is applied
globally to all delays. The prorating constraints, the “VOLTAGE” constraint and the
“TEMPERATURE” constraint, provide a method for determining timing delay
characteristics based on known environmental parameters.

http://www.xilinx.com

168 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Using the VOLTAGE Constraint

The “VOLTAGE” constraint provides a means of prorating delay characteristics based on
the specified voltage applied to the device. The User Constraints File (UCF) syntax is:

VOLTAGE=value[V]

where

value

is an integer or real number specifying the voltage, and

units

is an optional parameter specifying the unit of measure.

Using the TEMPERATURE Constraint

The “TEMPERATURE” constraint provides a means of prorating device delay
characteristics based on the specified junction temperature. The User Constraints File
(UCF) syntax is:

TEMPERATURE=value[C|F|K]

where

value

is an integer or a real number specifying the temperature, and

C, F, and K

are the temperature units:

• C =degrees Celsius (default)

• F = degrees Fahrenheit

• K =degrees Kelvin

The resulting values in the Standard Delay Format (SDF) fields when using prorated
“VOLTAGE” and “TEMPERATURE” values are the prorated worst case values.

Determining Valid Operating Temperatures and Voltages

To determine the specific range of valid operating temperatures and voltages for the target
architecture, see the device data sheet. If the temperature or voltage specified in the
constraint does not fall within the supported range, the constraint is ignored and an
architecture specific default value is used instead.

Not all architectures support prorated timing values. For simulation, the “VOLTAGE” and
“TEMPERATURE” constraints are processed from the User Constraints File (UCF) into the
Physical Constraints File (PCF). The PCF must then be referenced when running NetGen in
order to pass the operating conditions to the delay annotator.

To generate a simulation netlist using prorating for VHDL, type:

netgen -sim -ofmt vhdl [options] -pcf design.pcf design.ncd

To generate a simulation netlist using prorating for Verilog, type:

netgen -sim -ofmt verilog [options] -pcf design.pcf design.ncd

Combining both minimum values overrides prorating, and results in issuing only absolute
process MIN values for the simulation Standard Delay Format (SDF) file.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Synthesis and Simulation Design Guide www.xilinx.com 169
10.1

Special Considerations for CLKDLL, DCM, and DCM_ADV
R

Prorating is available for certain FPGA devices only. It is not intended for military and
industrial ranges. It is applicable only within commercial operating ranges.

NetGen Options for Different Delay Values

Special Considerations for CLKDLL, DCM, and DCM_ADV
This section discusses Special Considerations for CLKDLL, DCM and DCM_ADV, and
includes:

• “DLL/DCM Clocks Do Not Appear De-Skewed”

• “TRACE/Simulation Model Differences for DCM/DLL”

• “Non-LVTTL Input Drivers”

• “Viewer Considerations”

• “Attributes for Simulation and Implementation”

• “Understanding Timing Simulation”

DLL/DCM Clocks Do Not Appear De-Skewed
The DLL and DCM components remove the clock delay from the clock entering into the
chip. As a result, the incoming clock and the clocks feeding the registers in the device have
a minimal skew within the range specified in the databook for any given device. In timing
simulation, the clocks may not appear to be de-skewed within the range specified. This is
due to the way the delays in the Standard Delay Format (SDF) file are handled by some
simulators.

The SDF file annotates the CLOCK PORT delay on the X_FF components. Some
simulators may show the clock signal in the waveform viewer before taking this delay into
account. If the simulator is not properly de-skewing the clock, see your simulator tool
documentation to determine if your simulator tool is displaying the input port delays in
the waveform viewer at the input nodes. If so, when the CLOCK PORT delay on the X_FF
is added to the internal clock signal, it should line up within the device specifications in the
waveform viewer with the input port clock. The simulation is still functioning properly,
the waveform viewer is just not displaying the signal at the expected node. To verify that
the DLL/DCM is functioning correctly, delays from the SDF file may need to be accounted
for manually to calculate the actual skew between the input and internal clocks.

Table 6-20: NetGen Options for Different Delay Values

NetGen Option MIN:TYP:MAX Field in SDF File Produced by NetGen –sim

-pcf <pcf_file> MIN:MIN(Hold time) TYP:TYP(Ignore) MAX:MAX(Setup time)

default MAX:MAX:MAX

–s min Process MIN: Process MIN: Process MIN

Prorated voltage or temperature in User
Constraints File or Physical Constraints File
(PCF)

Prorated MAX: Prorated MAX: Prorated MAX

http://www.xilinx.com

170 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

TRACE/Simulation Model Differences for DCM/DLL
To fully understand the simulation model, you must understand that there are differences
in the way:

• DLL/DCM is built in silicon

• TRACE reports their timing

• DLL/DCM is modeled for simulation

The DLL/DCM simulation model attempts to replicate the functionality of the DLL/DCM
in the Xilinx silicon, but it does not always do it exactly how it is implemented in the
silicon. In the silicon, the DLL/DCM uses a tapped delay line to delay the clock signal. This
accounts for input delay paths and global buffer delay paths to the feedback in order to
accomplish the proper clock phase adjustment. TRACE or Timing Analyzer reports the
phase adjustment as a simple delay (usually negative) so that you can adjust the clock
timing for static timing analysis.

As for simulation, the DLL/DCM simulation model itself attempts to align the input clock
to the clock coming back into the feedback input. Instead of putting the delay in the DLL or
DCM itself, the delays are handled by combining some of them into the feedback path as
clock delay on the clock buffer (component) and clock net (port delay). The remainder is
combined with the port delay of the CLKFB pin. While this is different from the way
TRACE or Timing Analyzer reports it, and the way it is implemented in the silicon, the end
result is the same functionality and timing. TRACE and simulation both use a simple delay
model rather than an adjustable delay tap line similar to silicon.

The primary job of the DLL/DCM is to remove the clock delay from the internal clocking
circuit as shown in Figure 6-8, “Delay Locked Loop Block Diagram.”

Do not confuse this with de-skewing the clock. Clock skew is generally associated with
delay variances in the clock tree, which is a different matter. By removing the clock delay,
the input clock to the device pin should be properly phase aligned with the clock signal as
it arrives at each register it is sourcing. Observing signals at the DLL/DCM pins generally
does not give the proper view point to observe the removal of the clock delay. The place to
see if the DCM is doing its job is to compare the input clock (at the input port to the design)
with the clock pins of one of the sourcing registers. If these are aligned (or shifted to the
desired amount) then the DLL/DCM has accomplished its job.

X-Ref Target - Figure 6-7

Figure 6-8: Delay Locked Loop Block Diagram

CLKIN CLKOUT

CLKFB

Clock
Distribution
Network

Variable
Delay Line

Control

X10903

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 171
10.1

Special Considerations for CLKDLL, DCM, and DCM_ADV
R

Non-LVTTL Input Drivers
When non-LVTTL input buffer drivers drive the clock, the DCM does not adjust for the
type of input buffer. Instead, the DCM has a single delay value to provide the optimal
amount of clock delay across all I/O standards. If you are using the same input standard
for the data, the delay values should track, and usually not cause a problem.

Even if you are not using the same input standard, the amount of delay variance usually
does not cause hold time failures. The delay variance is small compared to the amount of
input delay. The delay variance is calculated in both static timing analysis and simulation.
Proper setup time values should occur during both static timing analysis and simulation.

Viewer Considerations
Depending on the simulator, the waveform viewer may not depict the delay timing in the
expected manner. Some simulators (including ModelSim) combine interconnect and port
delays with the input pins of the component delays. While the simulation results are
correct, the depiction in the waveform viewer may be unexpected.

Since interconnect delays are combined, when you look at a pin using the ModelSim
viewer, you do not see the transition as it happens on the pin. The simulation acts properly,
but when attempting to calculate clock delay, the interconnect delays before the clock pin
must be taken into account if the simulator you are using combines these interconnect
delays with component delays.

For more information, search the Xilinx Answer Database for the following topic:
“ModelSim Simulations: Input and Output clocks of the DCM and CLKDLL models do not
appear to be de-skewed (VHDL, Verilog).”

Attributes for Simulation and Implementation
Make sure that the same attributes are passed for simulation and implementation. During
implementation, DLL/DCM attributes may be passed by:

• The synthesis tool (generic or inline parameter declaration)

• The User Constraints File (UCF)

For Register Transfer Level (RTL) simulation of the UNISIM models, the simulation
attributes must be passed by means of:

• A generic (VHDL)

• Inline parameters (Verilog)

If you do not use the default setting for the DLL/DCM, make sure that the attributes for
RTL simulation are the same as those used for implementation. If not, there may be
differences between RTL simulation and the actual device implementation.

To make sure that the attributes passed to implementation are the same as those used for
simulation, use the generic mapping method (VHDL) or inline parameter passing
(Verilog), provided your synthesis tool supports these methods for passing functional
attributes.

http://www.xilinx.com
http://www.xilinx.com/support/mysupport.htm

172 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Understanding Timing Simulation
This section discusses Understanding Timing Simulation, and includes:

• “Importance of Timing Simulation”

• “Glitches in Your Design”

• “Debugging Timing Problems”

• “Timing Problem Root Causes”

• “Debugging Tips”

• “Setup and Hold Violations”

In back annotated (timing) simulation, the introduction of delays can cause the behavior to
be different from what is expected. Most problems are caused due to timing violations in
the design, and are reported by the simulator. There are a few other situations that can
occur as discussed in this section.

Importance of Timing Simulation
This section discusses Importance of Timing Simulation, and includes:

• “About Importance of Timing Simulation”

• “Functional Simulation”

• “Static Timing Analysis and Equivalency Checking”

• “In-System Testing”

About Importance of Timing Simulation

FPGA devices require both functional and timing simulation to ensure successful designs.
FPGA designs are growing in complexity. Traditional verification methodologies are no
longer sufficient. In the past, simulation was not an important stage in the FPGA design
flow. Currently simulation is becoming one of the most critical stages. Timing simulation is
especially important when designing for advanced FPGA devices.

Functional Simulation

While functional simulation is an important part of the verification process, it should not
be the only part. Functional simulation tests only for the functional capabilities of the
Register Transfer Level (RTL) design. It does not include any timing information, nor does
it take into consideration changes made to the original design due to implementation and
optimization

Static Timing Analysis and Equivalency Checking

Many designers see Static Timing Analysis and Equivalency Checking as the only analysis
needed to verify that the design meets timing. There are many drawbacks to using Static
Timing Analysis and Equivalency Checking as the only timing analysis methodology.
Static analysis cannot find any of the problems that can be seen when running a design
dynamically. It can only show if the design as a whole meets setup and hold requirements.
It is generally only as good as the timing constraints applied.

In a real system, dynamic factors such as Block Ram collisions can cause timing violations
on the FPGA device. With the introduction of Dual Port Block Rams in FPGA devices, care
should be taken not to read and write to the same location at the same time, as this results

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 173
10.1

Understanding Timing Simulation
R

in incorrect data being read back. Static analysis is unable to find this problem. Similarly, if
there are misconstrued timespecs, static timing analysis cannot find this problem.

In-System Testing

Most designers rely on In-System Testing as the ultimate test. If the design works on the
board, and passes the test suites, they view the device as ready for release. While In-System
Testing is definitely effective for some purposes, it may not immediately detect all
potential problems. At times the design must be run for a lengthy period before corner-
case issues become apparent. For example, issues such as timing violations may not
become apparent in the same way in all devices. By the time these corner-case issues
manifest themselves, the design may already be in the hands of the end customer. It will
mean high costs, downtime, and frustration to try to resolve the problem. In order to
properly complete In-System Testing, all hardware hurdles such as problems with SSO,
Cross-talk, and other board related issues must be overcome. Any external interfaces must
also be connected before beginning the In-System Testing, increasing the time to market.

The traditional methods of verification are not sufficient for a fully verified system. There
are compelling reasons to do dynamic timing analysis.

Glitches in Your Design
When a glitch (small pulse) occurs in an FPGA circuit or any integrated circuit, the glitch
may be passed along by the transistors and interconnect (transport) in the circuit, or it may
be swallowed and not passed (internal) to the next resource in the FPGA. This depends on
the width of the glitch and the type of resource the glitch passes through. To produce more
accurate simulation of how signals are propagated within the silicon, Xilinx models this
behavior in the timing simulation netlist.

For VHDL simulation, library components are instantiated by netgen and proper values
are annotated for pulse rejection in the simulation netlist. The result of these constructs in
the simulation netlists is a more true-to-life simulation model, and therefore a more
accurate simulation.

For Verilog simulation, this information is passed by the PATHPULSE construct in the
Standard Delay Format (SDF) file. This construct is used to specify the size of pulses to be
rejected or swallowed on components in the netlist.

Debugging Timing Problems
This section discusses Debugging Timing Problems, and includes:

• “Identifying Timing Problems”

• “Setup Violation Messages”

Identifying Timing Problems

In back-annotated (timing) simulation, the simulator processes timing information in the
Standard Delay Format (SDF) file. This may cause timing violations if the circuit is
operated too fast, or if there are asynchronous components in the design.

This section explains some common timing violations, and gives advice on how to debug
and correct them.

After you run timing simulation, review any warning or error messages generated by your
simulator.

http://www.xilinx.com

174 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Setup Violation Messages

The following example is a typical setup violation message from ModelSim for a Verilog
design. Message formats vary from simulator to simulator, but all contain the same basic
information. For more information, see your simulator tool documentation.

** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96):
$setup(negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);
Time:29151 ps Iteration:0 Instance: /test_bench/u1/\U1/X_RAMD16\

Setup Violation Message Line One

** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96):

Line One points to the line in the simulation model that is in error. In this example, the
failing line is line 96 of the Verilog file X_RAMD16.

Setup Violation Message Line Two

$setup(negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);

Line Two gives information about the two signals that caused the error:

• The type of violation, such as $setup, $hold, or $recovery. This example is a
$setup violation.

• The name of each signal involved in the violation, followed by the simulation time at
which that signal last changed values. In this example, the failing signals are the
negative-going edge of the signal WE, which last changed at 29138 picoseconds, and
the positive-going edge of the signal CLK, which last changed at 29151 picoseconds.

• The allotted amount of time for the setup. In this example, the signal on WE should be
stable for 373 pico seconds before the clock transitions. Since WE changed only 13 pico
seconds before the clock, the simulator reported a violation.

Setup Violation Message Line Three

Time:29151 ps Iteration:0 Instance: /test_bench/u1/\U1/X_RAMD16\

Line Three gives the simulation time at which the error was reported, and the instance in
the structural design (time_sim) in which the violation occurred.

Timing Problem Root Causes
Timing violations, such as $setuphold, occur any time data changes at a register input
(either data or clock enable) within the setup or hold time window for that particular
register. The most typical causes for timing violations are:

• “Simulation Clock Does Not Meet Timespec”

• “Unaccounted Clock Skew”

• “Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase”

For more information, see “Timing Closure Mode.”

Simulation Clock Does Not Meet Timespec

If the frequency of the clock specified during simulation is greater than the frequency of
the clock specified in the timing constraints, this over-clocking can cause timing violations.
For example, if the simulation clock has a frequency of 5 ns, and a “PERIOD” constraint is
set at 10 ns, a timing violation can occur. This situation can also be complicated by the
presence of DLL or DCM in the clock path.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 175
10.1

Understanding Timing Simulation
R

This problem is usually caused either by an error in the test bench or by an error in the
constraint specification. Make sure that the constraints match the conditions in the test
bench, and correct any inconsistencies. If you modify the constraints, re-run the design
through place and route to make sure that all constraints are met.

Unaccounted Clock Skew

Clock skew is the difference between the amount of time the clock signal takes to reach the
destination register, and the amount of time the clock signal takes to reach the source
register. The data must reach the destination register within a single clock period plus or
minus the amount of clock skew. While clock skew is usually not a problem when you use
global buffers, it can be a concern if you use the local routing network for your clock
signals.

To determine if clock skew is the problem, run a setup test in TRACE and read the report.
For directions on how to run a setup check, see the Xilinx Development System Reference
Guide, “TRACE” at http://www.xilinx.com/support/software_manuals.htm. For information
on using Timing Analyzer to determine clock skew, see Timing Analyzer in the ISE Help.

Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase

Timing violations can be caused by data paths that:

• Are not controlled by the simulation clock

• Are not clock controlled at all

• Cross asynchronous clock boundaries

• Have asynchronous inputs

• Cross data paths out of phase

Asynchronous Clocks

If the design has two or more clock domains, any path that crosses data from one domain
to another can cause timing problems. Although data paths that cross from one clock
domain to another are not always asynchronous, it is always best to be cautious.

Always treat the following as asynchronous:

• Two clocks with unrelated frequencies

• Any clocking signal coming from off-chip

• Any time a register’s clock is gated (unless extreme caution is used)

To see if the path in question crosses asynchronous clock boundaries, check the source code
and the Timing Analysis report. If your design does not allow enough time for the path to
be properly clocked into the other domain, you may need to redesign your clocking
scheme. Consider using an asynchronous FIFO as a better way to pass data from one clock
domain to another.

Asynchronous Inputs

Data paths that are not controlled by a clocked element are asynchronous inputs. Because
they are not clock controlled, they can easily violate setup and hold time specifications.

Check the source code to see if the path in question is synchronous to the input register. If
synchronization is not possible, you can use the ASYNC_REG constraint to work around
the problem. For more information, see “Using the ASYNC_REG Constraint.”

http://www.xilinx.com

176 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

Out of Phase Data Paths

Data paths can be clock controlled at the same frequency, but nevertheless can have setup
or hold violations because the clocks are out of phase. Even if the clock frequencies are a
derivative of each other, improper phase alignment could cause setup violations.

To see if the path in question crosses another path with an out of phase clock, check the
source code and the Timing Analysis report.

Debugging Tips
When you have a timing violation, ask:

• Was the clock path analyzed by TRACE or Timing Analyzer?

• Did TRACE or Timing Analyzer report that the data path can run at speeds being
clocked in simulation?

• Is clock skew being accounted for in this path delay?

• Does subtracting the clock path delay from the data path delay still allow clocking
speeds?

• Will slowing down the clock speeds eliminate the $setup or $hold time violations?

• Does this data path cross clock boundaries (from one clock domain to another)? Are
the clocks synchronous to each other? Is there appreciable clock skew or phase
difference between these clocks?

• If this path is an input path to the device, does changing the time at which the input
stimulus is applied eliminate the $setup or $hold time violations?

Depending on your answers, you may need to change your design or test bench to
accommodate the simulation conditions. For more information, see “Design
Considerations.”

Setup and Hold Violations
This section discusses Setup and Hold Violations, and includes:

• “Zero Hold Time Considerations”

• “Negative Hold Times”

• “RAM Considerations for Setup and Hold Violations”

Zero Hold Time Considerations

While Xilinx data sheets report that there are zero hold times on the internal registers and
I/O registers with the default delay and using a global clock buffer, it is still possible to
receive a $hold violation from the simulator. This $hold violation is really a $setup
violation on the register. In order to obtain an accurate representation of the CLB delays,
part of the setup time must be modeled as a hold time.

Negative Hold Times

Older Xilinx simulation models truncate negative hold times and specify them as zero
hold times. While this truncation does not cause inaccuracies in simulation, it results in a
more pessimistic timing model than can actually be achieved in the FPGA device. This
makes it more difficult to meet stringent timing requirements.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Synthesis and Simulation Design Guide www.xilinx.com 177
10.1

Understanding Timing Simulation
R

Negative hold times are now specified in the timing models. Specifying negative hold
times provides a wider, yet more accurate, representation of the timing window. The
setup and hold parameters for the synchronous models are combined into a single
setuphold parameter. Such combining does not change the timing simulation
methodology.

There are no longer separate violation messages for setup and hold when using
Cadence NC-Verilog. They are combined into a single setuphold violation message.

RAM Considerations for Setup and Hold Violations

This section discusses RAM Considerations for Setup and Hold Violations, and includes:

• “Timing Violations”

• “Collision Checking”

• “Hierarchy Considerations”

Timing Violations

Xilinx devices contain two types of memories:

• Block RAM

• Distributed RAM

Since block RAM and distributed RAM are synchronous elements, you must take care to
avoid timing violations. To guarantee proper data storage, the data input, address lines,
and enables, must all be stable before the clock signal arrives.

Collision Checking

Block RAMs also perform synchronous read operations. During a read cycle, the addresses
and enables must be stable before the clock signal arrives, or a timing violation may occur.

When you use block RAM in dual-port mode, take special care to avoid memory collisions.
A memory collision occurs when:

1. One port is being written to, and

2. An attempt is made to either read or write to the other port at the same address at the
same time (or within a very short period of time thereafter)

The model warns you if a collision occurs.

If the RAM is being read on one port as it is being written to on the other port, the model
outputs an X value signifying an unknown output. If the two ports are writing data to the
same address at the same time, the model can write unknown data into memory. Take
special care to avoid this situation, as unknown results may occur. For the hardware
documentation on collision checking, see “Design Considerations: Using Block SelectRAM
Memory,” in the device user guide.

You can use the generic (VHDL) or parameter (Verilog) “Disabling BlockRAM Collision
Checks for Simulation” to disable these checks in the model.

Hierarchy Considerations

It is possible for the top-level signals to switch correctly, keeping the setup and hold
times accounted for, while at the same time, an error is reported at the lowest level
primitive. As the signals travel down the hierarchy to the lowest level primitive, the delays

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

178 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 6: Simulating Your Design
R

they experience can reduce the differences between them to the point that they violate the
setup time.

To correct this problem:

1. Browse the design hierarchy, and add the signals of the instance reporting the error to
the top-level waveform. Make sure that the setup time is actually being violated at the
lower level.

2. Step back through the structural design until a link between an Register Transfer Level
(RTL) (pre-synthesis) design path and this instance reporting the error can be
determined.

3. Constrain the RTL path using timing constraints so that the timing violation no longer
occurs. Usually, most implemented designs have a small percentage of unconstrained
paths after timing constraints have been applied, and these are the ones where $setup
and $hold violations usually occur.

The debugging steps for $hold violations and $setup violations are identical.

Simulation Using Xilinx-Supported EDA Simulation Tools
For more information on simulation using Xilinx-supported EDA simulation tools, see:

• Appendix A, “Simulating Xilinx Designs in Modelsim”

• Appendix B, “Simulating Xilinx Designs in NCSIM”

• Appendix C, “Simulating Xilinx Designs in Synopsys VCS-MX and VCS-MXi”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 179
10.1

R

Chapter 7

Design Considerations

This chapter (Design Considerations) discusses Design Considerations, and includes:

• “Understanding the Architecture”

• “Clocking Resources”

• “Defining Timing Requirements”

• “Driving Synthesis”

• “Choosing Implementation Options”

• “Evaluating Critical Paths”

• “Design Preservation With SmartCompile”

Understanding the Architecture
This section discusses Understanding the Architecture, and includes:

• “Understanding Hardware Features and Trade-Offs”

• “Slice Structure”

• “Hard-IP Blocks”

Understanding Hardware Features and Trade-Offs
When you evaluate a new FPGA architecture, you must take into account the hardware
features and the trade-offs that can be made in the architecture. Most FPGA designers
describe their designs behaviorally in a hardware description language such as VHDL or
Verilog, and rely upon a synthesis tool to map to the architecture.

Keep the specific architecture in mind as you write the Hardware Description Language
(HDL) code to ensure that the synthesis tool maps to the hardware in the most efficient
way, ensuring maximum performance. Before you begin your design, Xilinx®
recommends that you review the user guide and data sheet for the target architecture.

Slice Structure
The slice contains the basic elements for implementing both sequential and combinatorial
circuits in an FPGA device. In order to minimize area and optimize performance of a
design, it is important to know if a design is effectively using the slice features. Here are
some things to consider.

• What basic elements are contained with a slice? What are the different configurations
for each of those basic elements? For example, a look-up table (LUT) can also be
configured as a distributed RAM or a shift register.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

180 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

• What are the dedicated interconnects between those basic elements? For example,
could the fanout of a LUT to multiple registers prevent optimal packing of a slice?

• What common inputs do the elements of a slice share such as control signals and
clocks that would potentially limit its packing? Using Registers with common
set/reset, clock enable, and clocks improves the packing of the design. By using logic
replication, the same reset net may have multiple unique names, and prevents
optimal register packing in a slice. Consider turning off Logic Replication for reset
nets and clock enables in the synthesis flow.

• What is the size of the LUT, and how many LUTs are required to implement certain
combinatorial functions of a design?

Hard-IP Blocks
If a hard-IP block, such as a BRAM or DSP block, appears repeatedly as the source or
destination of your critical paths, try the following:

• “Use Block Features Optimally”

• “Evaluate the Percentage of BRAMs or DSP Blocks”

• “Lock Down Block Placement”

• “Compare Hard-IP Blocks and Slice Logic”

• “Use SelectRAMs”

• “Compare Placing Logic Functions in Slice Logic or DSP Block”

Use Block Features Optimally

Verify that you are using the block features to their fullest extent. In certain FPGA
architectures, these blocks contain a variety of pipeline registers that reduce the block's
setup and clock-to-out times. Typically, these internal registers have synchronous sets and
resets. Make sure that the Hardware Description Language (HDL) describes this behavior.
Gate-level schematic viewers, such as the one available in ISE™ Project Navigator or
Synplify PRO's HDL analyst, can be used to analyze how a synthesis tool infers a hard-IP
block and all of its features.

Evaluate the Percentage of BRAMs or DSP Blocks

Evaluate the percentage of BRAMs or DSP blocks that you are using. Both types of blocks
are located in a limited number of columns dispersed throughout the FPGA fabric. This
results in a more limited placement, particularly when a high percentage is used. The
software can be further restricted by placement constraints for I/O or logic interfacing to
those blocks.

Lock Down Block Placement

If a design is using a high percentage of BRAMs or DSP blocks which limit performance,
consider locking down their placement with location constraints. For more information,
see the Xilinx Constraints Guide at http://www.xilinx.com/support/software_manuals.htm.

Compare Hard-IP Blocks and Slice Logic

Consider the trade-off between using hard-IP blocks and slice logic. Determining whether
to use slice logic over hard-IP blocks should mainly be done when a hard-IP block is
consistently showing up as the source or destination of your critical path and the features
of the hard-IP block have been used to their fullest.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 181
10.1

Clocking Resources
R

Use SelectRAMs

If a design has a variety of memory requirements, consider using SelectRAMs, composed
of LUTs, in addition to BRAMs. Since SelectRAM is composed of LUTs, it has greater
placement flexibility. In the case of DSP blocks, it could potentially be beneficial to move
one of the dedicated pipeline registers to a slice register to make it easier to place logic
interfacing to the DSP blocks.

Compare Placing Logic Functions in Slice Logic or DSP Block

Determine whether certain logic functions, such as adders, should be placed in the slice
logic or the DSP block. Many synthesis tools can infer DSP blocks for adders and counters
if the number of blocks inferred for more complex DSP functions does not exceed the
number of blocks in the target device. Review the synthesis report to see where the
inference of these blocks occurred.

For Synplify PRO, use the syn_allowed_resources attribute to control the number of
blocks that the tool can infer. For more information, see the Synplify PRO documentation.
If design performance is degrading due to a high percentage of DSP blocks, and it is
difficult to place all the blocks with respect to their interface logic, the
syn_allowed_resources attribute can be helpful.

Clocking Resources
This section discusses Clocking Resources, and includes:

• “Determining Whether Clocking Resources Meet Design Requirements”

• “Evaluating Clocking Implementation”

• “Clock Reporting”

Determining Whether Clocking Resources Meet Design Requirements
You must determine whether the clocking resources of the target architecture meet design
requirements. These may include:

• Number and type of clock routing resources

• Maximum allowed frequency of each of the clock routing resources

• Number of dedicated clock input pins

• Number and type of resources available for clock manipulation, such as DCMs and
PLLs

• Features and restrictions of DCMs and PLLs in terms of frequency, jitter, and
flexibility in the manipulation of clocks

For most Xilinx FPGA architectures, the devices are divided into clock regions and there
are restrictions on the number of clock routing resources available in each of those regions.
Since the number of total clock routing resources is typically greater than the number of
clocks available to a region, many designs exceed the number of clocks available for one
particular region. When this occurs, the software must place the design so that the clocks
can be dispersed among multiple regions. This can be done only if there are no restrictions
in place that force it to place synchronous elements in a way that violates the clock region
rules.

http://www.xilinx.com

182 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Evaluating Clocking Implementation
When evaluating how to implement the clocking for a design, analyze the following before
board layout:

• What clock frequencies and phase variations must be generated for a design using
either the DCM or PLL?

• Does the design use any hard-IP blocks that require multiple clocks? If so, what types
of resources are required for these blocks. How are they placed with respect to the
device's clock regions?

For example, the Virtex™-4 Tri-Mode Ethernet Macs can utilize five or more global
clock resources in a clock region that allows a maximum of eight global clock
resources. In these cases, Xilinx recommends that you minimize the number of
additional I/O pins you lock to the I/O bank associated with that clock region that
would require different clocking resources.

• What are the total number of clocks required for your design? What is the loading for
each of these clock domains? What type of clock routing resource and respective clock
buffer is used?

Depending on the FPGA architecture, there can be several types of clocking resources
to utilize. For example, Virtex-5 has I/O, regional, and global clock routing resources.
It is important to understand how to balance each of these routing resources,
particularly in a design with a large number of clocks, to ensure that a design does not
violate the architecture's clock region rules.

• What specific I/O pins should the clocks be placed on? How can that impact
BUFG/DCM/PLL placement?

For most architectures, if a clock is coming into an I/O and going directly to a BUFG,
DCM, or PLL, the BUFG, DCM, or PLL must be on the same half of the device (top or
bottom, left or right) of the FPGA as the I/O. DCM or PLL outputs that connect to
BUFGs must have those BUFGs on the same edge of the device. Therefore, if you place
all of your clock I/O on one edge of the device, you could potentially run out of
resources on that edge, and be left with resources on another edge that can't use
dedicated high quality routing resources due to the pin placement. Local routing may
then be needed, which degrades the quality of the clock and adds unwanted routing
delay.

• With the routing resources picked, hard-IP identified, and pin location constraints
taken into account, what is the distribution of clock resources into the different clock
regions?

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 183
10.1

Clocking Resources
R

Clock Reporting
This section discusses Clock Reporting, and includes:

• “Clock Report”

• “Reviewing the Place and Route Report”

• “Clock Region Reports”

Clock Report

The Place and Route Report (<design_name>.par) includes a Clock Report that details
the clocks it has detected in the design. For each clock, the report details:

• Whether the resource used was global, regional, or local

• Whether the clock buffer was locked down with a location constraint or not

• Fanout

• Maximum skew

• Maximum delay

Reviewing the Place and Route Report

Review the Place and Route Report to ensure that the proper resource was used for a
particular clock, and that the net skew is appropriate. For certain architectures, such as
Virtex-II PRO and Spartan™-3, general interconnect, labeled as local routing in the report,
can be used for clocks if careful planning is done.

If the report shows that a clock is using a local routing resource, and it was not planned for
or supported in the architecture, it should be analyzed to see if it can be put on a dedicated
clocking resource. A clock may be designed to use a global or regional clocking resource.
But if it is connected to any inputs other than clock inputs, it does not use the dedicated
clock routing resource, and uses general interconnect. Xilinx recommends that, instead of
gating a clock, use clock enables in your design, or use the BUFGMUX to select between
the desired clocks.

In Virtex-4 and Virtex-5, if a single ended clock is placed on the N-side of a global clock
input differential pair, it does not have a direct route to the clock resources. A local routing
resource is used instead. Using this local resource increases delay, and can degrade the
quality of the clock.

Generating Clock Report Example

Generating Clock Report
+---------------------+--------------+------+------+------------+-------------+
| Clock Net | Resource |Locked|Fanout|Net Skew(ns)|Max Delay(ns)|
+---------------------+--------------+------+------+------------+-------------+
| clk1 |BUFGCTRL_X0Y14| No | 2 | 0.064 | 1.438 |
+---------------------+--------------+------+------+------------+-------------+
| clk0 | BUFGCTRL_X0Y8| No | 2 | 0.074 | 1.448 |
+---------------------+--------------+------+------+------------+-------------+

http://www.xilinx.com

184 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Clock Region Reports

ISE features two reports:

• “Global Clock Region Report”

• “Secondary Clock Region Report”

These reports can help you determine:

• Which clock regions are exceeding the number of global or regional clock resources

• How many resources are being clocked by a specific clock in a clock region

• Which clock regions are not being used or are using a low number of clock resources

• How to resolve a clock region error and balance clocks over multiple clock regions.

If you run with timing driven packing and placement (-timing) in map, these reports
appear in the map log file (<design_name>.map). Otherwise, these reports appear in the
par report (<design_name>.par).

Global Clock Region Report

The Global Clock Region Report is created only if your design uses more than the
maximum number of clocking resources available in a region. For example, Virtex-5
devices allow ten global clock resources in any particular clock region. Therefore, the
Global Clock Region Report appears only when you have more than ten global clocks in
your design.

The Global Clock Region Report details:

• The global clocks utilized in a specific region, and the associated number of resources
being clocked by each clock

• Location constraints for the DCMs, PLLs, and BUFGs

• Area group constraints that lock down the loads of each specific global clock to the
proper clock region

Global Clock Region Report Example

##
GLOBAL CLOCK NET DISTRIBUTION UCF REPORT:
#
Number of Global Clock Regions : 16
Number of Global Clock Networks: 14
#
Clock Region Assignment: SUCCESFUL

CLKOUT1_OUT2 driven by BUFGCTRL_X0Y2
NET "CLKOUT1_OUT2" TNM_NET = "TN_CLKOUT1_OUT2" ;
TIMEGRP "TN_CLKOUT1_OUT2" AREA_GROUP = "CLKAG_CLKOUT1_OUT2" ;
AREA_GROUP "CLKAG_CLKOUT1_OUT2" RANGE = CLOCKREGION_X0Y0, CLOCKREGION_X1Y0,
CLOCKREGION_X0Y1, CLOCKREGION_X1Y1, CLOCKREGION_X0Y2, CLOCKREGION_X1Y2, CLOCKREGION_X0Y3,
CLOCKREGION_X1Y3, CLOCKREGION_X0Y4, CLOCKREGION_X1Y4, CLOCKREGION_X0Y5, CLOCKREGION_X1Y5,
CLOCKREGION_X0Y6, CLOCKREGION_X1Y6, CLOCKREGION_X0Y7, CLOCKREGION_X1Y7 ;

NOTE:
This report is provided to help reproduce succesful clock-region
assignments. The report provides range constraints for all global
clock networks, in a format that is directly usable in ucf files.
#
#END of Global Clock Net Distribution UCF Constraints

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 185
10.1

Clocking Resources
R

##

##
GLOBAL CLOCK NET LOADS DISTRIBUTION REPORT:

Number of Global Clock Regions : 16
Number of Global Clock Networks: 14
Clock Region Assignment: SUCCESSFUL

Clock-Region: <CLOCKREGION_X0Y2>
 key resource utilizations (used/available): global-clocks - 2/10 ;
--------+--------+--------+--------+--------+--------+--------+--------+--------+--------
+--------+--------+--
 BRAM | DCM | PLL | GT | ILOGIC | OLOGIC | FF | LUT | MULT | TEMAC |
PPC | PCIE | <- (Types of Resources in this Region)
 FIFO | | | | | | | | | | | |
--------+--------+--------+--------+--------+--------+--------+--------+--------+--------
+--------+--------+--
 8 | 2 | 1 | 0 | 60 | 60 | 3840 | 7680 | 8 | 0 |
0 | 0 | <- (Available Resources in this Region)
--------+--------+--------+--------+--------+--------+--------+--------+--------+--------
+--------+--------+--
 | | | | | | | | | |
| | <Global clock Net Name>
--------+--------+--------+--------+--------+--------+--------+--------+--------+--------
+--------+--------+--
 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | "CLKOUT0_OUT1"
 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | "inst2/CLKFBOUT_OUT"
--------+--------+--------+--------+--------+--------+--------+--------+--------+--------
+--------+--------+--
 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | Total
--------+--------+--------+--------+--------+--------+--------+--------+--------+--------

Secondary Clock Region Report

The Secondary Clock Region Report details:

• The BUFIOs, BUFRs, and regional clock spines in each clock region

• The I/O and regional clock nets that are utilized in a specific region and the associated
number of resources being clocked by each clock

• Location constraints for the BUFIOs and BUFRs

• Area group constraints that lock down the loads of each specific regional clock to the
proper clock region

The location constraints and the area group constraints are defined based on the initial
placement at the time the report was generated. This placement could change due to the
various optimizations that occur later in the flow. These constraints should be a starting
point. After analyzing the distribution of the clocks into the different clock regions, adjust
the constraints to ensure that the clock region rules are obeyed. After adjustments to the
clocks are made, the constraints can be appended to the User Constraints File (UCF)
(<design_name>.ucf) to be used for future implementation.

http://www.xilinx.com

186 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Secondary Clock Region Report Example

There are eight clock regions on the target FPGA device.

|--|--|
| CLOCKREGION_X0Y3: | CLOCKREGION_X1Y3: |
| 2 BUFRs available, 0 in use | 2 BUFRs available, 0 in use |
| 4 Regional Clock Spines, 0 in use | 4 Regional Clock Spines, 0 in use |
| 4 edge BUFIOs available, 0 in use | 4 edge BUFIOs available, 0 in use |
| 2 center BUFIOs available, 0 in use | |
CLOCKREGION_X0Y2:	CLOCKREGION_X1Y2:
2 BUFRs available, 0 in use	2 BUFRs available, 0 in use
4 Regional Clock Spines, 1 in use	4 Regional Clock Spines, 0 in use
4 edge BUFIOs available, 0 in use	4 edge BUFIOs available, 0 in use
2 center BUFIOs available, 0 in use	
--	--
CLOCKREGION_X0Y1:	CLOCKREGION_X1Y1:
2 BUFRs available, 1 in use	2 BUFRs available, 0 in use
4 Regional Clock Spines, 1 in use	4 Regional Clock Spines, 0 in use
4 edge BUFIOs available, 0 in use	4 edge BUFIOs available, 0 in use
2 center BUFIOs available, 0 in use	
--	--
CLOCKREGION_X0Y0:	CLOCKREGION_X1Y0:
2 BUFRs available, 0 in use	2 BUFRs available, 0 in use
4 Regional Clock Spines, 1 in use	4 Regional Clock Spines, 0 in use
4 edge BUFIOs available, 0 in use	4 edge BUFIOs available, 0 in use
2 center BUFIOs available, 0 in use	
--	--

Clock-Region: <CLOCKREGION_X0Y1>
 key resource utilizations (used/available): edge-bufios - 0/4; center-bufios - 0/2; bufrs
- 1/2; regional-clock-spines - 1/4
|---

clock	region	BRAM								
type	expansion	FIFO	DCM	GT	ILOGIC	OLOGIC	FF	LUTM	LUTL	MULT
EMAC	PPC	PCIe	<- (Types of Resources in this Region)							
-------	-----------	------	-----	----	--------	--------	-------	-------	-------	------
----	-----	------	---							
	upper/lower	4	0	0	60	60	2240	1280	3200	8
0	0	<- Available resources in the region								
-------	-----------	------	-----	----	--------	--------	-------	-------	-------	------
----	-----	------	---							
<IO/Regional clock Net Name>										
-------	-----------	------	-----	----	--------	--------	-------	-------	-------	------
----	-----	------	---							
BUFR	Yes/Yes	0	0	0	0	0	2	0	0	0
0	0	"clkc_bufr"								

##

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 187
10.1

Defining Timing Requirements
R

SECONDARY CLOCK NET DISTRIBUTION UCF REPORT:
#
Number of Secondary Clock Regions : 8
Number of Secondary Clock Networks: 1
###

Regional-Clock "clkc_bufr" driven by "BUFR_X0Y2"
INST "BUFR_inst" LOC = "BUFR_X0Y2"
NET "clkc_bufr" TNM_NET = "TN_clkc_bufr" ;
TIMEGRP "TN_clkc_bufr" AREA_GROUP = "CLKAG_clkc_bufr" ;
AREA_GROUP "CLKAG_clkc_bufr" RANGE = CLOCKREGION_X0Y1, CLOCKREGION_X0Y2, CLOCKREGION_X0Y0;

Defining Timing Requirements
This section discusses Defining Timing Requirements, and includes:

• “Defining Constraints”

• “Over-Constraining”

• “Constraint Coverage”

• “Examples of Non-Consolidated Constraints”

• “Consolidation of Constraints Using Grouping”

Defining Constraints
The ISE synthesis and implementation tools are driven by the performance goals that you
specify with your timing constraints. Your design must have properly defined constraints
in order to achieve:

• Accurate optimization from synthesis

• Optimal packing, placement, and routing from implementation

Your design must include all internal clock domains, input and output (IO) paths,
multicycle paths, and false paths. For more information, see the Xilinx Constraints Guide at
http://www.xilinx.com/support/software_manuals.htm.

Over-Constraining
Although over-constraining can help you understand a design's potential maximum
performance, use it with caution. Over-constraining can cause excessive replication in
synthesis.

Beginning in ISE Release 9.1i, a new auto relaxation feature has been added to PAR. The
auto relaxation feature automatically scales back the constraint if the tool determines that
the constraint is not achievable. This reduces runtime, and attempts to ensure the best
performance for all constraints.

The timing constraints specified for synthesis should try to match the constraints specified
for implementation. Although most synthesis tools can write out timing constraints for
implementation, Xilinx recommends that you avoid this option. Specify your
implementation constraints separately in the User Constraints File (UCF)
(<design_name.ucf>) For a complete description of the supported timing constraints
and syntax examples, see the Xilinx Constraints Guide at
http://www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com

188 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Constraint Coverage
In your synthesis report, check for any replicated registers, and ensure that timing
constraints that might apply to the original register also cover the replicated registers for
implementation. To minimize implementation runtime and memory usage, write timing
constraints by grouping the maximum number of paths with the same timing requirement
first before generating a specific timespec.

Examples of Non-Consolidated Constraints
TIMESPEC "TS_firsttimespec" = FROM "flopa" TO "flopb" 10ns;
TIMESPEC "TS_secondtimespec" = FROM "flopc" TO "flopb" 10ns;
TIMESPEC "TS_thirdtimespec" = FROM "flopd" TO "flopb" 10ns;

Consolidation of Constraints Using Grouping
INST "flopa" TNM = "flopgroup";
INST "flopc" TNM = "flopgroup";
INST "flopd" TNM = "flopgroup";
TIMESPEC "TS_consolidated" = FROM "flopgroup" TO "flopb" 10ns;

Driving Synthesis
This section discusses Driving Synthesis, and includes:

• “Creating High-Performance Circuits”

• “Helpful Synthesis Attributes”

• “Additional Timing Options”

Creating High-Performance Circuits
To create high-performance circuits, Xilinx recommends that you:

• “Use Proper Coding Techniques”

• “Analyze Inference of Logic”

• “Provide a Complete Picture of Your Design”

• “Use Optimal Software Settings”

Use Proper Coding Techniques

Proper coding techniques ensure that the inferences of your behavioral Hardware
Description Language (HDL) code made by the synthesis tool maximize the architectural
features of the device. The language templates in ISE Project Navigator contain coding
examples in both Verilog and VHDL.

Analyze Inference of Logic

Check to see that the design is maximizing the features of the block, and that the synthesis
tool is properly inferring the expected features from your Hardware Description Language
(HDL) code. Gate level schematic viewers, such as HDL Analyst in Synplify PRO, can help
with your analysis. When using BRAMs, use the dedicated output pipeline registers when
possible in order to reduce the clock-to-out delay of data leaving the RAM. The DSP blocks

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 189
10.1

Driving Synthesis
R

also have a variety of pipeline registers that reduce the setup and clock-to-out timing of
these blocks.

Provide a Complete Picture of Your Design

Make sure that the synthesis tool has a complete picture of your design:

• If a design contains IP generated by CORE Generator™, third party IP, or any other
lower level blackboxed netlists, include those netlists in the synthesis project.
Although the synthesis tool cannot optimize logic within the netlist, it can better
optimize the Hardware Description Language (HDL) code that interfaces to these
lower level netlists.

• The tool must understand the performance goals of a design using the timing
constraints that you supplied. If there are critical paths in your implementation that
are not seen as critical in synthesis, use the -route constraint from Synplify PRO to
force synthesis to focus on that path.

Use Optimal Software Settings

You can modify a variety of software settings in synthesis to achieve optimal design. Xilinx
recommends that you begin with a baseline set of software options, then incrementally add
new switches to understand their effects. A variety of attribute settings can affect logic
inference and synthesis optimization. Changing these attribute settings can affect
synthesis with out having to re-code. See Table 7-1, “Helpful Synthesis Attributes.”

http://www.xilinx.com

190 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Helpful Synthesis Attributes

For a complete listing of attributes and their functionality, see your synthesis tool
documentation.

Additional Timing Options
Although timing performance might be enhanced, options that lead to the replication of
logic, such as retiming in Synplify PRO and register balancing in XST, can impact area.

To reduce high fanout nets, use fanout attributes specifically on that net, instead of globally
specifying a maximum fanout limit.

If hierarchical boundaries are maintained, make sure that ports are registered at the
hierarchical boundaries. If critical paths cross over these hierarchical boundaries, the
synthesis tool does not allow certain optimizations. Any physical synthesis options used in
the implementation tools are also limited in optimizing those paths if hierarchy is
maintained. This can lead both to lower performance and higher area utilization.

Another option is to set “KEEP_HIERARCHY” to soft. Setting “KEEP_HIERARCHY” to
soft:

• Maintains hierarchy for synthesis

• Makes it easier to perform post-synthesis simulation

• Allows MAP’s physical synthesis options to optimize across hierarchical boundaries

Table 7-1: Helpful Synthesis Attributes

XST Synplify PRO

Fanout control MAX_FANOUT syn_maxfan

Directs inference of RAMs to BRAMs
or SelectRAM

RAM_STYLE syn_ramstyle

Directs usage of DSP48 USE_DSP48 syn_multstyle
syn_dspstyle

Directs usage of SRL16 SHREG_EXTRACT syn_srlstyle

Controls percent of Block RAMs
utilized

N/A syn_allowed_resources

Preservation of Register Instances
During Optimizations

KEEP syn_preserve

Preservation of wires KEEP syn_keep

Preservation of black boxes with
unused outputs

KEEP syn_noprune

Controls clock enable function in flip
flops

USE_CLOCK_ENABLE N/A

Controls synchronous sets USE_SYNC_SET N/A

Controls synchronous resets USE_SYNC_RESET N/A

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 191
10.1

Choosing Implementation Options
R

Before you begin implementation:

• Review the warnings in your synthesis report.

• Check the RTL schematic view to see how the synthesis tool is interpreting the
Hardware Description Language (HDL) code. Use the technology schematic to
understand how the HDL code is mapping to the target architecture.

Choosing Implementation Options
This section discusses Choosing Implementation Options, and includes:

• “Choosing Options for Maximum Performance”

• “Performance Evaluation Mode”

• “Packing and Placement Option”

• “Physical Synthesis Options”

• “Xplorer”

Choosing Options for Maximum Performance
Which options to use for maximum performance can be unique to each design. The answer
depends on:

• Your design performance goals

• The synthesis flow used

• Its overall structure

Performance Evaluation Mode
If you have not specified any timing constraints, use Performance Evaluation Mode to get
a quick idea of design performance. The ISE software automatically generates timing
constraints for each internal clock for the implementation tool only. To automatically
invoke Performance Evaluation Mode, do not specify a User Constraints File (UCF).
Performance Evaluation Mode enables you to obtain high performance results from the
implementation tool without specifying timing goals.

Packing and Placement Option
Try the timing driven packing and placement option (map -timing) in MAP for all
architectures that support it. When map -timing is enabled, MAP does both the packing
and placement, while PAR does only the routing. By tightly integrating packing and
placement, and having both processes understand the timing information, the software
can take better advantage of the hardware and provide better performance.

For Virtex-5 devices, timing driven packing and placement is the only way to run MAP.
Because of the added complexity of the Virtex-5 slice structure, you can achieve efficient
packing only by using this strategy. For best performance, Xilinx recommends that you run
MAP and PAR with their effort levels set to High. While runtime is longer compared to
Standard effort level, you achieve better initial results.

http://www.xilinx.com

192 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Physical Synthesis Options
Physical synthesis options in implementation can re-optimize and pack logic based on
knowledge of the critical paths of a design, leading to better placement and routing. The
physical synthesis options are implemented during MAP. They include:

• Global netlist optimization

• Localized logic optimization

• Retiming

• Register duplication

• Equivalent register removal

For more information, see Xilinx White Paper 230, “Physical Synthesis and Optimization
with ISE 8.1i.” These physical synthesis options provide the greatest benefit to designs that
do not follow the guidelines for synthesis outlined in the previous paragraph. Physical
synthesis can lead to increased area due to replication of logic.

Xplorer
Use ISE Xplorer to determine which implementation options provide maximum design
performance. Xplorer has two modes of operation:

• “Timing Closure Mode”

• “Best Performance Mode”

It is usually best to run Xplorer over the weekend since it typically runs more than a single
iteration of MAP and PAR. Once Xplorer has selected the optimal tools settings, continue
to use these settings for the subsequent design runs. If you have made many design
changes since the original Xplorer run, and your design is no longer meeting timing with
the options determined by Xplorer, consider running Xplorer again.

Timing Closure Mode

You can access Timing Closure mode from Project Navigator or the command line. Timing
Closure mode evaluates your timing constraints, then tries different sets of
implementation options to achieve your timing goals. Although initial runtime can be
longer because of the need to run multiple implementations, once you have the optimal set
of options, you may reduce the number of design iterations necessary to achieve timing
closure.

Best Performance Mode

In Best Performance Mode, you can focus on a particular clock domain. Xplorer tries to
achieve the best frequency for the clock. This is especially helpful when benchmarking a
design's maximum performance.

http://www.xilinx.com
http://www.xilinx.com/bvdocs/whitepapers/wp230.pdf
http://www.xilinx.com/bvdocs/whitepapers/wp230.pdf

Synthesis and Simulation Design Guide www.xilinx.com 193
10.1

Evaluating Critical Paths
R

Evaluating Critical Paths
This section discusses Evaluating Critical Paths, and includes:

• “Understanding Characteristics of Critical Paths”

• “Logic Levels”

Understanding Characteristics of Critical Paths
By understanding the characteristics of your critical path, you can make better decisions
for the next design iteration. A data path is comprised of both logic and interconnect delay.
Individual component delays that make up logic delay are fixed. Logic delay can be
reduced only if the number of logic levels are reduced, or if the structure of the logic is
changed. In comparison, interconnect delay is much more variable, and is dependent on
the placement of the logic.

Logic Levels
This section discusses Logic Levels, and includes:

• “Many Logic Levels”

• “Few Logic Levels”

Many Logic Levels

When your design has excessive logic levels that lead to many routing interconnects:

• Evaluate using the physical synthesis options in MAP.

• Verify that the critical paths reported in implementation match those reported in
synthesis. If they do not, use constraints such as -route from Synplify PRO to focus
the synthesis tool on these paths.

• Review your Hardware Description Language (HDL) code to ensure that it is taking
the best advantage of the hardware.

• Make sure inferencing is occurring properly, particularly for hard-IP blocks.

Few Logic Levels

If there are few logic levels, but certain data paths do not meet your performance
requirements:

• Evaluate fan out on routes with long delay.

• If the critical path's destination is the clock enable or synchronous set/reset input of a
flop, try implementing the SR/CE logic using the sourcing LUT.

XST has attributes that can be applied globally or locally to disable the inference of
registers with synchronous sets or resets or clock enables. Instead they infer the
synchronous set or reset or clock enable function on the data input of the flip flop. This
may allow better packing of LUTs and FFs into the same slice. This can be especially
useful for Virtex-5 devices where there are four registers in each slice, and each must
use the same control logic pins.

• If a critical path contains hard-IP blocks such as Block RAMs or DSP48s, check that the
design is taking full advantage of the embedded registers. Understand when to make
the trade-off between using these hard blocks versus using slice logic.

http://www.xilinx.com

194 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

• Do a placement analysis. If logic appears to be placed far apart from each other,
floorplanning of critical blocks may be required. Try to floorplan only the logic that is
required to meet the timing objectives. Over floorplanning can cause worse
performance.

• Evaluate clock path skew. If the clock skew appears to be larger than expected, load
the design in FPGA Editor and verify that all clock resources are routed on dedicated
clocking resources. If they are not, this could lead to large clock skew.

Design Preservation With SmartCompile
This section discusses Design Preservation with SmartCompile and includes:

• “About Design Preservation With SmartCompile”

• “Deciding Whether to Use Partitions or SmartGuide”

• “Design Preservation with Partitions”

• “Design Preservation with SmartGuide”

About Design Preservation With SmartCompile
Use SmartCompile to preserve the unchanged portions of a design. SmartCompile consists
of two methods:

• Partitions

• SmartGuide

Deciding Whether to Use Partitions or SmartGuide
Although Partitions generally provide the best design flow, the design must follow good
design practices such as registering the outputs of Partitions. For more information, see
Xilinx Application Note XAPP918, “Incremental Design Reuse with Partitions.” If your
design does not work well with Partitions, or you are at the end of the design cycle, then
SmartGuide is preferable. Use the following guidelines to help you decide whether to use
Partitions or SmartGuide:

• “Guidelines for Using Partitions”

• “Guidelines for Using SmartGuide”

Table 7-2: Comparison of Partitions and SmartGuide

Feature/Function Partitions SmartGuide

Re-uses a previous implementation Yes Yes

Unchanged modules are guaranteed
the same implementation

Yes No

Require design planning Yes No

Runtime reduction Synthesis through Place and Route Map, Place, and Route

Ease of use Easy Easier

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp918.pdf

Synthesis and Simulation Design Guide www.xilinx.com 195
10.1

Design Preservation With SmartCompile
R

Guidelines for Using Partitions

Use Partitions when:

• You do not want to re-simulate those portions of the design that did not change.

• One or more modules have difficult timing, and you want to preserve implementation
in order to maintain the timing paths.

• You are still making changes to the design and you want to increase turns per day by
reducing implementation runtime. (Use PRESERVE=PLACEMENT)

Guidelines for Using SmartGuide

Use SmartGuide when:

• A design is finished and meets timing, but you are making small design changes and
want to reduce runtime.

• A design is finished and meets timing, but you need to change an attribute or move a
pin location.

• You want to leverage previous results, but design hierarchy does work well with
Partitions. If the design does not meet timing, runtime may or may not be reduced.

Design Preservation with Partitions
This section discusses Design Preservation with Partitions and contains:

• “About Design Preservation with Partitions”

• “Defining Partitions for Design Preservation”

• “Tips for Using Partitions for Design Preservation”

About Design Preservation with Partitions

If a design includes Partitions, ISE analyzes the modules to determine if they are (a) up-to-
date or (b) out-of-date, with respect to the previous implementation.

• If the Partition is out-of-date, it is completely re-implemented. No preservation
occurs.

• If the Partition is up-to-date, ISE copies it without change from the previous
implementation. The Partition is completely preserved, from synthesized netlist
through routing.

Setting the Partition attribute on a module:

• Isolates the module from the rest of the design

• Protects the module interface (connectivity across the Partition boundary) against
modification between implementations

• Enables the components and nets within the Partition to be copied from a previous
implementation into the current implementation.

Copying design information:

• Is faster than reimplementing it

• Assures exact duplication of the previous implementation

For more information, see Partitions Overview in the ISE Help.

http://www.xilinx.com

196 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Defining Partitions for Design Preservation

You can use Partitions to achieve the following design goals:

• Decreasing runtime

To decrease runtime, divide the design into four to ten Partitions, each of which
contains equivalent amounts of logic. If one Partition is modified, the others are
preserved. The amount of preservation is proportional to the number of Partitions.

• Meeting timing

Create a Partition when meeting timing is difficult. Try to contain the logic that is difficult to
meet timing in a Partition. Once timing is met for that Partition, do not modify it. Partitions
ensure that the logic in the Partition is preserved, even if logic outside the Partition is modified.

There is a point of diminishing returns when adding Partitions. The Partition interface is a
barrier to optimization. If a critical timing path or packing problem can be solved only by
optimizing across a Partition interface, remove the Partition. Creating registers on the
Partition interface reduces the likelihood of a timing or packing problem.

Both XST and Synplify Pro can be used to specify RTL Partitions.

Tips for Using Partitions for Design Preservation

• Partitions must be re-implemented after a command line change, or implementation
option change. The following project or implementation changes force all Partitions to
be re-implemented:

♦ Map-timing

♦ Effort levels

♦ All command line changes

• Partitions can nest hierarchically and be defined on any HDL module instance in the
design. A module with multiple instances can have multiple Partitions (a Partition for
each instance). The top level of the HDL design defaults to be a Partition.

• Partitions automatically detect input source changes. Source changes include HDL
changes and certain changes in constraint files such as physical constraints and LOC
ranges in the UCF.

• Partitions automatically detect command line changes. If an option changes, such as
effort levels on the implementation tools, all Partitions are reimplemented.

• Logic may be in the top level Partition.

• Command line users must use tcl to create and modify Partitions. The
implementation applications may be called from within a tcl script, or they may be
called from a make file by using the -ise switch. You can not implement a design
with Partitions by calling ngdbuild, map, or par without using the -ise switch.

• Partitions do not require floorplanning. If floorplanning is desired, use the graphical
Floorplanning tool to create area_group ranges for the Partition’s instance.

• To limit timing constraints to a specific Partition, as opposed to the entire design:

♦ Create a UCF for the Partition

♦ Create the timing constraints within that UCF

• The following options are not compatible with Partitions:

♦ MPPR

♦ global_opt

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 197
10.1

Design Preservation With SmartCompile
R

Design Preservation with SmartGuide
This section discusses Design Preservation with SmartGuide and includes:

• “About Design Preservation with SmartGuide”

• “Optimal Changes for SmartGuide”

• “Constraint Changes That Impact SmartGuide”

• “Reimplementing Without SmartGuide”

About Design Preservation with SmartGuide

SmartGuide instructs MAP to use results from a previous implementation to guide the
current implementation, based on a placed and routed NCD file. SmartGuide can help
achieve consistency of results while also improving runtime.

SmartGuide can be enabled in:

• Project Navigator

• TCL

• The command line

For more information on how to enable SmartGuide, see:

• ISE Help

• The Xilinx Development Systems Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

Optimal Changes for SmartGuide

SmartGuide is most useful for small logic changes, such as modifying a logic equation.
Since large changes (such as adding new modules and instances) affect the design
hierarchy, they reduce the probability of successfully matching components from a
previous implementation.

The changes that work well with SmartGuide are:

• A small logic change (less than 10 percent) in one or two modules

• Moving a pin location

• Changing an attribute on a component

• Changing a timing constraint

The options specified in MAP and PAR for the current implementation should match the
options specified for the previous implementation used to generate the guide file. This
ensures that similar algorithms and optimizations are run between both runs, ensuring the
best match.

Changing both timing and placement constraints can impact the results of SmartGuide. If
you are changing many constraints, Xilinx recommends that you allow the tools to run
without SmartGuide, then use the output of the initial run with the changed constraints as
your guide file for subsequent runs.

http://www.xilinx.com

198 www.xilinx.com Synthesis and Simulation Design Guide
10.1

Chapter 7: Design Considerations
R

Constraint Changes That Impact SmartGuide

The following constraint changes can impact the results of SmartGuide:

• Moving a pin location

Moving a pin location typically works well. Only the changed pin and net are re-
routed. Difficulties may occur if the pin is moved to a congested area and requires
moving nets in order to route the net that connects to the changed pin. This can cause
a ripple affect in order to route the design and meet timing.

• Moving a component

Moving a component is similar to moving a pin location. Moving a component can be
beneficial if it helps with timing; but it can be deleterious if the new component is
moved to a congested area.

• Relaxing a timing constraint

Relaxing a timing constraint can greatly help SmartGuide if a failing path now meets
timing. SmartGuide always tries to meet timing regardless whether the logic has
changed or not. For this reason, Xilinx recommends using SmartGuide only on designs
that meet timing.

• Tightening a timing constraint

Xilinx does not recommend tightening a timing constraint. If the change in constraints
now causes a path to fail, SmartGuide will re-implement that path and any other logic
in order to route and meet timing

Reimplementing Without SmartGuide

After about ten guided implementations, Xilinx recommends that you reimplement
without using SmartGuide in order to fully optimize the entire design. Reimplementing
without SmartGuide allows optimizations between logic that had previously been guided
by SmartGuide, and logic that is new or modified.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 199
10.1

R

Appendix A

Simulating Xilinx Designs in Modelsim

This Appendix discusses Simulating Xilinx Designs in Modelsim, and includes:

• “Simulating Xilinx Designs in Modelsim”

• “Running SmartModel Simulations in Modelsim”

Simulating Xilinx Designs in Modelsim
This section discusses Simulating Xilinx Designs in Modelsim and includes:

• “Compiling the Xilinx Simulation Libraries”

• “Running Simulation from Project Navigator (VHDL or Verilog)”

• “Running Functional Simulation in Modelsim (Standalone)”

• “Running Back Annotated Simulation in Modelsim (Standalone)”

Compiling the Xilinx Simulation Libraries
Before beginning functional simulation, you must compile the Xilinx Simulation Libraries
for the target simulator. Xilinx provides a tool called COMPXLIB for this purpose. For
more information, see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

Running Simulation from Project Navigator (VHDL or Verilog)
Project Navigator automatically creates the commands needed to run the simulation.

1. In the Sources pulldown menu, choose the simulation to run (Behavioral/ Post
Route Simulation).

2. Select the Testbench in the Sources window

3. Run the Simulate <respective> Model process in the Processes window.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

200 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Running Functional Simulation in Modelsim (Standalone)
This section discusses Running Functional Simulation in Modelsim (Standalone) and
includes:

• “Running Functional Simulation in MTI Standalone (Verilog)”

• “Running Functional Simulation in MTI Standalone (VHDL)”

Running Functional Simulation in MTI Standalone (Verilog)

To run functional simulation in MTI standalone (Verilog):

1. Compile the following:

a. glbl.v module

b. source files

c. testbench

For example:

vlog $env(XILINX)/verilog/src/glbl.v <source1>.v <source2).v ... <testbench>.v

For more information about the glbl.v module, see “Global Reset and Tristate for
Simulation.”

2. Load the design in ModelSim.

a. Use the -L switch to point to the libraries used in the design

b. Load the glbl.v module

For example:

vsim -t ps -L unisims_ver -L xilinxcorelib_ver work.<testbench> work.glbl

Note: The glbl.v automatically pulses Global Set/Reset (GSR) for the first 100 ns of the
simulation.

Running Functional Simulation in MTI Standalone (VHDL)

To run functional simulation in MTI standalone (VHDL):

1. Compile the following:

a. source files

b. testbench

For example:

vcom -93 <source1>.vhd <source2>.vhd ... testbench.vhd

2. Load the design:

vsim -t 1ps work.<testbench>

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 201
10.1

Simulating Xilinx Designs in Modelsim
R

Running Back Annotated Simulation in Modelsim (Standalone)
This section discusses Running Back Annotated Simulation in Modelsim (Standalone) and
includes:

• “Running Back Annotated Simulation in MTI Standalone (Verilog)”

• “Running Back Annotated Simulation in MTI Standalone (VHDL)”

Running Back Annotated Simulation in MTI Standalone (Verilog)

To run back annotated simulation in MTI Standalone (Verilog):

1. Create the Simulation Model.

a. To create the simulation model using Project Navigator:

Under each stage in the Implement Design process, there is a Generate Simulation
Model Process. For instance, under the Place and Route process is the Generate
Post-Place and Route Simulation Model. This runs the NetGen utility to generate a
simulation model and an SDF file with the timing information. The default name
of the model and the SDF file are <design_name>_timesim.v and
<design_name>_timesim.sdf. Right-click the Simulate Process to change the
properties for generating the model. Click Help for a description of each property.

b. To create the simulation model using the command line:

NetGen is the executable that creates simulation models. For more information,
see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm

2. Load the design in ModelSim.

a. Use the -L switch to point to the Verilog SimPrim models that define the behavior
of the components in the simulation model.

b. Load the glbl module.

For example:

vsim -t ps -L simprims_ver work.<testbench> work.glbl

Note: For Verilog, the timing simulation netlist has a $sdf_annotate statement that calls the
SDF file. Therefore the SDF file is automatically pulled in when loading the simulation. The
glbl.v automatically pulses Global Set/Reset (GSR) for the first 100 ns of the simulation.

Running Back Annotated Simulation in MTI Standalone (VHDL)

To run back annotated simulation in MTI Standalone (VHDL):

1. Create the Simulation Model.

a. To create the simulation model using Project Navigator:

Under each stage in the Implement Design process, there is a Generate Simulation
Model Process. For instance, under the Place and Route process is the Generate
Post-Place and Route Simulation Model. This runs the NetGen utility to generate a
simulation model and an SDF file with the timing information. The default name
of the model and the SDF file are <design_name>_timesim.vhd and
<design_name>_timesim.sdf. Right-click the Simulate Process to change the
properties for generating the model. Click Help for a description of each property.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

202 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

b. To create the simulation model using the command line:

NetGen is the executable that creates simulation models. For more information,
see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm

2. Compile the following:

a. generated simulation model

b. testbench

For example:

vcom -93 <design_name>_timesim.vhd testbench.vhd

3. Load the design, including the SDF (Standard delay format) file.

For example:

vsim -t ps -sdfmax /UUT=<design_name>_timesim.sdf work.testbench

You must supply MTI with the following information:

• The region where the SDF file should be applied. The region tells MTI where the
timing simulation netlist generated by the Xilinx tools is instantiated. Assume that the
entity name in your testbench is TESTBENCH and the simulation netlist is instantiated
inside the testbench with an instance name of UUT. The region for this example would
be /TESTBENCH/UUT.

• The location of the SDF file. If the SDF file is located in the same directory as the
simulation netlist, you need to supply only the name of the SDF file. Otherwise, you
must specify the entire path to the SDF file.

Following is an example of the VSIM command line:

vsim -t ps -sdfmax /testbench/uut=c:/project/sim/time_sim.sdf work.testbench

Running SmartModel Simulations in Modelsim
This section discusses Running SmartModel Simulations in Modelsim aind includes:

• “About Running SmartModel Simulations in Modelsim”

• “Editing the Initialization File”

• “Additional Steps”

About Running SmartModel Simulations in Modelsim
The Xilinx Hard IP simulation flow uses Synopsys VMC models to simulate Hard-IP
Blocks in the FPGA devices. For more information, see “Using SmartModels.” Because
VMC models are simulator-independent models derived from the actual design, they are
accurate evaluation models. To simulate these models, you must use a simulator that
supports the SWIFT Interface.

Although ModelSim SE and ModelSim PE both support the SWIFT interface, you must
modify the default ModelSim setup to enable this feature. The ModelSim install directory
contains an initialization file called modelsim.ini In this initialization file, you can edit
interface and simulator settings to default to your preferences. Parts of the modelsim.ini
file must be edited to work properly with the Xilinx simulation models.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 203
10.1

Running SmartModel Simulations in Modelsim
R

Editing the Initialization File
To make the changes to the modelsim.ini initialization file, edit either of the following:

• The modelsim.ini file located in the Modelsim installation directory, OR

• The ModelSim environment variable setting in the MTI setup script.

Point to the modelsim.ini file located in the design directory of each example.

Edit the modelsim.ini file as follows:

1. After the lines:

; Simulator resolution

; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or
100.

change:

Resolution = ns

to:

Resolution = ps

2. After the lines:

; Specify whether paths in simulator commands should be described
; in VHDL or Verilog format. For VHDL, PathSeparator = /
; for Verilog, PathSeparator = .

comment the following statement by adding a semicolon (;) at the beginning of the
line:

PathSeparator = /

3. After the line:

; List of dynamically loaded objects for Verilog PLI applications

add the following statements:

♦ Windows

Veriuser=$LMC_HOME/lib/pcnt.lib/swiftpli_mti.dll

♦ Linux

Veriuser = $LMC_HOME/lib/linux.lib/swiftpli_mti.so

♦ Linux64

$LMC_HOME/lib/amd64.lib/swiftpli_mti.so

4. After the line:

; Logic Modeling's SmartModel SWIFT software (Windows NT)

add the following statements:

♦ Windows

libsm = $MODEL_TECH/libsm.dll

libswift=$LMC_HOME/lib/pcnt.lib/libswift.dll

♦ Linux

libsm = $MODEL_TECH/libsm.sl

libswift = $LMC_HOME/lib/linux.lib/libswift.so

http://www.xilinx.com

204 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

♦ Linux 64

libsm = $MODEL_TECH/libsm.sl

libswift = $LMC_HOME/lib/amd64.lib/libswift.so

5. Do the following:

Caution! Do not skip this step.

♦ Windows

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

♦ Linux

setenv LD_LIBRARY_PATH $LMC_HOME/lib/linux.lib:$LD_LIBRARY_PATH

♦ Linux 64

setenv LD_LIBRARY_PATH $LMC_HOME/lib/amd64.lib:$LD_LIBRARY_PATH

Caution! Do not change the order in which the commands appear in the modelsim.ini file.
Simulation may fail if you do not follow the recommended order.

Additional Steps
After editing the modelsim.ini file:

1. Run CompXLib with the -arch <device_name> option to compile the SmartModel
wrapper files into the UniSim and SimPrim libraries.

♦ For more information on the specific command for your system, run compxlib
-help on the command line.

♦ For more information about CompXLib, see the Xilinx Development System
Reference Guide at http://www.xilinx.com/support/software_manuals.htm.

2. To verify that the SmartModels have been set up correctly, enter the following line in
the ModelSim command window:

VSIM>vsim unisim.ppc405

If there are no errors upon loading, the simulator is set up correctly.

3. If you are running ModelSim Standalone with an mpf file, make these changes in the
modelsim.ini file referenced by the mpf project file as well.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 205
10.1

R

Appendix B

Simulating Xilinx Designs in NCSIM

This Appendix discusses Simulating Xilinx Designs in NCSIM and includes:

• “Running Simulation from Project Navigator”

• “Running Simulation in NC-Verilog”

• “Running Simulation in NC-VHDL”

Running Simulation from Project Navigator
NCSIM is not integrated with Project Navigator.

Running Simulation in NC-Verilog
This section discusses Running Simulation in NC-Verilog and includes:

• “Running Simulations in NC-Verilog (Method One)”

• “Running Simulations in NC-Verilog (Method Two)”

• “Running SmartModel Simulations in NC- Verilog”

Running Simulations in NC-Verilog (Method One)
Method One uses library source files with compile time options (similar to Verilog-XL).
Depending on the makeup of your design (for example, Xilinx® instantiated primitives,
COREGen® components) for RTL simulation, specify the following at the command line:

ncverilog -y $XILINX/verilog/src/unisims -y
$XILINX/verilog/src/XilinxCoreLib \
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
<testfixture>.v <design>.v

The $XILINX/verilog/src/unisims area contains the Unified Library components
for RTL simulation. The $XILINX/verilog/src/simprims area contains generic
simulation primitives.

For timing simulation and post-map simulation, or for post-translate simulation, the
SimPrim-based libraries are used. Specify the following at the command line:

ncverilog -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
\+libext+.v <testfixture>.v <design>.v

For more information about annotating SDF files, see “Back-Annotating Delay Values from
SDF File.”

http://www.xilinx.com

206 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Running Simulations in NC-Verilog (Method Two)
Method Two uses shared pre-compiled libraries. Before beginning simulation for this
method, you must compile the Xilinx Simulation Libraries for the target simulator. Xilinx
provides a tool called COMPXLIB for this purpose. For more information, see the Xilinx
Development System Reference Guide at http://www.xilinx.com/support/software_manuals.htm

Depending on the makeup of the design (for example, Xilinx instantiated primitives,
COREGen) for RTL simulation, edit the hdl.var and cds.lib to specify the library
mapping as shown in the following examples:

• “CDS.LIB Example”

• “HDL.VAR Example”

CDS.LIB Example

cds.lib
DEFINE worklib worklib

HDL.VAR Example

hdl.var
DEFINE LIB_MAP ($LIB_MAP, + => worklib)

After setting up the libraries, compile and simulate the design:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v <design>.v
ncelab -messages <testfixture_name> glbl
ncsim -messages <testfixture_name>

The -update option of NCVlog enables incremental compilation.

Back-Annotating Delay Values from SDF File

This section discusses how to back-annotate delay values from an SDF file.

The NC-Verilog simulator only reads compiled SDF files; the SDF source file is supplied as
an argument in a $sdf_annotate task by NetGen. For more information on Netgen, see the
Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm

SDF files must be with NCSDFC to annotate the timing information contained in the SDF
file:

ncsdfc sdf_filename.sdf

NCSDFC creates a file called sdf_filename.sdf.X. If a compiled file exists, NCSDFC
checks to make sure that the date of the compiled file is newer than the date of the source
file and that the version of the compiled file matches the version of NCSDFC. If either
check fails, the SDF file is recompiled. Otherwise, the compiled file is read.

For Back Annotated simulation, the SimPrim-based libraries (except for Post Synthesis) are
used. Specify the following at the command line:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v
ncelab -messages -autosdf <testfixture_name> glbl
ncsim -messages <testfixture_name>

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 207
10.1

Running Simulation in NC-Verilog
R

Running SmartModel Simulations in NC- Verilog
This section discusses Running SmartModel Simulations in NC- Verilog and includes:

• “Running SmartModel Simulation in Cadence NC-Verilog (Linux)”

• “Running SmartModel Simulation in Cadence NC-Verilog (Linux 64)”

Running SmartModel Simulation in Cadence NC-Verilog (Linux)

This section discusses running SmartModel simulation in Cadence NC-Verilog (Linux) and
includes:

• “Cadence NC-Verilog (Linux) Setup File”

• “Cadence NC-Verilog (Linux) Setup Simulate File”

Edit the following files in the $Xilinx/smartmodel/lin/wrappers/ directory to set
up and run a simulation utilizing the SWIFT interface.

Cadence NC-Verilog (Linux) Setup File

The Cadence NC-Verilog (Linux) setup file defines the simulation variables. Set the
parameters in the angle brackets (< >) to match your system configuration.

Cadence NC-Verilog (Linux) Setup File Example

setenv XILINX <Xilinx path>
setenv CDS_INST_DIR <Cadence path>
setenv LM_LICENSE_FILE <license.dat>:$LM_LICENSE_FILE
setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/linux.lmc
setenv LD_LIBRARY_PATH
$CDS_INST_DIR/tools/lib:$LMC_HOME/sim/pli/src:$LMC_HOME/lib/linux.lib:
$LD_LIBRARY_PATH
setenv LMC_CDS_VCONFIG $CDS_INST_DIR/tools/verilog/bin/vconfig
setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/lin ${PATH}

Cadence NC-Verilog (Linux) Setup Simulate File

The Cadence NC-Verilog (Linux) simulate file is an NC-Verilog compilation simulation
script. It specifies which files must be compiled and loaded for simulation. Include the
design and testbench files to use this file to simulate a design. Set the parameters in the
angle brackets (< >) to match your system configuration.

Cadence NC-Verilog (Linux) Simulate File Example

ncverilog \
<design>.v <testbench>.v \
${XILINX}/verilog/src/glbl.v \
-y ${XILINX}/verilog/src/unisims +libext+.v \
-y ${XILINX}/verilog/src/simprims +libext+.v \
-y ${XILINX}/smartmodel/lin/wrappers/ncverilog +libext+.v \
+loadpli1=swiftpli:swift_boot +incdir+$LMC_HOME/sim/pli/src \
+access+r+w

http://www.xilinx.com

208 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Running SmartModel Simulation in Cadence NC-Verilog (Linux 64)

This section discusses running SmartModel simulation in Cadence NC-Verilog (Linux 64)
and includes:

• “Cadence NC-Verilog (Linux 64) Setup File”

• “Cadence NC-Verilog (Linux 64) Simulate File”

Edit the following files in the $Xilinx/smartmodel/lin64/wrappers/ directory to
set up and run a simulation utilizing the SWIFT interface.

Cadence NC-Verilog (Linux 64) Setup File

The Cadence NC-Verilog (Linux 64) setup file defines the simulation variables. Set the
parameters in the angle brackets (< >) to match your system configuration.

Cadence NC-Verilog (Linux 64) Setup File Example

setenv XILINX <Xilinx path>
setenv CDS_INST_DIR <Cadence path>
setenv LM_LICENSE_FILE <license.dat>:$LM_LICENSE_FILE
setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/amd64.lmc
setenv LD_LIBRARY_PATH
$CDS_INST_DIR/tools/lib:$LMC_HOME/sim/pli/src:$LMC_HOME/lib/amd64.lib:
$LD_LIBRARY_PATH
setenv LMC_CDS_VCONFIG $CDS_INST_DIR/tools/verilog/bin/vconfig
setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/lin64 ${PATH}

Cadence NC-Verilog (Linux 64) Simulate File

The Cadence NC-Verilog (Linux-64) simulate file is an NC-Verilog compilation simulation
script. It specifies which files must be compiled and loaded for simulation. Include the
design and testbench files to use this file to simulate a design.

Cadence NC-Verilog (Linux-64) Simulate File Example

ncverilog +nc64bit\
<design>.v <testbench>.v \
${XILINX}/verilog/src/glbl.v \
-y ${XILINX}/verilog/src/unisims +libext+.v \
-y ${XILINX}/verilog/src/simprims +libext+.v \
-y ${XILINX}/smartmodel/lin/wrappers/ncverilog +libext+.v \
+loadpli1=swiftpli:swift_boot +incdir+$LMC_HOME/sim/pli/src \
+access+r+w

Running Simulation in NC-VHDL
This section discusses Running Simulation in NC-VHDL and includes:

• “Setting Up the Libraries”

• “Running Behavioral Simulation With NC-VHDL”

• “Running Timing Simulation With NC-VHDL”

• “Running SmartModel Simulations in Cadence NC- VHDL”

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 209
10.1

Running Simulation in NC-VHDL
R

Setting Up the Libraries
Before beginning simulation, you must compile the Xilinx Simulation Libraries for the
target simulator. Xilinx provides a tool called COMPXLIB for this purpose. For more
information, see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm

Depending on the makeup of the design (for example, Xilinx instantiated primitives,
COREGen) for RTL simulation, edit the hdl.var and cds.lib to specify the library
mapping as shown in the following examples:

• “CDS.LIB Example”

• “HDL.VAR Example”

CDS.LIB Example

cds.lib
DEFINE worklib worklib

HDL.VAR Example

hdl.var
DEFINE LIB_MAP ($LIB_MAP, + => worklib)

Running Behavioral Simulation With NC-VHDL
After setting up the libraries, compile and simulate the design as follows:

ncvhdl <testbench>.vhd <design_name>.vhd ncelab -lib_binding -vhdl_time_precision 1ps -work
worklib -cdslib cds.lib -access +wc worklib.testbench:behavior
ncsim -extassertmsg -gui -cdslib cds.lib worklib.<testbench>:<architecture_name>

Running Timing Simulation With NC-VHDL
For timing simulation the SDF file will need to be compiled and then added to the ncelab
line.

To compile the SDF, run the command:

ncsdfc <name_of_sdf_file>

This comand writes out a <name_of_sdf_file>.X file, which is a compiled SDF file. If
a compiled file exists, NCSDFC checks to make sure that the date of the compiled file is
newer than the date of the source file and that the version of the compiled file matches the
version of NCSDFC. Then, in the ncelab stage there is a switch -SDF_CMD_FILE
<file_name>, which expects a command file for the SDF file.

SDF_CMD_FILE Example

// SDF command file sdf_cmd1

COMPILED_SDF_FILE = "dcmt_timesim_vhd.sdf.X",
SCOPE = :uut,
MTM_CONTROL = "MAXIMUM",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

// END OF FILE: sdf_cmd

http://www.xilinx.com

210 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Once the SDF is annotated correctly, change NC-Elab to the following:

ncelab -vhdl_time_precision 1ps -work worklib -cdslib cds.lib -SDF_CMD_FILE <file_name> -
access +wc worklib.<testbench>:<architecture_name>

If you are using IUS5.5 or higher, run the following command:

ncelab -lib_binding -vhdl_time_precision 1ps -work worklib -cdslib cds.lib -SDF_CMD_FILE
<file_name> -access +wc worklib.<testbench>:<architecture_name>

Running SmartModel Simulations in Cadence NC- VHDL

This section discusses Running SmartModel Simulations in Cadence NC- VHDL
and includes:
• “Running SmartModel Simulation in Cadence NC-VHDL (Linux)”

• “Running SmartModel Simulation in Cadence NC-VHDL (Linux 64)”

Running SmartModel Simulation in Cadence NC-VHDL (Linux)

This section discusses running SmartModel simulation in Cadence NC-VHDL (Linux) and
includes:

• “Cadence NC-VHDL (Linux) Setup File”

• “Cadence NC-VHDL (Linux) Simulate File”

Cadence NC-VHDL (Linux) Setup File

The Cadence NC-VHDL (Linux) setup file defines the simulation variables. Set the
parameters in the angle brackets (< >) to match your system configuration.

Cadence NC-VHDL (Linux) Setup File Example

setenv XILINX <Xilinx path>
setenv CDS_INST_DIR <Cadence path>
setenv LM_LICENSE_FILE <license.dat>:$LM_LICENSE_FILE
setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/linux.lmc
setenv LD_LIBRARY_PATH
$CDS_INST_DIR/tools/lib:$LMC_HOME/sim/pli/src:$LMC_HOME/lib/linux.lib:
$LD_LIBRARY_PATH
setenv LMC_TIMEUNIT -12
setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/lin ${PATH}

Cadence NC-VHDL (Linux) Simulate File

The Cadence NC-VHDL (Linux) simulate file is an NC-VHDL compilation simulation
script. It specifies which files must be compiled and loaded for simulation. Include the
design and testbench files to use this file to simulate a design. Set the parameters in the
angle brackets (< >) to match your system configuration.

Cadence NC-VHDL (Linux) Simulate File Example One

Run the following command for IUS 5.4 and lower:

ncvhdl v93 <testbench>.vhd <design>.vhd
ncelab -work worklib -cdslib cds.lib -access +wc
worklib.<testbench>:<view>

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 211
10.1

Running Simulation in NC-VHDL
R

Cadence NC-VHDL (Linux) Simulate File Example Two

Run the following command for IUS 5.5 and higher:

ncelab -lib_binding -work worklib -cdslib cds.lib -access +wc
worklib.<testbench>:<view>
ncsim +access+rw -gui -cdslib cds.lib worklib.<testbench>:<view>

Running SmartModel Simulation in Cadence NC-VHDL (Linux 64)

This section discusses running SmartModel simulation in Cadence NC-VHDL (Linux 64) and
includes:

• “Cadence NC-VHDL (Linux-64) Setup File”

• “Cadence NC-VHDL (Linux-64) Simulate File”

Cadence NC-VHDL (Linux-64) Setup File

The Cadence NC-VHDL (Linux-64) setup file defines the simulation variables. Set the
parameters in the angle brackets (< >) to match your system configuration.

Cadence NC-VHDL (Linux-64) Setup File Example

setenv XILINX <Xilinx path>
setenv CDS_INST_DIR <Cadence path>
setenv LM_LICENSE_FILE <license.dat>:$LM_LICENSE_FILE
setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/amd64.lmc
setenv LD_LIBRARY_PATH
$CDS_INST_DIR/tools/lib:$LMC_HOME/sim/pli/src:$LMC_HOME/lib/amd64.lib:
$LD_LIBRARY_PATH
setenv LMC_TIMEUNIT -12
setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/lin64 ${PATH}

Cadence NC-VHDL (Linux-64) Simulate File

The Cadence NC-VHDL (Linux-64) simulate file is an NC-VHDL compilation simulation
script. It specifies which files must be compiled and loaded for simulation. Include the
design and testbench files to use this file to simulate a design. Set the parameters in the
angle brackets (< >) to match your system configuration.

Cadence NC-VHDL (Linux 64) Simulate File Example

Use the following command for IUS 5.5 and higher:

ncelab -lib_binding -work worklib -cdslib cds.lib -access +wc
worklib.<testbench>:<view>
ncsim -64BIT +access+rw -gui -cdslib cds.lib worklib.<testbench>:<view>

http://www.xilinx.com

212 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 213
10.1

R

Appendix C

Simulating Xilinx Designs in Synopsys
VCS-MX and VCS-MXi

This Appendix discusses Simulating Xilinx Designs in Synopsys VCS-MX and VCS-MXi and
includes:

• “Simulating Xilinx Designs from Project Navigator in Synopsys VCS-MX and VCS-
MXi”

• “Simulating Xilinx Designs in Standalone Synopsys VCS-MX and VCS-MXi”

• “Simulating Xilinx Designs Using SmartModel with Synopsys VCS-MX and VCS-
MXi”

Simulating Xilinx Designs from Project Navigator in Synopsys
VCS-MX and VCS-MXi

Synopsys VCS-MX and VCS-MXi are not integrated with Project Navigator.

Simulating Xilinx Designs in Standalone Synopsys VCS-MX and
VCS-MXi

You can run a standalone simulation with Synopsys VCS-MX and VCS-MXi as follows:

• “Using Library Source Files With Compile Time Options”

• “Using Shared Pre-Compiled Libraries”

• “Using Unified Usage Model (Three-Step Process)”

Using Library Source Files With Compile Time Options
Depending upon the makeup of the design (Xilinx® instantiated primitives or CORE
Generator™ components), for RTL simulation, specify the following at the command line:

vcs -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/xilinxcorelib \
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
-Mupdate -R <testfixture>.v <design>.v

For timing simulation, the SimPrims-based libraries are used. Specify the following at the
command line:

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \
+libext+.v -Mupdate -R <testfixture>.v time_sim.v

http://www.xilinx.com

214 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

For information on back-annotating the SDF file for timing simulation, see “Using SDF
with VCS.”

The -R option automatically simulates the executable after compilation.

The -Mupdate option enables incremental compilation. Modules may be recompiled for
one of the following reasons:

• The target of a hierarchical reference has changed.

• A compile time constant, such as a parameter, has changed.

• The ports of a module instantiated in the module have changed.

• Module inlining. For example, the merging internally in VCS of a group of module
definitions into a larger module definition that leads to faster simulation. These
affected modules are again recompiled. This is performed only once.

Using Shared Pre-Compiled Libraries
Before beginning functional simulation, you must compile the Xilinx Simulation Libraries
for the target simulator. Xilinx provides a tool called COMPXLIB for this purpose. For
more information, see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm.

Depending upon the makeup of the design (Xilinx instantiated primitives or CORE
Generator components), for RTL simulation, specify the following at the command-line:

vcs -Mupdate -Mlib=<compiled_dir>/unisims_ver -y $XILINX/verilog/src/unisims \
-Mlib=<compiled_dir>/xilinxcorelib_ver - +incdir+$XILINX/verilog/src \
+libext+.v $XILINX/verilog/src/glbl.v -R <testfixture>.v <design>.v

For timing simulation or post-NGD2VER, the SimPrims-based libraries are used. Specify
the following at the command-line:

vcs +compsdf -Mupdate -Mlib=<compiled_lib_dir>/simprims_ver \
-y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v +libext+.v \
-R <testfixture>.v time_sim.v

For information on back-annotating the SDF file for timing simulation, see “Using SDF
with VCS.”

The -R option automatically simulates the executable after compilation.

The -Mlib=<compiled_lib_dir> option provides VCS with a central place to look
for the descriptor information before it compiles a module and a central place to obtain the
object files when it links the executables together.

The -Mupdate option enables incremental compilation. Modules may be recompiled for
one of the following reasons:

• The target of a hierarchical reference has changed.

• A compile time constant such as a parameter has changed.

• The ports of a module instantiated in the module have changed.

• Module inlining. For example, merging internally in VCS a group of module
definitions into a larger module definition leads to faster simulation. These affected
modules are again recompiled. This is performed only once.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

Synthesis and Simulation Design Guide www.xilinx.com 215
10.1

Simulating Xilinx Designs in Standalone Synopsys VCS-MX and VCS-MXi
R

Using Unified Usage Model (Three-Step Process)
The three-step process consists of the following phases:

• “Three-Step Process Analysis Phase”

• “Three-Step Process Elaboration Phase”

• “Three-Step Process Simulation Phase”

Three-Step Process Analysis Phase

The three-step process analysis phase consists of:

• vlogan [vlogan_options] file2.v file3.v file4.v

Analyze all Verilog files except the top-level Verilog file.

• vhdlan [vhdlan_options] file5.vhd file6.vhd

Analyze the VHDL bottom-most entity first, then move up in order.

Three-Step Process Elaboration Phase

The three-step process elaboration phase consists of:

 vcs [vcs_options] entity

Three-Step Process Simulation Phase

The three-step process simulation phase consists of:

simv [simv_options]

For more information, see the VCS User Guide, usually located in your VCS install directory
at VCS_HOME/doc/UserGuide/vcsmx_ug_uum.pdf.

Using SDF with VCS
There are two methods for back annotating delay values from an SDF file:

• “Compiling the SDF file at Compile Time”

• “Reading the ASCII SDF File at Runtime”

Compiling the SDF file at Compile Time

To compile the SDF file at compile time, run the +compsdf option as follows:

vcsi -R -f options.f +compsdf

VCS defaults to an SDF file that has the same name as the top-level simulation netlist. To
use a different SDF file, specify the SDF file name after the +compsdf option. You don’t
have to have any table files on the command line. VCS automatically determines the
required capabilities.

http://www.xilinx.com

216 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

Reading the ASCII SDF File at Runtime

To read the ASCII SDF file at runtime, you must provide a table file with the -P option as
follows:

1. Create a PLI table file (sdf.tab) that maps the $sdf_annotate system task to the C
function sdf_annotate_call.

2. Use the -P switch to specify this file as follows:

vcs -P sdf.tab -y $XILINX/verilog/src/simprims +libext+.v time_sim.v

The following is an example of an entry in the sdf.tab file:

$sdf_annotate call=sdf_ annotate_ call acc+=tchk, mp, mipb:%CELL+

Simulating Xilinx Designs Using SmartModel with Synopsys VCS-
MX and VCS-MXi

This section discusses Using SmartModel with Synopsys VCS-MX and VCS-MXi and
includes:

• “About Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi”

• “Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi (Linux)”

• “Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi (Linux-64)”

About Running SmartModel Simulation in Synopsys VCS-MX and VCS-
MXi

The Hard IP simulation flow uses Synopsys VMC models to simulate the IBM PowerPC
microprocessor and RocketIO multi-gigabit transceiver. Since VMC models are simulator-
independent models derived from the actual design, they are accurate evaluation models.
To simulate these models, you must use a simulator that supports the SWIFT interface.

You must first run CompXLib to install SmartModels. For more information on CompXLib,
see the Xilinx Development System Reference Guide at
http://www.xilinx.com/support/software_manuals.htm

Xilinx provides 64-bit SmartModel support for Linux.

Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi
(Linux)

This section discusses running SmartModel simulation in Synopsys VCS-MX and VCS-
MXi (Linux).

Edit the following files in the $Xilinx/smartmodel/lin/wrappers/ directory to set
up and run a simulation utilizing the SWIFT interface:

• “Synopsys VCS-MX and VCS-MXi (Linux) Setup File”

• “Synopsys VCS-MX and VCS-MXi (Linux) Simulate File”

Synopsys VCS-MX and VCS-MXi (Linux) Setup File

The Synopsys VCS-MX and VCS-MXi (Linux) setup file defines the simulation variables.
Set the parameters in the angle brackets (< >) to match your system configuration.

http://www.xilinx.com

Synthesis and Simulation Design Guide www.xilinx.com 217
10.1

Simulating Xilinx Designs Using SmartModel with Synopsys VCS-MX and VCS-MXi
R

Synopsys VCS-MX and VCS-MXSetup (Linux) File Example

setenv XILINX <Xilinx path>
setenv VCS_HOME <VCS path>
setenv LM_LICENSE_FILE <license.dat>:${LM_LICENSE_FILE}
setenv VCS_SWIFT_NOTES 1
setenv LMC_HOME $XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/linux.lmc
setenv VCS_CC gcc
setenv LD_LIBRARY_PATH $LMC_HOME/sim/pli/src:$LMC_HOME/lib/linux.lib:$LD_LIBRARY_PATH
setenv PATH ${LMC_HOME}/bin ${VCS_HOME}/bin ${PATH}
setenv PATH ${XILINX}/bin/lin ${PATH}

Synopsys VCS-MX and VCS-MXi (Linux) Simulate File

The Synopsys VCS-MX and VCS-MXi (Linux)simulate file is a VCS compilation simula-
tion script. It specifies which files must be compiled and loaded for simulation. Include
the design and testbench files to use this file to simulate a design. Set the parameters in the
angle brackets (< >) to match your system configuration.

Synopsys VCS-MX and VCS-MXi (Linux) Example Simulate File

vcs -lmc-swift \
<design>.v <testbench>.v \
${XILINX}/verilog/src/glbl.v \
-y ${XILINX}/verilog/src/unisims +libext+.v \
-y ${XILINX}/verilog/src/simprims +libext+.v \
-y ${XILINX}/smartmodel/lin/wrappers/vcsmxverilog +libext+.v \
sim -l vcs.log

Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi
(Linux-64)

This section discusses running SmartModel simulation in Synopsys VCS-MX and VCS-
MXi (Linux-64). Xilinx recommends using 32-bit simulation unless a 64-bit simulation is
needed due to memory space limitations. Simulation performance is usually slower in a
64-bit simulator. When running VCS-MX on Linux 64, use VCS-MX X2006.06 or newer.

Edit the following files in the $Xilinx/smartmodel/lin64/wrappers/ directory to
set up and run a simulation utilizing the SWIFT interface:

• “Synopsys VCS-MX and VCS-MXi Setup File (Linux-64)”

• “Synopsys VCS-MX and VCS-MXi Setup File (Linux-64)”

Synopsys VCS-MX and VCS-MXi Setup File (Linux-64)

The Synopsys VCS-MX and VCS-MXi (Linux-64) setup file defines the simulation
variables. Set the parameters in the angle brackets (< >) to match your system
configuration.

Synopsys VCS-MX and VCS-MX (Linux-64) Setup File Example

setenv XILINX <Xilinx path>
setenv VCS_HOME <VCS path>
setenv LM_LICENSE_FILE <license.dat>:${LM_LICENSE_FILE}
setenv VCS_SWIFT_NOTES 1
setenv LMC_HOME $XILINX/smartmodel/lin64/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/amd64.lmc

http://www.xilinx.com

218 www.xilinx.com Synthesis and Simulation Design Guide
10.1

R

setenv VCS_CC gcc
setenv LD_LIBRARY_PATH $LMC_HOME/sim/pli/src:$LMC_HOME/lib/amd64.lib:$LD_LIBRARY_PATH
setenv PATH ${LMC_HOME}/bin :${VCS_HOME}/amd64/bin: ${VCS_HOME}/bin:${PATH}
setenv PATH ${XILINX}/bin/lin64 ${PATH}

Synopsys VCS-MX and VCS-MXi Simulate File (Linux-64)

The Synopsys VCS-MX and VCS-MXi (Linux-64) simulate file is a VCS compilation simu-
lation script. It specifies which files must be compiled and loaded for simulation. Include
the design and testbench files to use this file to simulate a design. Set the parameters in the
angle brackets (< >) to match your system configuration.

Synopsys VCS-MX and VCS-MXi (Linux-64) Example Simulate File

vcs -lmc-swift -full64\
<design>.v <testbench>.v \
${XILINX}/verilog/src/glbl.v \
-y ${XILINX}/verilog/src/unisims +libext+.v \
-y ${XILINX}/verilog/src/simprims +libext+.v \
-y ${XILINX}/smartmodel/lin/wrappers/vcsmxverilog +libext+.v \
sim -l vcs.log

http://www.xilinx.com

	Software Manuals
	Synthesis and Simulation Design Guide
	About the Synthesis and Simulation Design Guide
	Synthesis and Simulation Design Guide Overview
	Synthesis and Simulation Design Guide Design Examples
	Synthesis and Simulation Design Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Introduction to Synthesis and Simulation
	Hardware Description Languages (HDLs)
	Advantages of Using Hardware Description Languages (HDLs) to Design FPGA Devices
	Designing FPGA Devices With Hardware Description Languages (HDLs)
	Understanding Hardware Description Languages (HDLs)
	Designing FPGA Devices with VHDL
	Designing FPGA Devices with Verilog
	Designing FPGA Devices with Synthesis Tools
	Using FPGA System Features
	Designing Hierarchy
	Specifying Speed Requirements

	2 FPGA Design Flow
	Design Flow Diagram
	Design Entry Recommendations
	Use Register Transfer Level (RTL) Code
	Select the Correct Design Hierarchy

	Architecture Wizard
	Using Architecture Wizard
	Opening Architecture Wizard
	Architecture Wizard Components

	CORE Generator
	About CORE Generator
	CORE Generator Files

	Functional Simulation
	Synthesizing and Optimizing
	Creating a Compile Run Script
	Modifying Your Code to Successfully Synthesize Your Design
	Reading Cores

	Setting Constraints
	Advantages of Setting Constraints
	Specifying Constraints in the User Constraints File (UCF)
	Setting Constraints in ISE

	Evaluating Design Size and Performance
	Meeting Design Parameters
	Estimating Device Utilization and Performance
	Determining Actual Device Utilization and Pre-Routed Performance

	Evaluating Coding Style and System Features
	Modifying Code to Improve Design Performance
	Using FPGA System Features
	Using Xilinx-Specific Features of Your Synthesis Tool

	Placing and Routing
	Timing Simulation

	3 General Recommendations for Coding Practices
	Designing With Hardware Description Languages (HDLs)
	Naming, Labeling, and General Coding Styles
	Common Coding Style
	Xilinx Naming Conventions
	Reserved Names
	Naming Guidelines for Signals and Instances
	Matching File Names to Entity and Module Names
	Naming Identifiers
	Instantiating Sub-Modules
	Recommended Length of Line
	Common File Headers
	Indenting and Spacing

	Specifying Constants
	Using Constants and Parameters to Clarify Code
	Using Constants and Parameters VHDL Coding Examples
	Using Generics and Parameters to Specify Dynamic Bus and Array Widths

	TRANSLATE_OFF and TRANSLATE_ON

	4 Coding for FPGA Flow
	VHDL and Verilog Limitations
	Design Hierarchy
	Advantages and Disadvantages of Hierarchical Designs
	Using Synthesis Tools with Hierarchical Designs

	Choosing Data Type
	Use Std_logic (IEEE 1164)
	Declaring Ports
	Arrays in Port Declarations
	Minimize Ports Declared as Buffers

	Using `timescale
	Mixed Language Designs
	If Statements and Case Statements
	Comparing If Statements and Case Statements
	4–to–1 Multiplexer Design With If Statement
	4–to–1 Multiplexer Design With Case Statement

	Sensitivity List in Process and Always Statements
	Delays in Synthesis Code
	About Delays in Synthesis Code
	Delays in Synthesis Code Coding Examples

	Registers and Latches in FPGA Design
	Registers in FPGA Design
	IOB Registers
	Latches in FPGA Design

	Implementing Shift Registers
	About Implementing Shift Registers
	Describing Shift Registers

	Control Signals
	Set, Resets, and Synthesis Optimization
	Asynchronous Resets Coding Examples
	Synchronous Resets Coding Examples
	Using Clock Enable Pin Instead of Gated Clocks
	Converting the Gated Clock to a Clock Enable

	Initial State of the Registers, Latches, Shift Registers, and RAMs
	Initial State of the Registers and Latches
	Initial State of the Shift Registers
	Initial State of the RAMs

	Multiplexers
	About Multiplexers
	Multiplexers Coding Examples

	Finite State Machines (FSMs)
	FSM Description Style
	FSM With One Process
	FSM With Two or Three Processes
	FSM Recognition and Optimization
	Other FSM Features

	Implementing Memory
	Block RAM Inference
	About Block RAM Inference
	Block RAM Inference Coding Examples

	Distributed RAM Inference
	Single-Port Distributed RAM
	Dual-Port Distributed RAM

	Arithmetic Support
	About Arithmetic Support
	Arithmetic Support Coding Examples
	Order and Group Arithmetic Functions
	Resource Sharing

	Synthesis Tool Naming Conventions
	Instantiating Components and FPGA Primitives
	Instantiating FPGA Primitives
	Instantiating CORE Generator Modules

	Attributes and Constraints
	Attributes
	Synthesis Constraints
	Implementation Constraints
	Passing Attributes
	Passing Synthesis Constraints

	Pipelining and Retiming
	About Pipelining
	Before Pipelining
	After Pipelining
	About Retiming

	5 Using SmartModels
	Using SmartModels with ISE Simulator
	Using SmartModels to Simulate Designs
	SmartModel Simulation Flow
	About SmartModels
	SmartModel Supported Simulators and Operating Systems
	Installing SmartModels
	Installing SmartModels (Method One)
	Installing SmartModels (Method Two)

	Setting Up and Running Simulation

	6 Simulating Your Design
	About Simulating Your Design
	Adhering to Industry Standards
	Simulation Flows
	Standards Supported by Xilinx Simulation Flow
	Xilinx Supported Simulators and Operating Systems
	Xilinx Libraries

	Simulation Points in HDL Design Flow
	About Simulation Points
	Register Transfer Level (RTL)
	Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation
	Post-NGDBuild (Pre-Map) Gate-Level Simulation
	Post-Map Partial Timing (Block Delays)
	Timing Simulation Post-Place and Route (Block and Net Delays)

	Using Test Benches to Provide Stimulus
	About Test Benches
	Creating a Test Bench
	Test Bench Recommendations

	VHDL and Verilog Libraries and Models
	Required Simulation Point Libraries
	Simulation Phase Library Information
	Library Source Files and Compile Order
	Simulation Libraries
	Reducing Simulation Runtimes

	Simulation of Configuration Interfaces
	JTAG Simulation
	SelectMAP Simulation
	Spartan-3AN In-System Flash Simulation

	Disabling BlockRAM Collision Checks for Simulation
	About Disabling BlockRAM Collision Checks for Simulation
	SIM_COLLISION_CHECK Strings

	Global Reset and Tristate for Simulation
	About Global Reset and Tristate for Simulation
	Using Global Tristate (GTS) and Global Set/Reset (GSR) Signals in an FPGA Device
	Global Set/Reset (GSR) and Global Tristate (GTS) in Verilog

	Design Hierarchy and Simulation
	Advantages of Hierarchy
	Improving Design Utilization and Performance
	Good Design Practices
	Maintaining the Hierarchy

	Register Transfer Level (RTL) Simulation Using Xilinx Libraries
	Simulating Xilinx Libraries
	Delta Cycles and Race Conditions
	Recommended Simulation Resolution
	IP Encryption Methodology

	Generating Gate-Level Netlist (Running NetGen)
	Disabling X Propagation for Synchronous Elements
	X Propagation During Timing Violations
	Using the ASYNC_REG Constraint

	MIN/TYP/MAX Simulation
	About MIN/TYP/MAX Simulation
	Obtaining Accurate Timing Simulation Results
	Absolute Min Simulation
	Using the VOLTAGE and TEMPERATURE Constraints

	Special Considerations for CLKDLL, DCM, and DCM_ADV
	DLL/DCM Clocks Do Not Appear De-Skewed
	TRACE/Simulation Model Differences for DCM/DLL
	Non-LVTTL Input Drivers
	Viewer Considerations
	Attributes for Simulation and Implementation

	Understanding Timing Simulation
	Importance of Timing Simulation
	Glitches in Your Design
	Debugging Timing Problems
	Timing Problem Root Causes
	Debugging Tips
	Setup and Hold Violations

	Simulation Using Xilinx-Supported EDA Simulation Tools

	7 Design Considerations
	Understanding the Architecture
	Understanding Hardware Features and Trade-Offs
	Slice Structure
	Hard-IP Blocks

	Clocking Resources
	Determining Whether Clocking Resources Meet Design Requirements
	Evaluating Clocking Implementation
	Clock Reporting

	Defining Timing Requirements
	Defining Constraints
	Over-Constraining
	Constraint Coverage
	Examples of Non-Consolidated Constraints
	Consolidation of Constraints Using Grouping

	Driving Synthesis
	Creating High-Performance Circuits
	Helpful Synthesis Attributes
	Additional Timing Options

	Choosing Implementation Options
	Choosing Options for Maximum Performance
	Performance Evaluation Mode
	Packing and Placement Option
	Physical Synthesis Options
	Xplorer

	Evaluating Critical Paths
	Understanding Characteristics of Critical Paths
	Logic Levels

	Design Preservation With SmartCompile
	About Design Preservation With SmartCompile
	Deciding Whether to Use Partitions or SmartGuide
	Design Preservation with Partitions
	Design Preservation with SmartGuide

	A Simulating Xilinx Designs in Modelsim
	Simulating Xilinx Designs in Modelsim
	Compiling the Xilinx Simulation Libraries
	Running Simulation from Project Navigator (VHDL or Verilog)
	Running Functional Simulation in Modelsim (Standalone)
	Running Back Annotated Simulation in Modelsim (Standalone)

	Running SmartModel Simulations in Modelsim
	About Running SmartModel Simulations in Modelsim
	Editing the Initialization File
	Additional Steps

	B Simulating Xilinx Designs in NCSIM
	Running Simulation from Project Navigator
	Running Simulation in NC-Verilog
	Running Simulations in NC-Verilog (Method One)
	Running Simulations in NC-Verilog (Method Two)
	Running SmartModel Simulations in NC- Verilog

	Running Simulation in NC-VHDL
	Setting Up the Libraries
	Running Behavioral Simulation With NC-VHDL
	Running Timing Simulation With NC-VHDL
	Running SmartModel Simulations in Cadence NC- VHDL

	C Simulating Xilinx Designs in Synopsys VCS-MX and VCS-MXi
	Simulating Xilinx Designs from Project Navigator in Synopsys VCS-MX and VCS-MXi
	Simulating Xilinx Designs in Standalone Synopsys VCS-MX and VCS-MXi
	Using Library Source Files With Compile Time Options
	Using Shared Pre-Compiled Libraries
	Using Unified Usage Model (Three-Step Process)
	Using SDF with VCS

	Simulating Xilinx Designs Using SmartModel with Synopsys VCS- MX and VCS-MXi
	About Running SmartModel Simulation in Synopsys VCS-MX and VCS- MXi
	Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi (Linux)
	Running SmartModel Simulation in Synopsys VCS-MX and VCS-MXi (Linux-64)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

