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Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no 
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of 
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these 
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in 
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of 
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of 
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation 
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if 
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential 
purpose of any limited remedies herein.

These design modules are not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of these reference designs would be gratefully received by the 
author. 

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: chapman@xilinx.com

Limitations
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Introduction
This reference design for the Spartan-3E Starter Kit serves two quite different purposes. As such, you may be interested in one particular aspect or both.

HyperTerminal
(or similar)

RS232
Serial Communication

38400 baud
8-bits
No Parity
No flow control

XC3S500E

UART

1024 × 18

768 × 24

1280 × 72

1536 × 12

1920 × 9

1280 × 13

1920 × 48

Line Store 
Macros Under 

Evaluation

LEDs
pixels_per_line × bit_width

Hardware Development and Testing of Macros - The design provides an example of how the Starter Kit can be used as a test bed for macros enabling 
real implementations to be evaluated during development. This technique can be applied to many parts of designs and helps reduce the burden of testing 
and debugging when putting a final system together. Such ‘real simulation’ can also be significantly faster than using a traditional software simulator since 
the logic is working at full clock rate. When testing a macro, it is not always necessary to have all the peripherals and connectors that the final system will 
have. The macro is effectively placed in a ‘virtual socket’ within the Spartan-3E device and some means provided to stimulate and monitor the macro. In this 
example PicoBlaze is used as a convenient way to control and monitor the macros under test with an RS232 (UART) link to the PC providing the human 
interface (HyperTerminal). So in fact the test design only uses 2 pins on the Spartan device and all others are ‘virtual pins’ (OK, I used the LEDs too). 

Efficient Video Line Store Macros - In this case the macros under evaluation are a set of highly efficient video line stores implemented using Block 
Memory (BRAM). Line stores are often used when performing image processing algorithms. In recent years the resolution of images has been increasing 
resulting in more pixels per line and pixels of greater resolution (more bits to represent each colour). Unless these line stores are implemented efficiently it 
becomes very difficult to implement an adequate number of line stores on a Spartan-3E device. This reference design provides 7 ready to use line store 
macros all of which can be evaluated using this design. If your main interest in this reference design is purely to use one or more of these macros then you 
may wish to advance directly to page 16 (without passing GO and without collecting £200!).
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Using the Test Design
The design is provided as a configuration BIT file for immediate programming of the Spartan XC3S500E provided on the Spartan-3E Starter Kit. Source 
design files are also provided for those more interested in the intricacies of the design itself. 

USB cable plus some devices on 
board essentially provide the same 
functionality as a Platform Cable 
USB and is used in conjunction  

with iMPACT. 

Initially used to configure the 
Spartan-3E with the PicoBlaze 

based design (BIT file). 

Can subsequently be used to 
update the PicoBlaze program 

stored in an internal Block Memory 
(BRAM) allowing rapid software 

changes and experiments
(see JTAG_loader documentation 

provided with PicoBlaze) .

RS232 Serial Cable. 
Used for operating the design and 

obtaining results.

Cable connects J9 on the board to 
your PC serial port. For this you will 

need a male to female straight 
through cable (critically pin2-pin2, 

pin3-pin3 and pin5-pin5).  

+5v supply
Don’t forget to switch the board on too! 

(SWP)

PC

To make this task really easy the first time, unzip all the files provided into a directory 
and then…. 

double click on ‘install_line_store_tester.bat’. 
Assuming you have the Xilinx software installed, your board connected with the USB 
cable and the board powered (don’t forget the power switch), then this should open a 
DOS window and run iMPACT in batch mode to configure the Spartan-3E with the 
design (configuration BIT file). You should see the LED ‘LD0’ turn on and a message 
appear on your PC terminal window (see following pages for HyperTerminal set up).

Quick Start - Configure the Spartan-3E with the design
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Serial Terminal Setup 
An RS232 serial link is used to communicate with the design. Any simple terminal program can be used, but HyperTerminal is adequate for the task and 
available on most PCs. 

A new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings and protocol 
required by an alternative terminal utility. 

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at 
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is 
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 38400
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Go to next page to 
complete set up…
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HyperTerminal Setup 
4 - Disconnect

5 - Open the properties dialogue

To select a different 
COM port and change 
settings (if not correct).

6 - Open Settings

8 - Open ASCII Setup 

Ensure boxes are filled in as shown. 

The design will echo characters that 
you type so you do not need the ‘Echo 
typed characters locally’ option.

The design transmits carriage return 
characters (ODHEX) to indicate end of 
line so you do need the ‘Append line 
feeds to incoming line ends’ option to 
be enabled.

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are 
few other protocol settings which need to be set or verified for the PicoBlaze 
design to work as expected. 

9 - ‘OK’ the boxes to get back to 
main screen and then Connect.

7 - Select VT100 and then 
click ‘Terminal Setup’
Set ‘Rows’ to 40 and 
‘Columns’ to 100.
(You will probably need to stretch 
main screen later to fit this size).

Optional step…..
Set Font to 
Courier New,
Regular, 10



Efficient Video Line Stores 7

Terminal Commands
Welcome message

Enter commands in upper or lower case

Valid commands acknowledged with ‘OK’

Any mistakes in command entry results in ‘Error’

Type commands to the prompt.
Backspace key is supported to allow simple editing.
Single space between command and hex value or operand.
End command entry with Carriage Return.

All tests are performed using simple 
commands (see next page) entered at the 
terminal. 

The value at the output of each line store is 
display with a simple ‘index’ line to help 
identify each output.

Display of cycle count

Values applied to line store inputs

Index
line

Outputs from line stores
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Terminal Commands
SET hhhhhh - Set the 24-bit value to be applied to the input of all line stores where 'hhhhhh' is a 6 digit hex value.

Line stores requiring less than 24-bits will are provided with the least significant bits of this value.
By default the design is initialised or ‘RESET’ with the value set to 000001 hex.

CYCLE n   - Test the line stores for ‘n’ clock cycles where ‘n’ is a decimal value in the range 1 to 9999.
The input to the line stores during each test cycle will be depend on previous use of SET and AUTO commands.
The outputs from all line stores will be displayed depending on the previous use of FAST command.

AUTO ON / AUTO OFF – With AUTO mode turned on, the 24-bit value applied to the inputs of the line stores will automatically increment after each test  
cycle. By default the design is initialised or ‘RESET’ with AUTO turned ON and the status of AUTO is indicated by LED ‘LD0’ on
the board. 

FAST ON / FAST OFF – With FAST mode turned on, the display of results during a CYCLE command are suppressed except for the last cycle. In this 
design the speed of the test is limited by the communication rate of the RS232 interface. When FAST mode is enabled, the 
speed benefits of testing using real hardware become apparent. By default the design is initialised or ‘RESET’ with FAST turned
OFF and the status of FAST is indicated by LED ‘LD1’ on the board. 

RESET   - Initialise the test design. 
All line stores are purged of existing values by repeatedly writing the value 000000 hex.
Cycle counter is reset.
Input to line stores set to 000001 hex with AUTO mode ON.
FAST mode is turned off.
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Example Test 1
KCPSM3>cycle 3

00001   000001  000000  00000  0000  000000 000000 000000 000  000 000000 000000
00002   000002  000000  00000  0000  000000 000000 000000 000  000 000000 000000
00003   000003  000000  00000  0000  000000 000000 000000 000  000 000000 000000

cycle    input     768   1024  1280   1280a  1280b  1280c 1536 1920   1920a  1920b

OK

KCPSM3>fast on

OK

KCPSM3>cycle 1915

01918   00077E  00047E  0037E  027E  00027E 000000 000000 17E  000  000000 000000

cycle    input     768   1024  1280   1280a  1280b  1280c 1536 1920   1920a  1920b

OK

KCPSM3>fast off

OK

KCPSM3>cycle 5

01919   00077F  00047F  0037F  027F  00027F 000000 000000 17F  000  000000 000000
01920   000780  000480  00380  0280  000280 000000 000000 180  000  000000 000000
01921   000781  000481  00381  0281  000281 000000 000000 181  001  000001 000000
01922   000782  000482  00382  0282  000282 000000 000000 182  002  000002 000000
01923   000783  000483  00383  0283  000283 000000 000000 183  003  000003 000000

cycle    input     768   1024  1280   1280a  1280b  1280c 1536 1920   1920a  1920b

OK

Using the default initial settings the CYCLE command will 
generate input values (in hexadecimal) that match the test 
cycle count. All cycles are displayed and after the last line 
there is an ‘index’ to identify each line store output.

Although all line stores are being tested in parallel by this 
design, in this example my interest was to check the macros 
supporting 1920 stages of delay. To perform and display 1915 
test cycles would take approximately 42 seconds so the fast 
mode is useful to make rapid progress; actually appears to be 
instantaneous �. 

Hint – Use FAST ON to get close to the cycles of interest and 
then revert to FAST OFF to see  the detail.

As the 1921st test cycle is reached, the output from the 
1920 stage line store is showing the value 000001 hex 
which was input during the 1st test cycle.

‘Index’ tells you that 
column of results 

above are the outputs 
from a 1920 stage 

line store

Decimal Test cycle counter since start

Hex value applied to line stores
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Example Test 2
KCPSM3>set 123456

OK

KCPSM3>cycle 1

00001   123456  000000  00000  0000  000000 000000 000000 000  000 000000 000000

cycle    input     768   1024  1280   1280a  1280b  1280c 1536 1920   1920a  1920b

OK

KCPSM3>set 789abc

OK

KCPSM3>cycle 1

00002   789ABC  000000  00000  0000  000000 000000 000000 000  000 000000 000000

cycle    input     768   1024  1280   1280a  1280b  1280c 1536 1920   1920a  1920b

OK

KCPSM3>set aaaaaa

OK

KCPSM3>auto off

OK

KCPSM3>cycle 1285

In this example a specific pattern is being applied to the line 
store inputs. 

First the value 123456 hex is set and then applied for one test 
cycle

Second the value 789ABC hex is set and then applied for one 
test cycle

Finally the value AAAAAA hex is set and by using the AUTO 
OFF command this value will be applied for all subsequent 
test cycles.

Again, although all line stores are being tested in parallel, in
this case my interest was the line store macros providing1280 
stages of delay.
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Example Test 2 continued
.
.
.
01266   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01267   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01268   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01269   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01270   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01271   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01272   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01273   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01274   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01275   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01276   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01277   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01278   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01279   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01280   AAAAAA  AAAAAA 2AAAA  0000  000000 000000 000000 000  000 000000 000000
01281   AAAAAA  AAAAAA 2AAAA  1456  123456 000000 000000 000  000 000000 000000
01282   AAAAAA  AAAAAA 2AAAA  1ABC  789ABC 000000 000000 000  000 000000 000000
01283   AAAAAA  AAAAAA 2AAAA  0AAA  AAAAAA 000000 000000 000  000 000000 000000
01284   AAAAAA  AAAAAA 2AAAA  0AAA  AAAAAA 000000 000000 000  000 000000 000000
01285   AAAAAA  AAAAAA 2AAAA  0AAA  AAAAAA 000000 000000 000  000 000000 000000
01286   AAAAAA  AAAAAA 2AAAA  0AAA  AAAAAA 000000 000000 000  000 000000 000000
01287   AAAAAA  AAAAAA 2AAAA  0AAA  AAAAAA 000000 000000 000  000 000000 000000

cycle    input     768   1024  1280   1280a  1280b  1280c 1536 1920   1920a  1920b

OK

KCPSM3>

Because the CYLCE command was issued with FAST OFF 
all results are displayed (but it took a minute to run!).

You can see that the shorter line stores have filled with the 
fixed AAAAAA hex value (some line stores are less than 24-
bits resulting in what appears to be a different value at first 
glance) and those that are longer have yet to show any values 
other than their initial clear states. 

As the test reaches cycle 1281 the special values 
applied during test cycles 1 and 2 appear at the outputs 
of the 1280 stage line stores.

This macro supports 13-bit data so the original 24-bit value has been 
truncated to just the least significant bits
123456 hex = 0001 0010 0011 0100 0101 0110
789ABC hex = 0111 1000 1001 1010 1011 1100

24-bit macro 
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PicoBlaze Circuit Diagram

buffer_full

uart_rx receive

serial_in

clk

data_out

reset_buffer

buffer_data_present

en_16_x_baud

read_buffer

buffer_half_full
rx_half_full

rx_full

rx_data_present

read_from_uart

rx_data
rx_female

buffer_full

uart_tx
transmit

data_in

clk

serial_out

reset_buffer

en_16_x_baud

write_buffer

buffer_half_full

tx_half_full

tx_full

out_port
tx_female

write_to_uart
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Decode 80

clk

en_16_x_baud

UART macros include 16-byte FIFO buffers
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‘JTAG_loader’ allows rapid 
PicoBlaze code development.

port_id

kcpsm3 processor

instruction

write_strobe
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read_strobe
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reset
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input_ports
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led[7:0]

0

Interrupt not used in this design
Baud rate = 38400

[7:0]

1 [15:8]

2 [23:16]

line_store_in[23:0]

3
line_store_ce

Decode 00001

‘dummy’ write to port 
08 hex generated clock 

enable pulse

[4:0]

Read outputs from all 
line stores under test 

(see next pages).
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Line Stores Under Test - Circuit Diagram 1

delay_768x24 line_store1

data_in[23:0]

clk

ce

line_store1_out[23:0]
data_out[23:0]

[7:0]

[15:8]

[23:16]

delay_1024x18 line_store2

data_in[17:0]

clk

ce

line_store2_out[27:0]
data_out[17:0]

[7:0]

[15:8]

[17:16]

delay_1280x13 line_store3

data_in[12:0]

clk

ce

line_store3_out[12:0]
data_out[12:0]

[7:0]

[12:8]

delay_1280x72 line_store4

data_in[71:0]

clk

ce
line_store4_out[71:0]

data_out[71:0]

[7:0]

[15:8]

[23:16]

line_store4_in[71:0]

[47:0]

24

48

[31:24]

[39:32]

[47:40]

[55:48]

[63:56]

[71:64]

[71:48]

[47:24]

[23:0] ‘1280a’

‘1280b’

‘1280c’

‘768’

‘1024’

‘1280’

line_store_in[23:0]

line_store_ce

1280 1280 1280

24
‘1280a’ ‘1280b’ ‘1280c’

The 1280x72 line store is rather wide so it has been ‘folded’ 3 times 
to represent 3 cascaded lines of 1280 stages each with 24-bits.  

13

18

24

Part of 
PicoBlaze 
input MUX
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Line Stores Under Test - Circuit Diagram 2

delay_1536x12 line_store5

data_in[11:0]

clk

ce

line_store5_out[11:0]
data_out[11:0]

delay_1920x9 line_store6

data_in[8:0]

clk

ce

line_store6_out[8:0]
data_out[8:0]

[7:0]

[8]

delay_1920x48 line_store7

data_in[47:0]

clk

ce
line_store7_out[47:0]

data_out[47:0]

[7:0]

[15:8]

[23:16]

line_store7_in[47:0]

[23:0]

24

24

[31:24]

[39:32]

[47:40]

[47:24]

[23:0] ‘1920a’

‘1920b’

‘1536’

‘1920’

line_store_in[23:0]

line_store_ce

1920 1920

24
‘1920a’ ‘1920b’

The 1920x48 line store is rather wide so it has been ‘folded’ 2 times 
to represent 2 cascaded lines of 1920 stages each with 24-bits.  

9

12

[7:0]

[11:8]

Part of 
PicoBlaze 
input MUX
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Design Files
The source files provided for the reference 
design are show on this page.line_store_tester.vhd Top level file and main description of hardware.

PicoBlaze program source assembler code

kcpsm3.vhd PicoBlaze processor for Spartan-3E devices.

ls_test.vhd

I/O constraints file for Spartan-3E Starter Kit 
and timing specifications for 50MHz clock.

ls_test.psm

Assembled program for PicoBlaze (stored in a Block memory) 

Note: The files shown in green are not included with the reference design as they 
are provided with PicoBlaze download. Please visit the PicoBlaze Web site for your 
free copy of PicoBlaze, UART, assembler, JTAG_loader and documentation. 

www.xilinx.com/picoblaze

bbfifo_16x8.vhd

kc_uart_tx.vhd

uart_rx.vhd

bbfifo_16x8.vhd

kc_uart_rx.vhd

uart_tx.vhd

UART transmitter and receiver with 16-byte FIFO buffers.

line_store_tester.ucf
Hint – Source files contain many 
comments and descriptions to help 
you understand the design further.

delay_768x24.vhd

delay_1024x18.vhd

delay_1280x13.vhd

delay_1280x72.vhd

delay_1536x12.vhd

delay_1920x9.vhd

delay_1920x48.vhd

Line Store Macros under test or ready for use in your own video and image processing designs.
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Line Stores

Line Store

Line Store

Frame Buffer

Frame Buffer

1 pixel in

1 pixel out

Spartan

Newest Pixel 
from 

Frame Buffer

Pixel delayed 
by 2 lines

A video image is made up of many lines with each line being formed of many pixels. As you would expect, a Higher resolution display has a larger number of 
pixels per line and a larger number of lines per screen than a lower resolution display. A pixel is typically described as an intensity figure represented by an 8, 
10 or 12-bit value. Of course colour displays will need to describe the intensity of red, green and blue elements of each pixel requiring anything up to (12×3) 
36-bits to describe. Some systems may also include pixel correction value, infrared data etc. 

Pixels per Line

Number 
of Lines

Lines × Pixels

Lines × Pixels

Fn(3 × 3 Pixels)

In the majority of applications, it is impractical to store one or more whole images inside a Spartan devices and therefore some form of external storage is 
required. The bandwidth of this external memory then restricts how many pixels can be accessed at the pixel rate which can cause problems when 
implementing 2-D algorithms. As shown above, an image is formed by scanning from left to right and top to bottom. This only requires one pixel to be read 
from external memory at the pixel rate (although higher clock rates may be required to access multiple bytes for red, green and blue definition of each pixel).  
of higher quality. In 2-D processing, it is necessary to have access to all the pixels in a block. A simple shift register is all that is required to remember several 
pixels on the line currently being read but to access the pixel above or below initially implies another read form the external frame buffer which is probably not 
achievable in the time available (especially as the address would not be consecutive and suitable for burst reading). The solution are line stores implemented 
using on-chip memory which hold all the pixels for a complete line. These are in effect shift registers but only allowing access at their beginning and end. As a 
pixel in written into the line store, the output is presenting the corresponding pixel of the line directly above. 

9 Pixel
Algorithm
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Typical Line Store Sizes
There are so many different sizes and formats of video displays that it is hard to keep up with them all. However, the following short table covers many of the 
more common sizes indicating the typical range of pixels per line. It is interesting to observe how the number of pixels typically relate to a multiples of 64, 128, 
256 or 512 pixels even if their lengths are not powers of 2 in their own right. 

The number of bits required to represent each pixel is really of less significance in terms of the implementation but is important to consider because of the 
demands it will place on a design overall. A dominant issue when implementing line stores efficiently in a Spartan device has more to do with human nature 
than to do with anything technical. We seem to have an overwhelming desire to keep things separated into their own ‘little boxes’ and functions. When it 
comes to implementing line stores, engineers often have this unnecessary desire to implement each line store in total isolation. They often fail to notice how 
red, green and blue pixel data can either be packed together to form a single wider data value or how a pixel value could be split into several pieces to make 
use of spare capacity in other line stores and then recombined later. So please bare this in mind that whilst using the macros supplied.

Line length Length factors Typical Bit Widths

640                5 × 128            8   BW, RGB  

720                                   8   BW, RGB

768                3 × 256            8   BW, RGB

800               25 × 32             8   BW, RGB 

1024                1 × 1024           8,10  BW,RGB

1152                9 × 128            8,10,12  RGB

1280                5 × 256            8,10,12  RGB

1366                                     10,12  RGB

1536           6 × 256 or 3 × 512 10,12  RGB

1920               15 × 128              10,12  RGB

12-bit red, green and blue amounts to 36-bits of 
data per pixel. There is no reason to keep the 
different colours in separate physical line stores as 
all will be delayed by the same amount.  

36-bit
Line Store

12

12

12

12

12

12

It would also be possible to split pixel data to fill 
otherwise unused capacity of a line store rather 
than use separate line stores for each colour.

Note that packing of pixels from different lines is 
also possible since all pixels on all lines advance at 
the same time (see page 19).

18-bit
Line Store

12 12

18-bit
Line Store

12

12

12

12
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Line Stores Provided
This reference design package contains 7 pre-implemented line stores for the most common line lengths encountered. In each case the objective has been to 
provide the highest number of ‘line-bits’ per Block Memory (BRAM) and enable highly efficient designs to be implemented in Spartan devices. A ‘line-bit’ is a 
delay of 1-bit corresponding to the number of pixels on one line of a video display. The equivalent circuit for a line store macro is shown below.

delay_768x24 (1 BRAM)

delay_1024x18 (1BRAM)

delay_1280x13 (1 BRAM)

delay_1280x72 (5 BRAMs)

delay_1536x12 (1BRAM)

delay_1920x9 (1 BRAM)

delay_1920x48 (5 BRAMs)

Device XC3S100E XC3S250E XC3S500E XC3S1200E XC3S1600E

Number of BRAMs 4 12 20 28 36

96Maximum 768 Line-Bits 480288 672 864

Macros supplied

72Maximum 1024 Line-Bits 368216 504 648

52Maximum 1280 Line-Bits 288170 399 517

48Maximum 1536 Line-Bits 240144 336 432

36Maximum 1920 Line-Bits 192114 267 345

Since the bit sizes of pixels are so variable, the focus was simply to provide the maximum number of line-bits in each case. Macros can then be connected in 
parallel or packed to achieve the total number of line-pixels required by your system. There is an example of such ‘line-pixel packing’ on the next page.

The following chart indicates the maximum number of line-bits that can be implemented in each device in the Spartan-3E family using the various macros 
provided. Divide the number in the table by the number of bits used to define your pixels (bits × colours) to calculate the maximum number of full line stores 
which can be implemented on a given device. For example, The XC500E is able to support a maximum of 288 line-bits of length 1280. If pixels are defined by 
10-bits red, 10-bits green and 10-bits blue then we must divide the line-bits figure by 30 and this tells us that this device would support a maximum of 9 full 
RGB line stores.

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

data_out(n:0)data_in(n:0)

ce

clk
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Example - Packing Line Stores
In this example we see how 2 line stores of 1920 pixels for a 3×3 pixel image processing algorithm can be implemented using 7 Block Memories (BRAMs). In 
this case each pixel is defined by 10-bits red, 10-bits green and 10-bits blue.

As described later, a single BRAM results provides a delay of 1920 stages but only for 9-bit data (delay_1920x9.vhd). However, since all colours of a pixel 
and all lines must advance at the same time (common pixel clock and clock/pixel enable), there is no need to keep colours or lines artificially separated 
allowing anything to be packed together in any order. This diagram shows one possible configuration using the 7 macros (BRAMs). 

10

10

10

Line 1 is formed by packing the three 10-bit colour values into each 
BRAM rather than keeping each colour separate. 

This means that the although 4 BRAMs have been used, the forth is 
still able to support another 6-bit bus which is then used to 
implement part of the second line.

Delay 1920 × 9

10

10

10

4

6

6

10

10

10

It is easy to see that not taking the opportunity to pack lines together would result in 8 BRAMs instead of the 7 shown. Failing to pack different colours 
together would yield very poor results.  It may be nice to keep things separate when designing, but the costs can be significant. 

4

6

Line 2 is formed using less BRAMs because it can steal 6 line-bits 
from the BRAMs primarily used to implement the first line. It in turn 
has 3 line-bits spare to help implement another line.

LINE 1

LINE 1

LINE 1

LINE 2

LINE 2

LINE 2

LINE 2
LINE 1
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It is all too east to become confused about what is exactly the correct the length for a line store such that all the correct pixel data is available at the same 
time (typically the same clock cycle). It is therefore a good idea to consider a ridiculously small example in some detail. You may wish to skip over this 
description now, but don’t be surprised if at some point in the future you need to come back to it once the actual implementation of lines stores is discussed.

Delay Length Sanity Check!

155 156 157 158151 152 153 154 159 160

5 6 7 81 2 3 4 13 14 15 169 10 11 12
21 22 23 2417 18 19 20 29 30 31 3225 26 27 28
37 38 39 4033 34 35 36 45 46 47 4841 42 43 44
53 54 55 5649 50 51 52 61 62 63 6457 58 59 60

145 146 147 148 149 150

Line Store

Line Store 1

17

33 33

This example shows a very small display which is just 16 
pixels wide and 10 pixels tall. We can number each pixel as 
shown. 

The image is scanned left to right and top to bottom so the  
pixels will arrive in the order in which they are numbered here.

During fly-back (line and frame) the line stores must be 
disabled if the pixel clock is free running. 

The object of line stores is to enable a vertical column of pixels to be observed simultaneously. 
So as highlighted, when pixel 33 is being received by the display at the start of the 3rd line, it 
should be possible to view pixel 17 and pixel 1. Likewise, as pixel 57 is received on the 4th line, 
then pixels 41 and 25 should be presented by the line stores. This is obviously delay of 16 pixels 
per line, but the key is to ensure that absolutely the correct data is visible as shown in the timing 
diagram below. 

input

LS1

LS2

input

LS1

LS2

Pixel rate clock

32 33 34

16 17 18

160 1 2
Previous

frame

In theory, the line store can be implemented using a shift register 
equal to the length of the line. This automatically presents the correct 
pixel at the output as the new pixel is being applied. In practice, even 
the highly efficient SRL16E mode of the Spartan slices is not cost 
effective and techniques using Block Memory (BRAM) must be used.

17

33

17 12345678910111213141516
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RAMB16_Sn_Sm

READ FIRST Mode = Quad Port Memory
Each Block Memory (BRAM) is dual port but actually has 4 data ports; 2 data ports are always associated with data being written into the memory and the 
other 2 ports are always associated with reading data out of the memory. This is a significant difference to external memory devices in which a data port is 
typically bidirectional and consequently shared between writing and reading operations. 

Since each Spartan BRAM is dual port, it is only natural that it should allow any 2 memory locations to be written simultaneously or any 2 memory locations 
to be read simultaneously. It is also natural that dual port memory should allow one port to be used to write information whilst the other port is being used to 
read information (e.g. when implementing a FIFO). However, in addition to these obvious modes, each BRAM has a special ‘READ_FIRST’ mode which 
enables both the write and read ports associated with each memory port to be used simultaneously. This means that each dual port BRAM can actually 
allow 2 values to be written and 2 values to be read every clock cycle. Although there are limitations to the possible address combinations, each BRAM can 
be considered a quad port memory in certain applications and video line stores are one such application that can exploit this pseudo quad port 
characteristic.

CLKA

DIPA

ADDRA

DOPA
WEA

CLKB

ADDRB
WEB

ENA
SSRA

ENB
SSRB

DIA DOA

DIPB DOPB
DIB DOB

READ_FIRST mode allows the data stored at a given address to be read out 
on the DO/DOP lines at the same time that a new value applied to the DI/DIP 
lines is being stored at that same address.

In the example below, the write enable (WEn) and enable (ENn) are always 
active (WEA=ENA=1) such that data is being written and read every clock 
cycle. The example emphasizes that the value ‘1111’ previously stored at 
address ’120’ is read out at the same time that the new value ‘3333’ is written.

CLKA

ADDRA

DIA

DOA

120 121 120 121 120

1111 2222 3333 4444 5555

???? ???? ???? 1111 2222

Writes ‘1111’
into ‘120’

Writes ‘3333’
into ‘120’

Reads ‘1111’
from ‘120’

121

4444

3333

Reads ‘3333’
from ‘120’
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Cyclic Buffers For Delay Lines

0
1

2

3

4

5
6

78
9

10

11

12

13
14

15

Counter
Increments

RAMB16_Sn_Sm

CLKA

DIPA

ADDRA

DOPA
WEA

ENA
SSRA

DIA DOA

CE
Q[3:0]

‘1’

‘0’

CE

CLK

1) The value currently stored at the address defined by the counter will be transferred to the DO/DOP output lines where it will remain.
2) The new value provided at the DI/DIP input lines will be stored at the same address (over writing the previous value).
3) The counter will advance to the next location ready for the next clock cycle.

0 1 2 3 4 5 6 8 9 A B C D E7 F 0 1 2 3 4 5 7 8 9 A B C D6 E

CLK

ADDR

DI

D0

16 17

In this example a 4-bit counter has 16 states (0 to F hex) corresponding to 16 memory locations. This is where it is tempting to think that this structure is 
providing the functionality of a 16 pixel line store but closer inspection of the timing diagram below shows that this is not the case. Compare this diagram with 
the situation presented on page 20 where each pixel is numbered in ascending order. Do not become distracted by the actual address (ADDR) values as that 
is just the counter cycling round the 16 states and memory locations.

5 10

Memory
cells

Output
Register

1

2 3 4 5 6 87 9 10 11 12 13 15141 16 17 18 19 20 21

2 3 41

What we see is that the structure is actually the equivalent of 
a 17 stage shift register. This is because the READ_FIRST 
mode is the equivalent of having a synchronous register on 
the output of the memory which provides one more delay. 
Therefore in order to have the equivalent of a 16 stage 
shift register, the cyclic counter must have only 15 
states (line length – 1). Important: Counting 0 to 14 (E hex) 
is 15 states (do not confuse terminal count with the number 
of counter states). 

IMPORTANT
‘EN’ must used to 
enable both the 
read and the write 
operations. This 
makes it behave 
like a shift register 
with clock enable.

The READ_FIRST mode allows each port of the BRAM to implement a fixed length delay using a cyclic buffer technique. A simple binary counter is all that is 
required to set the length of the delay. On each rising clock edge (when the write enable and enable are both High), three things will happen:-
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28

Why using ‘EN’ is Vital for Delay Lines
Each port of the BRAM has a write enable pin (WE) and an enable pin (EN). These are subtlety different and their correct use is vital when implementing 
delay lines. The ‘EN’ pin is a global enable for that port. If this signal is Low (‘0’) then the port is totally disabled. Nothing can be written and nothing can be 
read. The value at the DO and DOP output will remain static regardless of all other inputs. The ‘WE’ pin is the write enable. Providing the ‘EN’ is active High 
(‘1’) then the value presented on the DI and DIP pins will be stored at the location defined by the address applied to the ‘ADDR’ pins. When implementing a 
delay line suitable for a line store, it is vital that the ‘EN’ pin is used as the enable control and that the ‘WE’ is permanently active High. The reason for this 
only becomes clear when considering what happens when the delay is disabled as would be the case during use when display fly-back is being performed 
and the delay is providing a line store. Let’s return to the idea of a 16-pixel line store and look at what should happen during line fly-back…

29 30 31 32 33 34 35 36 37 38 39 40

Pixel Clock

Store Enable (EN pin)

Data In

Data Out 12 13 14 15 16 18 19 20 21 22 23 2417

Disable during fly-back

Notice how the write of the last pixel of the second line (pixel 32) results in the output from the BRAM changing to the first pixel of the second line (pixel 17). 
This pixel is then is then available when the first pixel of the third line is presented (pixel 33). This is consistent with the operation of a shift register with clock 
enable or with the cyclic buffer implemented using BRAM provided the ‘EN’ pin is used. In contrast, look what happens if the ‘WE’ pin is used as the enable. 
Everything is working well whilst the enable is High, but as soon as the 
enable is deactivated the new address presented by the counter causes
a further read.

XX

ADDR

WE

EN

CE Q
‘1’

CE

CLK

DI DO

‘0’ SSR

Correct value = 17

E 0 1 2 3 5 6 7 8 9 A B4ADDR (example values)

28 29 30 31 32

12 13 14 15 16 17

XX

E 0 1 2 3 4

18 Incorrect value = 18

Pixel Clock

Store Enable (WE pin)

Data In

Data Out

ADDRHaving EN=‘1’ means that DO 
changes on the next clock edge to 
reflect the change of address. This 
presents pixel 18 too early which 
would give a fault at the start of 
each line.
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1024 Pixel Line Store (18-bit)
The 1024 pixel line store is a direct implementation of a cyclic buffer and results in almost perfect system efficiency providing that you fully use the 
available bit width by packing pixels together to maximise the use of the 18-bits which each BRAM implements. In this case there is no reason to use the 
dual port capability of the BRAM and so the single port memory of aspect ratio 1024×18 with READ_FIRST mode is used.

The 10-bit address counter requires only 5 slices to implement plus a little more to decode the terminal count value. In most designs this number of slices 
is negligible and having a separate address counter for each BRAM line store will enable simple layout and design flow. If however slices are at a premium 
in your design, the counter can be shared between multiple BRAMs effectively forming a single line store of increased bit width. In this test design some 
address counters are routed to 5 BRAMs and yet they could overate close to 200MHz clock rate indicating that separate counters are not required purely to 
meet performance even at HDTV pixel rates.  

RAMB16_S18

CLK

DIP[1:0]

ADDR[9:0]

DOP[1:0]
WE

EN
SSR

DI[15:0] DO[15:0]

CE Q[9:0]

‘1’

‘0’

CE

CLK

[17:16]

[15:0]

[17:16]

[15:0]

INC/RST

data_in[17:0] data_out[17:0]

Decode
3FE hex

When a BRAM port is configured to be 8-bits or 
wider, then for every 8-bits there is an additional 
parity bit. Although called parity bits and provided 
on a separate port, these bits are just ordinary 
memory and can be used to store more pixel data. 
It is therefore common for these bits to be merged 
with the main data port to provide a single wider 
bus. The 18-bit bus shown here is formed of two 
bytes and their associated two parity bits.

The 10-bit counter will automatically initialise to zero (no global reset required when using 
Spartan devices) and then increment for each clock edge that the enable is High. When the 
counter reaches 1022 (3FE hex) it will force the counter to roll back to zero on the next 
qualified clock edge. This gives the counter 1023 states rather than its natural 1024 states and 
means that one memory location (address 3FF hex) will never be used in this design.

Memory 
Efficiency

= 99.9%

delay_1024x18.vhd
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1920 Pixel Line Store (9-bit)
The 1920 pixel line store can also be a very direct implementation using single port memory single port memory of aspect ration 2048×9 with 
READ_FIRST mode.

RAMB16_S9

CLK

DIP[0:0]

ADDR[10:0]

DOP[0:0]
WE

EN
SSR

DI[7:0] DO[7:0]

CE Q[10:0]

‘0’

CE

CLK

[8]

[7:0]

[8]

[7:0]

INC/RST

data_in[8:0] data_out[8:0]

Decode
77E hex

There is a single ‘parity bit’ to go with the 8-bit 
main port allowing a 9-bit bus to be supported.

The 11-bit counter will automatically initialise to zero (no global reset required when using Spartan devices) and then increment for each clock 
edge that the enable is High. When the counter reaches 1918 (77E hex) it will force the counter to roll back to zero on the next qualified clock 
edge. This gives the counter 1919 states and means that 129 memory locations (address 77F to 7FF hex) are not used in this design.

= 93.7%

The inefficiency of 6.3% represents the 1,161 bits of memory that are unused in this case. In theory, the maximum number of bits for a line length of 
1920  that can be supported by a single BRAM is 9.605 (18432/(1920-1)) indicating that this implementation is providing the maximum number of 
complete line-bits that are possible which is probably acceptable in most cases. Later we will see that this wasted space can be recovered.

‘1’

Memory 
Efficiency

delay_1920x9.vhd
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1535 × 9 513 × 9

1536 Pixel Line Stores
The 1536 pixel line store presents an issue since 1536 is not even close to being a power of 2. In fact it is exactly mid way between 1024 and 2048 which 
can easily lead to a very inefficient implementation of a line store.

The data width is only able to support 9 line-bits resulting in poor use of the memory. The 11-bit counter has 1535 states meaning that 513 memory 
locations are unused (5FF to 7FF hex). That is a total of 4,617 bits that are not used in this design. Clearly this is an unacceptable waste of memory since 
it would appear adequate to implement a further 3 line-bits. Fortunately there is a solution based on the observation that 1536 is a multiple of 256 even if it 
is not a power of 2 in its own right and that so far only used one of the two ports provided on the BRAM because we have used the READ_FIRST mode.

An obvious attempt is to employ the 2048×9 aspect ration of BRAM since this is the depth aspect greater than the 1536 delay required. The simplified 
diagram below indicates what this simple solution can offer.

RAMB16_S9

DI DO

ADDR

9 9
data_in[8:0] data_out[8:0]

Count
0 to 1534

11

1536 Line Store (9-bit)

Efficiency = 75% (unacceptable!)

DIA DOA9 9

DIB DOB9 9

1535 × 9 511 × 9

This diagram shows that if the ‘A’ port of a dual port memory 
is used to implement a 1536 line store of 9-bits it leaves 513 
locations of 9-bits unused as was the case with the single 
port implementation discussed above. However, it now 
becomes clear that the ‘B’ port can be used to access that 
unused space. Providing the address range on the ‘B’ port is 
kept in the range 5FF to 7FF it will have no effect on the ‘A’
port operation and the dual port memory has effectively 
been divided into two single port memories albeit of different 
sizes.

000

601 7FF

5FE

It is now possible for the ‘B’ port to implement a delay of 512stages of 9-bits. Cascading 3 delays of 512 stages then yields the desired 1536 stage delay. 
Since 9-bits conveniently divides by 3, the ‘B’ port is able to provide an additional 3 line-bits and utilise all but 2 locations (18 bits) of the memory.

RAMB16_S9_S9

1536 Line Store (12-bit)     Efficiency = 99.9% (acceptable!)
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1536 Pixel Line Store (12-bit)
Dual port combined with READ_FIRST mode is enabling virtually all the memory to be used to provide a 1536 line store of 12-bits.

RAMB16_S9_S9

CLKA

DIAP[0:0]

ADDRA[10:0]

DOPA[0:0]
WEA

ENA
SSRA

DIA[7:0] DOA[7:0]

CE Q[10:0]

‘1’

‘0’

CE

CLK

[8]

[7:0]

[8]

[7:0]

INC/RST

data_in[11:0] data_out[11:0]

Decode
5FE hex

= 99.9%

CLKB

DIBP[0:0]

ADDRB[10:0]

DOPB[0:0]
WEB

ENB
SSRB

DIB[7:0] DOB[7:0]

‘1’

‘0’

[10:3]

[8]

[11:9]

Count 0 to 1534 

CE Q[10:0]

INC/LOAD
601 hex

Decode
7FF hex

Count 1537 to 2047
(511 states) 

[11:9][11:9]

[2:0]

[7:0]

Delay
512

[2:0] Delay
512

[5:3] Delay
512

[8:6] [11:9]data_in[11:9] data_out[11:9]

[11]

‘B’ port is used to form a 512 stage delay which is used 3 times 
by 3 bits. The diagram to the right shows the equivalence of the
signals being used.

delay_1536x12.vhd

Memory 
Efficiency
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768 Pixel Line Stores
The 768 pixel line store can exploit the same dual port technique. This time using the fact that 768 is 3×256 to pack the remaining space via the second 
port. 

768 Line Store (24-bit)

RAMB16_S18_S18

DIB DOB18 18

767 × 18
255
×
18

DIB DOB18 18

767 × 18
257
×
18

The BRAM is used in 1024×18 aspect ratio since this is deep enough to support a direct delay of 768 stages for 18-bits. This then leaves enough memory 
to implement 256 stage delays for another 18-bits. Since 768 is 3×256, then each additional bit just has to pass through the ‘B’ port delay 3 times. Once 
again we are faced with a convenient division of the bits which allow the 18-bit port to provide exactly 6 additional bits of line delay.

24-bit
Line Store

8

8

8

8

8

8

Delay = 768×18

Delay = 256×18 
= 768×6

24-bits is an ideal system fit for 8-bit RGB pixel data.
One complete line store per BRAM.

= 99.9%Memory 
Efficiency



Efficient Video Line Stores 29

768 Pixel Line Store (24-bit)
Dual port combined with READ_FIRST mode is enabling virtually all the memory to be used to provide a 768 line store of 24-bits.

RAMB16_S18_S18

CLKA

DIAP[1:0]

ADDRA[9:0]

DOPA[1:0]
WEA

ENA
SSRA

DIA[15:0] DOA[15:0]

CE Q[9:0]

‘1’

‘0’

CE

CLK

[17:16]

[15:0]

INC/RST

data_in[23:0] data_out[23:0]

Decode
2FE hex

CLKB

DIBP[1:0]

ADDRB[9:0]

DOPB[1:0]
WEB

ENB
SSRB

DIB[15:0] DOB[15:0]

‘1’

‘0’

[21:6]

[23:18]

Count 0 to 766 

CE Q[9:0]

INC/LOAD
301 hex

Decode
3FF hex

Count 769 to 1023
(255 states) 

[23:18][23:18]

[5:0]

[15:0]

Delay
256

[5:0] Delay
256

[11:6] Delay
256

[17:12] [23:18]data_in[23:18] data_out[23:18]

[23:22]

‘B’ port is used to form a 256 stage delay which is used 
3 times by 6 bits. The diagram to the right shows the 
equivalence of the signals being used.

[17:16]

[15:0]

[17:16]

delay_768x24.vhd

= 99.9%Memory 
Efficiency
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1279 × 9 769 × 9

1280 Pixel Line Stores
The 1280 pixel line store is even more of a challenge. To only use a BRAM to form 9-bits of delay of this length would mean a memory efficiency of only 
62.5% which is something we just can not accept when using Spartan device in high volume applications. So once again the solution is to exploit the dual 
port of the memory to unlock that unused potential.

DIA DOA9 9

DIB DOB9 9 Although the ‘B’ port unlocks enough memory to form a 
delay of 768 stages of 9 bits, this length of delay is not 
immediately convenient for creating further delays of 1280 
stages since it is 5 × 256.  

000 7FF

RAMB16_S9_S9

1279 × 9 767 × 9

‘A’ port directly implements a delay of 1280 stages of 9 bits 
using 1279 memory locations and the synchronous 
READ_FIRST mode.

For greatest memory efficiency, the ‘B’ port can be used to form delay of 640 stages which is half of the required 1280 stages. This then enables 
additional bits of data to be supported  resulting in a total of 13 bits with a memory efficiency of  90.1%.  

1279 × 9 769 × 9
DIA DOA9 9

DIB DOB8 8
000 7FF

RAMB16_S9_S9

1279 × 9 639 × 8

‘B’ port provides delay of 640 stages of 8 bits which can be 
used to form a delay of 1280 × 4.

130 memory locations are completely unused and the ‘parity 
bit’ will be unused on the ‘B’ port.

‘A’ port directly implements a delay of 1280 stages of 9 bits 
using 1279 memory locations and the synchronous 
READ_FIRST mode.

Note: For every 2 instances of this structure, the 640 × 1 delay associated with the ‘parity bit’ of the ‘B’ port in each instance could be used to form an 
additional line. However we will soon see that multiple BRAMs working together can achieve a higher system efficiency.
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1280 Pixel Line Store (13-bit)
Dual port combined with READ_FIRST mode is enabling 90% of the memory to be used to provide a 1280 line store of 13-bits.

RAMB16_S9_S9

CLKA

DIAP[0:0]

ADDRA[10:0]

DOPA[0:0]
WEA

ENA
SSRA

DIA[7:0] DOA[7:0]

CE Q[10:0]

‘0’

CE

CLK

[8]

[7:0]

[8]

[7:0]

INC/RST

data_in[12:0] data_out[12:0]

Decode
4FE hex

= 90.1%

CLKB

DIBP[0:0]

ADDRB[10:0]

DOPB[0:0]
WEB

ENB
SSRB

DIB[7:0] DOB[7:0]

‘0’

[11:4]

[12:9]

Count 0 to 1278 

CE Q[10:0]

INC/LOAD
581 hex

Decode
7FF hex

Count 1409 to 2047
(639 states) 

[12:9][11:8]

[3:0]

[7:0]

Delay
640

[3:0] Delay
640

[7:4] [11:8]data_in[12:9] data_out[12:9]‘B’ port is used to form a 640 stage delay which is used 2 times 
by 4 bits. The diagram to the right shows the equivalence of the
signals being used.

‘1’

‘1’

delay_1280x13.vhd

Memory 
Efficiency
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Improving 1280 Pixel Line Store Density
Even though use of the second port has enabled a 13-bit line store to be implemented in a single BRAM, the efficiency is still only 90.1%. The 
implementation is wasting 1809 bits of memory which is clearly enough to implement at least one more 1280x1 line delay. The solutions is to return to the 
observation that 1280 is equivalent to 5 × 256 and implement more line stores using several BRAMs arranged to support various multiples of 256 delay. 

To further assist, we will exploit yet another feature of the BRAM; that being the ability for each port of a BRAM to be configured as a different aspect ratio. 
When using a mixed aspect ratio, the same memory is still accessed from each port but it is presented a different way on each port. In this case we will be 
using the RAMB16_S9_S18 primitive. The data width of the ‘B’ port is twice that of the ‘A’ port (18-bits verses 9-bits) but the ‘B’ port only has half the 
address range of the ‘A’ port (1024 location verses 2048). In other words, each 18-bit word located at a single address of the ‘B’ port appears as two 9-bit 
words located at two adjacent addresses of the ‘A’ port.

511 × 9
DIA DOA9 9

DIB DOB18 18

RAMB16_S9_S18

767 × 18

If the ‘A’ port is used to implement 9-bit delays of 512 stages, 
then there is still just over three quarters of the memory unused 
(1537×9). When this memory is viewed from the ‘B’ port it still 
appears that three quarters of the memory is unused, but it is 
now presented as 768×18 which is adequate to implement 18-bit 
delays of 768.

So this BRAM is 99.9% efficient when implementing….
512 × 9 delay where 512 = 2 × 256
768 ×18 delay where 768 = 3 × 256

256
×
18

1537 × 9

512 × 9

768 × 9

9

18

9

18

9

9 9

Initially this combination of delays does not appear to be very helpful. 
However, cascading the 512 stage delay with the 768 stage delay does 
result in the desired 1280 stage delay but only for 9-bits. On its own, this is 
only 62.4% efficient because the remaining 768 stage delay of 9-pixels is 
unused. All that is required to turn these unused delays into full 1280 stage 
delays are more 512 stage delays which are a very convenient power of 
two which can be formed in another BRAM.

RAMB16_S9_S18

1280 × 9 delay

768 × 9 delay
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1280 Pixel Line Store (72-bit)
Using the mixed 512×9 and 768×18 combination of BRAM four times (the 
address counters can be shared) results in a desired 1280×36 delay but 
also provides a 768×36 delay which is not useful and would be wasteful. 

Fortunately a single BRAM can then be configured to provide the 512×36 
delays required to supplement all the 768 stage delays. 

512 × 9

768 × 9

9

18

9

18

9

9 9

RAMB16_S9_S18

512 × 9

768 × 9
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18

9

18

9

9 9

RAMB16_S9_S18

512 × 9

768 × 9

9

18

9

18

9

9 9

RAMB16_S9_S18

512 × 9

768 × 9

9

18

9

18

9
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RAMB16_S9_S18

511 × 18
DIA DOA18 18

DIB DOB18 18

RAMB16_S18_S18

513 × 18

511 × 18 511 × 18

data_in[71:0]

data_out[71:0]

The same 9-bit address counter can be used for both ports since the delay 
implemented by each is the same. The actual address required by the BRAM is 
then 10-bits so the MSB should be forced Low on one port and High on the
other to divide the memory into two halves. This counter can also be used to 
address the ‘A’ port in the first four BRAMs whilst forcing the remaining two 
MSBs to “00”.

Efficiency = 99.8% Average of 14.4 line-bits/BRAM

Hint – A single port BRAM with 36-bit aspect ratio is not used as this would
prevent access to the dedicated multiplier located next to the BRAM.

delay_1280x72.vhd
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1920 Pixel Line Store (48-bit)

Although the 1920 delay of 9 bit is already 93.7% efficient, 
it still leaves capacity to implement a 9-bit delay of 128 
stages. This does not seem particularly useful until you 
remember that 1920 is equivalent to 15×128. Therefore 
combining this otherwise wasted delay from several 
BRAMs can provide enough to form a few more complete 
line-bits of 1920 stages.

1919 × 9

127 × 9

DIA DOA9 9

DIB DOB9 9

RAMB16_S9_S9

1919 × 9

5 BRAMs provides 48-bits and is the best fit 

5 × ‘A’ ports each providing 9-bits of full 1920 stage delay = 45 lines 

5 × ‘B’ ports each providing 9-bits of 128 stage delay = 45 delays of 128 stages
= 3 lines of 1920 stages

In gaining the 3 additional bits the data width of 48-bits also becomes a more convenient fit for 12-bit pixel data.

delay_1920x48.vhd

= 99.9%Memory 
Efficiency


