
Implementing and
Testing Efficient Video

Line Stores
(Includes 7 ready to use macros for

popular line lengths)

Ken Chapman
Xilinx Ltd
28th June 2006

Rev.1

Efficient Video Line Stores 2

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

These design modules are not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of these reference designs would be gratefully received by the
author.

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: chapman@xilinx.com

Limitations

Efficient Video Line Stores 3

Introduction
This reference design for the Spartan-3E Starter Kit serves two quite different purposes. As such, you may be interested in one particular aspect or both.

HyperTerminal
(or similar)

RS232
Serial Communication

38400 baud
8-bits
No Parity
No flow control

XC3S500E

UART

1024 × 18

768 × 24

1280 × 72

1536 × 12

1920 × 9

1280 × 13

1920 × 48

Line Store
Macros Under

Evaluation

LEDs
pixels_per_line × bit_width

Hardware Development and Testing of Macros - The design provides an example of how the Starter Kit can be used as a test bed for macros enabling
real implementations to be evaluated during development. This technique can be applied to many parts of designs and helps reduce the burden of testing
and debugging when putting a final system together. Such ‘real simulation’ can also be significantly faster than using a traditional software simulator since
the logic is working at full clock rate. When testing a macro, it is not always necessary to have all the peripherals and connectors that the final system will
have. The macro is effectively placed in a ‘virtual socket’ within the Spartan-3E device and some means provided to stimulate and monitor the macro. In this
example PicoBlaze is used as a convenient way to control and monitor the macros under test with an RS232 (UART) link to the PC providing the human
interface (HyperTerminal). So in fact the test design only uses 2 pins on the Spartan device and all others are ‘virtual pins’ (OK, I used the LEDs too).

Efficient Video Line Store Macros - In this case the macros under evaluation are a set of highly efficient video line stores implemented using Block
Memory (BRAM). Line stores are often used when performing image processing algorithms. In recent years the resolution of images has been increasing
resulting in more pixels per line and pixels of greater resolution (more bits to represent each colour). Unless these line stores are implemented efficiently it
becomes very difficult to implement an adequate number of line stores on a Spartan-3E device. This reference design provides 7 ready to use line store
macros all of which can be evaluated using this design. If your main interest in this reference design is purely to use one or more of these macros then you
may wish to advance directly to page 16 (without passing GO and without collecting £200!).

‘V
irt

ua
l s

oc
ke

t’

Efficient Video Line Stores 4

Using the Test Design
The design is provided as a configuration BIT file for immediate programming of the Spartan XC3S500E provided on the Spartan-3E Starter Kit. Source
design files are also provided for those more interested in the intricacies of the design itself.

USB cable plus some devices on
board essentially provide the same
functionality as a Platform Cable
USB and is used in conjunction

with iMPACT.

Initially used to configure the
Spartan-3E with the PicoBlaze

based design (BIT file).

Can subsequently be used to
update the PicoBlaze program

stored in an internal Block Memory
(BRAM) allowing rapid software

changes and experiments
(see JTAG_loader documentation

provided with PicoBlaze) .

RS232 Serial Cable.
Used for operating the design and

obtaining results.

Cable connects J9 on the board to
your PC serial port. For this you will

need a male to female straight
through cable (critically pin2-pin2,

pin3-pin3 and pin5-pin5).

+5v supply
Don’t forget to switch the board on too!

(SWP)

PC

To make this task really easy the first time, unzip all the files provided into a directory
and then….

double click on ‘install_line_store_tester.bat’.
Assuming you have the Xilinx software installed, your board connected with the USB
cable and the board powered (don’t forget the power switch), then this should open a
DOS window and run iMPACT in batch mode to configure the Spartan-3E with the
design (configuration BIT file). You should see the LED ‘LD0’ turn on and a message
appear on your PC terminal window (see following pages for HyperTerminal set up).

Quick Start - Configure the Spartan-3E with the design

Efficient Video Line Stores 5

Serial Terminal Setup
An RS232 serial link is used to communicate with the design. Any simple terminal program can be used, but HyperTerminal is adequate for the task and
available on most PCs.

A new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings and protocol
required by an alternative terminal utility.

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 38400
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Go to next page to
complete set up…

Efficient Video Line Stores 6

HyperTerminal Setup
4 - Disconnect

5 - Open the properties dialogue

To select a different
COM port and change
settings (if not correct).

6 - Open Settings

8 - Open ASCII Setup

Ensure boxes are filled in as shown.

The design will echo characters that
you type so you do not need the ‘Echo
typed characters locally’ option.

The design transmits carriage return
characters (ODHEX) to indicate end of
line so you do need the ‘Append line
feeds to incoming line ends’ option to
be enabled.

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are
few other protocol settings which need to be set or verified for the PicoBlaze
design to work as expected.

9 - ‘OK’ the boxes to get back to
main screen and then Connect.

7 - Select VT100 and then
click ‘Terminal Setup’
Set ‘Rows’ to 40 and
‘Columns’ to 100.
(You will probably need to stretch
main screen later to fit this size).

Optional step…..
Set Font to
Courier New,
Regular, 10

Efficient Video Line Stores 7

Terminal Commands
Welcome message

Enter commands in upper or lower case

Valid commands acknowledged with ‘OK’

Any mistakes in command entry results in ‘Error’

Type commands to the prompt.
Backspace key is supported to allow simple editing.
Single space between command and hex value or operand.
End command entry with Carriage Return.

All tests are performed using simple
commands (see next page) entered at the
terminal.

The value at the output of each line store is
display with a simple ‘index’ line to help
identify each output.

Display of cycle count

Values applied to line store inputs

Index
line

Outputs from line stores

Efficient Video Line Stores 8

Terminal Commands
SET hhhhhh - Set the 24-bit value to be applied to the input of all line stores where 'hhhhhh' is a 6 digit hex value.

Line stores requiring less than 24-bits will are provided with the least significant bits of this value.
By default the design is initialised or ‘RESET’ with the value set to 000001 hex.

CYCLE n - Test the line stores for ‘n’ clock cycles where ‘n’ is a decimal value in the range 1 to 9999.
The input to the line stores during each test cycle will be depend on previous use of SET and AUTO commands.
The outputs from all line stores will be displayed depending on the previous use of FAST command.

AUTO ON / AUTO OFF – With AUTO mode turned on, the 24-bit value applied to the inputs of the line stores will automatically increment after each test
cycle. By default the design is initialised or ‘RESET’ with AUTO turned ON and the status of AUTO is indicated by LED ‘LD0’ on
the board.

FAST ON / FAST OFF – With FAST mode turned on, the display of results during a CYCLE command are suppressed except for the last cycle. In this
design the speed of the test is limited by the communication rate of the RS232 interface. When FAST mode is enabled, the
speed benefits of testing using real hardware become apparent. By default the design is initialised or ‘RESET’ with FAST turned
OFF and the status of FAST is indicated by LED ‘LD1’ on the board.

RESET - Initialise the test design.
All line stores are purged of existing values by repeatedly writing the value 000000 hex.
Cycle counter is reset.
Input to line stores set to 000001 hex with AUTO mode ON.
FAST mode is turned off.

Efficient Video Line Stores 9

Example Test 1
KCPSM3>cycle 3

00001 000001 000000 00000 0000 000000 000000 000000 000 000 000000 000000
00002 000002 000000 00000 0000 000000 000000 000000 000 000 000000 000000
00003 000003 000000 00000 0000 000000 000000 000000 000 000 000000 000000

cycle input 768 1024 1280 1280a 1280b 1280c 1536 1920 1920a 1920b

OK

KCPSM3>fast on

OK

KCPSM3>cycle 1915

01918 00077E 00047E 0037E 027E 00027E 000000 000000 17E 000 000000 000000

cycle input 768 1024 1280 1280a 1280b 1280c 1536 1920 1920a 1920b

OK

KCPSM3>fast off

OK

KCPSM3>cycle 5

01919 00077F 00047F 0037F 027F 00027F 000000 000000 17F 000 000000 000000
01920 000780 000480 00380 0280 000280 000000 000000 180 000 000000 000000
01921 000781 000481 00381 0281 000281 000000 000000 181 001 000001 000000
01922 000782 000482 00382 0282 000282 000000 000000 182 002 000002 000000
01923 000783 000483 00383 0283 000283 000000 000000 183 003 000003 000000

cycle input 768 1024 1280 1280a 1280b 1280c 1536 1920 1920a 1920b

OK

Using the default initial settings the CYCLE command will
generate input values (in hexadecimal) that match the test
cycle count. All cycles are displayed and after the last line
there is an ‘index’ to identify each line store output.

Although all line stores are being tested in parallel by this
design, in this example my interest was to check the macros
supporting 1920 stages of delay. To perform and display 1915
test cycles would take approximately 42 seconds so the fast
mode is useful to make rapid progress; actually appears to be
instantaneous �.

Hint – Use FAST ON to get close to the cycles of interest and
then revert to FAST OFF to see the detail.

As the 1921st test cycle is reached, the output from the
1920 stage line store is showing the value 000001 hex
which was input during the 1st test cycle.

‘Index’ tells you that
column of results

above are the outputs
from a 1920 stage

line store

Decimal Test cycle counter since start

Hex value applied to line stores

Efficient Video Line Stores 10

Example Test 2
KCPSM3>set 123456

OK

KCPSM3>cycle 1

00001 123456 000000 00000 0000 000000 000000 000000 000 000 000000 000000

cycle input 768 1024 1280 1280a 1280b 1280c 1536 1920 1920a 1920b

OK

KCPSM3>set 789abc

OK

KCPSM3>cycle 1

00002 789ABC 000000 00000 0000 000000 000000 000000 000 000 000000 000000

cycle input 768 1024 1280 1280a 1280b 1280c 1536 1920 1920a 1920b

OK

KCPSM3>set aaaaaa

OK

KCPSM3>auto off

OK

KCPSM3>cycle 1285

In this example a specific pattern is being applied to the line
store inputs.

First the value 123456 hex is set and then applied for one test
cycle

Second the value 789ABC hex is set and then applied for one
test cycle

Finally the value AAAAAA hex is set and by using the AUTO
OFF command this value will be applied for all subsequent
test cycles.

Again, although all line stores are being tested in parallel, in
this case my interest was the line store macros providing1280
stages of delay.

Efficient Video Line Stores 11

Example Test 2 continued
.
.
.
01266 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01267 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01268 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01269 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01270 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01271 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01272 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01273 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01274 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01275 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01276 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01277 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01278 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01279 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01280 AAAAAA AAAAAA 2AAAA 0000 000000 000000 000000 000 000 000000 000000
01281 AAAAAA AAAAAA 2AAAA 1456 123456 000000 000000 000 000 000000 000000
01282 AAAAAA AAAAAA 2AAAA 1ABC 789ABC 000000 000000 000 000 000000 000000
01283 AAAAAA AAAAAA 2AAAA 0AAA AAAAAA 000000 000000 000 000 000000 000000
01284 AAAAAA AAAAAA 2AAAA 0AAA AAAAAA 000000 000000 000 000 000000 000000
01285 AAAAAA AAAAAA 2AAAA 0AAA AAAAAA 000000 000000 000 000 000000 000000
01286 AAAAAA AAAAAA 2AAAA 0AAA AAAAAA 000000 000000 000 000 000000 000000
01287 AAAAAA AAAAAA 2AAAA 0AAA AAAAAA 000000 000000 000 000 000000 000000

cycle input 768 1024 1280 1280a 1280b 1280c 1536 1920 1920a 1920b

OK

KCPSM3>

Because the CYLCE command was issued with FAST OFF
all results are displayed (but it took a minute to run!).

You can see that the shorter line stores have filled with the
fixed AAAAAA hex value (some line stores are less than 24-
bits resulting in what appears to be a different value at first
glance) and those that are longer have yet to show any values
other than their initial clear states.

As the test reaches cycle 1281 the special values
applied during test cycles 1 and 2 appear at the outputs
of the 1280 stage line stores.

This macro supports 13-bit data so the original 24-bit value has been
truncated to just the least significant bits
123456 hex = 0001 0010 0011 0100 0101 0110
789ABC hex = 0111 1000 1001 1010 1011 1100

24-bit macro

Efficient Video Line Stores 12

PicoBlaze Circuit Diagram

buffer_full

uart_rx receive

serial_in

clk

data_out

reset_buffer

buffer_data_present

en_16_x_baud

read_buffer

buffer_half_full
rx_half_full

rx_full

rx_data_present

read_from_uart

rx_data
rx_female

buffer_full

uart_tx
transmit

data_in

clk

serial_out

reset_buffer

en_16_x_baud

write_buffer

buffer_half_full

tx_half_full

tx_full

out_port
tx_female

write_to_uart

7

baud_count

Decode 80

clk

en_16_x_baud

UART macros include 16-byte FIFO buffers

baud_timer

counter

s
t
a
t
u
s
_
p
o
r
t

‘JTAG_loader’ allows rapid
PicoBlaze code development.

port_id

kcpsm3 processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port

i
n
s
t
r
u
c
t
i
o
n

a
d
d
r
e
s
s

pwm_ctrl

program_rom

instruction

addressclk

port_id

out_port

r
e
a
d
_
s
t
r
o
b
e

interrupt_ack

interrupt

in_port

JTAGproc_reset

clk

k
c
p
s
m
3
_
r
e
s
e
t

read_from_uart

write_to_uart

input_ports

[4:0]

6

7

w
r
i
t
e
_
s
t
r
o
b
e

led[7:0]

0

Interrupt not used in this design
Baud rate = 38400

[7:0]

1 [15:8]

2 [23:16]

line_store_in[23:0]

3
line_store_ce

Decode 00001

‘dummy’ write to port
08 hex generated clock

enable pulse

[4:0]

Read outputs from all
line stores under test

(see next pages).

28:1 MUX

T
o

al
l l

in
e

st
or

es
 u

nd
er

te

st
 (s

ee
 n

ex
t p

ag
es

).

Efficient Video Line Stores 13

Line Stores Under Test - Circuit Diagram 1

delay_768x24 line_store1

data_in[23:0]

clk

ce

line_store1_out[23:0]
data_out[23:0]

[7:0]

[15:8]

[23:16]

delay_1024x18 line_store2

data_in[17:0]

clk

ce

line_store2_out[27:0]
data_out[17:0]

[7:0]

[15:8]

[17:16]

delay_1280x13 line_store3

data_in[12:0]

clk

ce

line_store3_out[12:0]
data_out[12:0]

[7:0]

[12:8]

delay_1280x72 line_store4

data_in[71:0]

clk

ce
line_store4_out[71:0]

data_out[71:0]

[7:0]

[15:8]

[23:16]

line_store4_in[71:0]

[47:0]

24

48

[31:24]

[39:32]

[47:40]

[55:48]

[63:56]

[71:64]

[71:48]

[47:24]

[23:0] ‘1280a’

‘1280b’

‘1280c’

‘768’

‘1024’

‘1280’

line_store_in[23:0]

line_store_ce

1280 1280 1280

24
‘1280a’ ‘1280b’ ‘1280c’

The 1280x72 line store is rather wide so it has been ‘folded’ 3 times
to represent 3 cascaded lines of 1280 stages each with 24-bits.

13

18

24

Part of
PicoBlaze
input MUX

Efficient Video Line Stores 14

Line Stores Under Test - Circuit Diagram 2

delay_1536x12 line_store5

data_in[11:0]

clk

ce

line_store5_out[11:0]
data_out[11:0]

delay_1920x9 line_store6

data_in[8:0]

clk

ce

line_store6_out[8:0]
data_out[8:0]

[7:0]

[8]

delay_1920x48 line_store7

data_in[47:0]

clk

ce
line_store7_out[47:0]

data_out[47:0]

[7:0]

[15:8]

[23:16]

line_store7_in[47:0]

[23:0]

24

24

[31:24]

[39:32]

[47:40]

[47:24]

[23:0] ‘1920a’

‘1920b’

‘1536’

‘1920’

line_store_in[23:0]

line_store_ce

1920 1920

24
‘1920a’ ‘1920b’

The 1920x48 line store is rather wide so it has been ‘folded’ 2 times
to represent 2 cascaded lines of 1920 stages each with 24-bits.

9

12

[7:0]

[11:8]

Part of
PicoBlaze
input MUX

Efficient Video Line Stores 15

Design Files
The source files provided for the reference
design are show on this page.line_store_tester.vhd Top level file and main description of hardware.

PicoBlaze program source assembler code

kcpsm3.vhd PicoBlaze processor for Spartan-3E devices.

ls_test.vhd

I/O constraints file for Spartan-3E Starter Kit
and timing specifications for 50MHz clock.

ls_test.psm

Assembled program for PicoBlaze (stored in a Block memory)

Note: The files shown in green are not included with the reference design as they
are provided with PicoBlaze download. Please visit the PicoBlaze Web site for your
free copy of PicoBlaze, UART, assembler, JTAG_loader and documentation.

www.xilinx.com/picoblaze

bbfifo_16x8.vhd

kc_uart_tx.vhd

uart_rx.vhd

bbfifo_16x8.vhd

kc_uart_rx.vhd

uart_tx.vhd

UART transmitter and receiver with 16-byte FIFO buffers.

line_store_tester.ucf
Hint – Source files contain many
comments and descriptions to help
you understand the design further.

delay_768x24.vhd

delay_1024x18.vhd

delay_1280x13.vhd

delay_1280x72.vhd

delay_1536x12.vhd

delay_1920x9.vhd

delay_1920x48.vhd

Line Store Macros under test or ready for use in your own video and image processing designs.

Efficient Video Line Stores 16

Line Stores

Line Store

Line Store

Frame Buffer

Frame Buffer

1 pixel in

1 pixel out

Spartan

Newest Pixel
from

Frame Buffer

Pixel delayed
by 2 lines

A video image is made up of many lines with each line being formed of many pixels. As you would expect, a Higher resolution display has a larger number of
pixels per line and a larger number of lines per screen than a lower resolution display. A pixel is typically described as an intensity figure represented by an 8,
10 or 12-bit value. Of course colour displays will need to describe the intensity of red, green and blue elements of each pixel requiring anything up to (12×3)
36-bits to describe. Some systems may also include pixel correction value, infrared data etc.

Pixels per Line

Number
of Lines

Lines × Pixels

Lines × Pixels

Fn(3 × 3 Pixels)

In the majority of applications, it is impractical to store one or more whole images inside a Spartan devices and therefore some form of external storage is
required. The bandwidth of this external memory then restricts how many pixels can be accessed at the pixel rate which can cause problems when
implementing 2-D algorithms. As shown above, an image is formed by scanning from left to right and top to bottom. This only requires one pixel to be read
from external memory at the pixel rate (although higher clock rates may be required to access multiple bytes for red, green and blue definition of each pixel).
of higher quality. In 2-D processing, it is necessary to have access to all the pixels in a block. A simple shift register is all that is required to remember several
pixels on the line currently being read but to access the pixel above or below initially implies another read form the external frame buffer which is probably not
achievable in the time available (especially as the address would not be consecutive and suitable for burst reading). The solution are line stores implemented
using on-chip memory which hold all the pixels for a complete line. These are in effect shift registers but only allowing access at their beginning and end. As a
pixel in written into the line store, the output is presenting the corresponding pixel of the line directly above.

9 Pixel
Algorithm

Efficient Video Line Stores 17

Typical Line Store Sizes
There are so many different sizes and formats of video displays that it is hard to keep up with them all. However, the following short table covers many of the
more common sizes indicating the typical range of pixels per line. It is interesting to observe how the number of pixels typically relate to a multiples of 64, 128,
256 or 512 pixels even if their lengths are not powers of 2 in their own right.

The number of bits required to represent each pixel is really of less significance in terms of the implementation but is important to consider because of the
demands it will place on a design overall. A dominant issue when implementing line stores efficiently in a Spartan device has more to do with human nature
than to do with anything technical. We seem to have an overwhelming desire to keep things separated into their own ‘little boxes’ and functions. When it
comes to implementing line stores, engineers often have this unnecessary desire to implement each line store in total isolation. They often fail to notice how
red, green and blue pixel data can either be packed together to form a single wider data value or how a pixel value could be split into several pieces to make
use of spare capacity in other line stores and then recombined later. So please bare this in mind that whilst using the macros supplied.

Line length Length factors Typical Bit Widths

640 5 × 128 8 BW, RGB

720 8 BW, RGB

768 3 × 256 8 BW, RGB

800 25 × 32 8 BW, RGB

1024 1 × 1024 8,10 BW,RGB

1152 9 × 128 8,10,12 RGB

1280 5 × 256 8,10,12 RGB

1366 10,12 RGB

1536 6 × 256 or 3 × 512 10,12 RGB

1920 15 × 128 10,12 RGB

12-bit red, green and blue amounts to 36-bits of
data per pixel. There is no reason to keep the
different colours in separate physical line stores as
all will be delayed by the same amount.

36-bit
Line Store

12

12

12

12

12

12

It would also be possible to split pixel data to fill
otherwise unused capacity of a line store rather
than use separate line stores for each colour.

Note that packing of pixels from different lines is
also possible since all pixels on all lines advance at
the same time (see page 19).

18-bit
Line Store

12 12

18-bit
Line Store

12

12

12

12

Efficient Video Line Stores 18

Line Stores Provided
This reference design package contains 7 pre-implemented line stores for the most common line lengths encountered. In each case the objective has been to
provide the highest number of ‘line-bits’ per Block Memory (BRAM) and enable highly efficient designs to be implemented in Spartan devices. A ‘line-bit’ is a
delay of 1-bit corresponding to the number of pixels on one line of a video display. The equivalent circuit for a line store macro is shown below.

delay_768x24 (1 BRAM)

delay_1024x18 (1BRAM)

delay_1280x13 (1 BRAM)

delay_1280x72 (5 BRAMs)

delay_1536x12 (1BRAM)

delay_1920x9 (1 BRAM)

delay_1920x48 (5 BRAMs)

Device XC3S100E XC3S250E XC3S500E XC3S1200E XC3S1600E

Number of BRAMs 4 12 20 28 36

96Maximum 768 Line-Bits 480288 672 864

Macros supplied

72Maximum 1024 Line-Bits 368216 504 648

52Maximum 1280 Line-Bits 288170 399 517

48Maximum 1536 Line-Bits 240144 336 432

36Maximum 1920 Line-Bits 192114 267 345

Since the bit sizes of pixels are so variable, the focus was simply to provide the maximum number of line-bits in each case. Macros can then be connected in
parallel or packed to achieve the total number of line-pixels required by your system. There is an example of such ‘line-pixel packing’ on the next page.

The following chart indicates the maximum number of line-bits that can be implemented in each device in the Spartan-3E family using the various macros
provided. Divide the number in the table by the number of bits used to define your pixels (bits × colours) to calculate the maximum number of full line stores
which can be implemented on a given device. For example, The XC500E is able to support a maximum of 288 line-bits of length 1280. If pixels are defined by
10-bits red, 10-bits green and 10-bits blue then we must divide the line-bits figure by 30 and this tells us that this device would support a maximum of 9 full
RGB line stores.

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

D Q
CE

data_out(n:0)data_in(n:0)

ce

clk

Efficient Video Line Stores 19

Example - Packing Line Stores
In this example we see how 2 line stores of 1920 pixels for a 3×3 pixel image processing algorithm can be implemented using 7 Block Memories (BRAMs). In
this case each pixel is defined by 10-bits red, 10-bits green and 10-bits blue.

As described later, a single BRAM results provides a delay of 1920 stages but only for 9-bit data (delay_1920x9.vhd). However, since all colours of a pixel
and all lines must advance at the same time (common pixel clock and clock/pixel enable), there is no need to keep colours or lines artificially separated
allowing anything to be packed together in any order. This diagram shows one possible configuration using the 7 macros (BRAMs).

10

10

10

Line 1 is formed by packing the three 10-bit colour values into each
BRAM rather than keeping each colour separate.

This means that the although 4 BRAMs have been used, the forth is
still able to support another 6-bit bus which is then used to
implement part of the second line.

Delay 1920 × 9

10

10

10

4

6

6

10

10

10

It is easy to see that not taking the opportunity to pack lines together would result in 8 BRAMs instead of the 7 shown. Failing to pack different colours
together would yield very poor results. It may be nice to keep things separate when designing, but the costs can be significant.

4

6

Line 2 is formed using less BRAMs because it can steal 6 line-bits
from the BRAMs primarily used to implement the first line. It in turn
has 3 line-bits spare to help implement another line.

LINE 1

LINE 1

LINE 1

LINE 2

LINE 2

LINE 2

LINE 2
LINE 1

Efficient Video Line Stores 20

It is all too east to become confused about what is exactly the correct the length for a line store such that all the correct pixel data is available at the same
time (typically the same clock cycle). It is therefore a good idea to consider a ridiculously small example in some detail. You may wish to skip over this
description now, but don’t be surprised if at some point in the future you need to come back to it once the actual implementation of lines stores is discussed.

Delay Length Sanity Check!

155 156 157 158151 152 153 154 159 160

5 6 7 81 2 3 4 13 14 15 169 10 11 12
21 22 23 2417 18 19 20 29 30 31 3225 26 27 28
37 38 39 4033 34 35 36 45 46 47 4841 42 43 44
53 54 55 5649 50 51 52 61 62 63 6457 58 59 60

145 146 147 148 149 150

Line Store

Line Store 1

17

33 33

This example shows a very small display which is just 16
pixels wide and 10 pixels tall. We can number each pixel as
shown.

The image is scanned left to right and top to bottom so the
pixels will arrive in the order in which they are numbered here.

During fly-back (line and frame) the line stores must be
disabled if the pixel clock is free running.

The object of line stores is to enable a vertical column of pixels to be observed simultaneously.
So as highlighted, when pixel 33 is being received by the display at the start of the 3rd line, it
should be possible to view pixel 17 and pixel 1. Likewise, as pixel 57 is received on the 4th line,
then pixels 41 and 25 should be presented by the line stores. This is obviously delay of 16 pixels
per line, but the key is to ensure that absolutely the correct data is visible as shown in the timing
diagram below.

input

LS1

LS2

input

LS1

LS2

Pixel rate clock

32 33 34

16 17 18

160 1 2
Previous

frame

In theory, the line store can be implemented using a shift register
equal to the length of the line. This automatically presents the correct
pixel at the output as the new pixel is being applied. In practice, even
the highly efficient SRL16E mode of the Spartan slices is not cost
effective and techniques using Block Memory (BRAM) must be used.

17

33

17 12345678910111213141516

Efficient Video Line Stores 21

RAMB16_Sn_Sm

READ FIRST Mode = Quad Port Memory
Each Block Memory (BRAM) is dual port but actually has 4 data ports; 2 data ports are always associated with data being written into the memory and the
other 2 ports are always associated with reading data out of the memory. This is a significant difference to external memory devices in which a data port is
typically bidirectional and consequently shared between writing and reading operations.

Since each Spartan BRAM is dual port, it is only natural that it should allow any 2 memory locations to be written simultaneously or any 2 memory locations
to be read simultaneously. It is also natural that dual port memory should allow one port to be used to write information whilst the other port is being used to
read information (e.g. when implementing a FIFO). However, in addition to these obvious modes, each BRAM has a special ‘READ_FIRST’ mode which
enables both the write and read ports associated with each memory port to be used simultaneously. This means that each dual port BRAM can actually
allow 2 values to be written and 2 values to be read every clock cycle. Although there are limitations to the possible address combinations, each BRAM can
be considered a quad port memory in certain applications and video line stores are one such application that can exploit this pseudo quad port
characteristic.

CLKA

DIPA

ADDRA

DOPA
WEA

CLKB

ADDRB
WEB

ENA
SSRA

ENB
SSRB

DIA DOA

DIPB DOPB
DIB DOB

READ_FIRST mode allows the data stored at a given address to be read out
on the DO/DOP lines at the same time that a new value applied to the DI/DIP
lines is being stored at that same address.

In the example below, the write enable (WEn) and enable (ENn) are always
active (WEA=ENA=1) such that data is being written and read every clock
cycle. The example emphasizes that the value ‘1111’ previously stored at
address ’120’ is read out at the same time that the new value ‘3333’ is written.

CLKA

ADDRA

DIA

DOA

120 121 120 121 120

1111 2222 3333 4444 5555

???? ???? ???? 1111 2222

Writes ‘1111’
into ‘120’

Writes ‘3333’
into ‘120’

Reads ‘1111’
from ‘120’

121

4444

3333

Reads ‘3333’
from ‘120’

Efficient Video Line Stores 22

Cyclic Buffers For Delay Lines

0
1

2

3

4

5
6

78
9

10

11

12

13
14

15

Counter
Increments

RAMB16_Sn_Sm

CLKA

DIPA

ADDRA

DOPA
WEA

ENA
SSRA

DIA DOA

CE
Q[3:0]

‘1’

‘0’

CE

CLK

1) The value currently stored at the address defined by the counter will be transferred to the DO/DOP output lines where it will remain.
2) The new value provided at the DI/DIP input lines will be stored at the same address (over writing the previous value).
3) The counter will advance to the next location ready for the next clock cycle.

0 1 2 3 4 5 6 8 9 A B C D E7 F 0 1 2 3 4 5 7 8 9 A B C D6 E

CLK

ADDR

DI

D0

16 17

In this example a 4-bit counter has 16 states (0 to F hex) corresponding to 16 memory locations. This is where it is tempting to think that this structure is
providing the functionality of a 16 pixel line store but closer inspection of the timing diagram below shows that this is not the case. Compare this diagram with
the situation presented on page 20 where each pixel is numbered in ascending order. Do not become distracted by the actual address (ADDR) values as that
is just the counter cycling round the 16 states and memory locations.

5 10

Memory
cells

Output
Register

1

2 3 4 5 6 87 9 10 11 12 13 15141 16 17 18 19 20 21

2 3 41

What we see is that the structure is actually the equivalent of
a 17 stage shift register. This is because the READ_FIRST
mode is the equivalent of having a synchronous register on
the output of the memory which provides one more delay.
Therefore in order to have the equivalent of a 16 stage
shift register, the cyclic counter must have only 15
states (line length – 1). Important: Counting 0 to 14 (E hex)
is 15 states (do not confuse terminal count with the number
of counter states).

IMPORTANT
‘EN’ must used to
enable both the
read and the write
operations. This
makes it behave
like a shift register
with clock enable.

The READ_FIRST mode allows each port of the BRAM to implement a fixed length delay using a cyclic buffer technique. A simple binary counter is all that is
required to set the length of the delay. On each rising clock edge (when the write enable and enable are both High), three things will happen:-

Efficient Video Line Stores 23

28

Why using ‘EN’ is Vital for Delay Lines
Each port of the BRAM has a write enable pin (WE) and an enable pin (EN). These are subtlety different and their correct use is vital when implementing
delay lines. The ‘EN’ pin is a global enable for that port. If this signal is Low (‘0’) then the port is totally disabled. Nothing can be written and nothing can be
read. The value at the DO and DOP output will remain static regardless of all other inputs. The ‘WE’ pin is the write enable. Providing the ‘EN’ is active High
(‘1’) then the value presented on the DI and DIP pins will be stored at the location defined by the address applied to the ‘ADDR’ pins. When implementing a
delay line suitable for a line store, it is vital that the ‘EN’ pin is used as the enable control and that the ‘WE’ is permanently active High. The reason for this
only becomes clear when considering what happens when the delay is disabled as would be the case during use when display fly-back is being performed
and the delay is providing a line store. Let’s return to the idea of a 16-pixel line store and look at what should happen during line fly-back…

29 30 31 32 33 34 35 36 37 38 39 40

Pixel Clock

Store Enable (EN pin)

Data In

Data Out 12 13 14 15 16 18 19 20 21 22 23 2417

Disable during fly-back

Notice how the write of the last pixel of the second line (pixel 32) results in the output from the BRAM changing to the first pixel of the second line (pixel 17).
This pixel is then is then available when the first pixel of the third line is presented (pixel 33). This is consistent with the operation of a shift register with clock
enable or with the cyclic buffer implemented using BRAM provided the ‘EN’ pin is used. In contrast, look what happens if the ‘WE’ pin is used as the enable.
Everything is working well whilst the enable is High, but as soon as the
enable is deactivated the new address presented by the counter causes
a further read.

XX

ADDR

WE

EN

CE Q
‘1’

CE

CLK

DI DO

‘0’ SSR

Correct value = 17

E 0 1 2 3 5 6 7 8 9 A B4ADDR (example values)

28 29 30 31 32

12 13 14 15 16 17

XX

E 0 1 2 3 4

18 Incorrect value = 18

Pixel Clock

Store Enable (WE pin)

Data In

Data Out

ADDRHaving EN=‘1’ means that DO
changes on the next clock edge to
reflect the change of address. This
presents pixel 18 too early which
would give a fault at the start of
each line.

Efficient Video Line Stores 24

1024 Pixel Line Store (18-bit)
The 1024 pixel line store is a direct implementation of a cyclic buffer and results in almost perfect system efficiency providing that you fully use the
available bit width by packing pixels together to maximise the use of the 18-bits which each BRAM implements. In this case there is no reason to use the
dual port capability of the BRAM and so the single port memory of aspect ratio 1024×18 with READ_FIRST mode is used.

The 10-bit address counter requires only 5 slices to implement plus a little more to decode the terminal count value. In most designs this number of slices
is negligible and having a separate address counter for each BRAM line store will enable simple layout and design flow. If however slices are at a premium
in your design, the counter can be shared between multiple BRAMs effectively forming a single line store of increased bit width. In this test design some
address counters are routed to 5 BRAMs and yet they could overate close to 200MHz clock rate indicating that separate counters are not required purely to
meet performance even at HDTV pixel rates.

RAMB16_S18

CLK

DIP[1:0]

ADDR[9:0]

DOP[1:0]
WE

EN
SSR

DI[15:0] DO[15:0]

CE Q[9:0]

‘1’

‘0’

CE

CLK

[17:16]

[15:0]

[17:16]

[15:0]

INC/RST

data_in[17:0] data_out[17:0]

Decode
3FE hex

When a BRAM port is configured to be 8-bits or
wider, then for every 8-bits there is an additional
parity bit. Although called parity bits and provided
on a separate port, these bits are just ordinary
memory and can be used to store more pixel data.
It is therefore common for these bits to be merged
with the main data port to provide a single wider
bus. The 18-bit bus shown here is formed of two
bytes and their associated two parity bits.

The 10-bit counter will automatically initialise to zero (no global reset required when using
Spartan devices) and then increment for each clock edge that the enable is High. When the
counter reaches 1022 (3FE hex) it will force the counter to roll back to zero on the next
qualified clock edge. This gives the counter 1023 states rather than its natural 1024 states and
means that one memory location (address 3FF hex) will never be used in this design.

Memory
Efficiency

= 99.9%

delay_1024x18.vhd

Efficient Video Line Stores 25

1920 Pixel Line Store (9-bit)
The 1920 pixel line store can also be a very direct implementation using single port memory single port memory of aspect ration 2048×9 with
READ_FIRST mode.

RAMB16_S9

CLK

DIP[0:0]

ADDR[10:0]

DOP[0:0]
WE

EN
SSR

DI[7:0] DO[7:0]

CE Q[10:0]

‘0’

CE

CLK

[8]

[7:0]

[8]

[7:0]

INC/RST

data_in[8:0] data_out[8:0]

Decode
77E hex

There is a single ‘parity bit’ to go with the 8-bit
main port allowing a 9-bit bus to be supported.

The 11-bit counter will automatically initialise to zero (no global reset required when using Spartan devices) and then increment for each clock
edge that the enable is High. When the counter reaches 1918 (77E hex) it will force the counter to roll back to zero on the next qualified clock
edge. This gives the counter 1919 states and means that 129 memory locations (address 77F to 7FF hex) are not used in this design.

= 93.7%

The inefficiency of 6.3% represents the 1,161 bits of memory that are unused in this case. In theory, the maximum number of bits for a line length of
1920 that can be supported by a single BRAM is 9.605 (18432/(1920-1)) indicating that this implementation is providing the maximum number of
complete line-bits that are possible which is probably acceptable in most cases. Later we will see that this wasted space can be recovered.

‘1’

Memory
Efficiency

delay_1920x9.vhd

Efficient Video Line Stores 26

1535 × 9 513 × 9

1536 Pixel Line Stores
The 1536 pixel line store presents an issue since 1536 is not even close to being a power of 2. In fact it is exactly mid way between 1024 and 2048 which
can easily lead to a very inefficient implementation of a line store.

The data width is only able to support 9 line-bits resulting in poor use of the memory. The 11-bit counter has 1535 states meaning that 513 memory
locations are unused (5FF to 7FF hex). That is a total of 4,617 bits that are not used in this design. Clearly this is an unacceptable waste of memory since
it would appear adequate to implement a further 3 line-bits. Fortunately there is a solution based on the observation that 1536 is a multiple of 256 even if it
is not a power of 2 in its own right and that so far only used one of the two ports provided on the BRAM because we have used the READ_FIRST mode.

An obvious attempt is to employ the 2048×9 aspect ration of BRAM since this is the depth aspect greater than the 1536 delay required. The simplified
diagram below indicates what this simple solution can offer.

RAMB16_S9

DI DO

ADDR

9 9
data_in[8:0] data_out[8:0]

Count
0 to 1534

11

1536 Line Store (9-bit)

Efficiency = 75% (unacceptable!)

DIA DOA9 9

DIB DOB9 9

1535 × 9 511 × 9

This diagram shows that if the ‘A’ port of a dual port memory
is used to implement a 1536 line store of 9-bits it leaves 513
locations of 9-bits unused as was the case with the single
port implementation discussed above. However, it now
becomes clear that the ‘B’ port can be used to access that
unused space. Providing the address range on the ‘B’ port is
kept in the range 5FF to 7FF it will have no effect on the ‘A’
port operation and the dual port memory has effectively
been divided into two single port memories albeit of different
sizes.

000

601 7FF

5FE

It is now possible for the ‘B’ port to implement a delay of 512stages of 9-bits. Cascading 3 delays of 512 stages then yields the desired 1536 stage delay.
Since 9-bits conveniently divides by 3, the ‘B’ port is able to provide an additional 3 line-bits and utilise all but 2 locations (18 bits) of the memory.

RAMB16_S9_S9

1536 Line Store (12-bit) Efficiency = 99.9% (acceptable!)

Efficient Video Line Stores 27

1536 Pixel Line Store (12-bit)
Dual port combined with READ_FIRST mode is enabling virtually all the memory to be used to provide a 1536 line store of 12-bits.

RAMB16_S9_S9

CLKA

DIAP[0:0]

ADDRA[10:0]

DOPA[0:0]
WEA

ENA
SSRA

DIA[7:0] DOA[7:0]

CE Q[10:0]

‘1’

‘0’

CE

CLK

[8]

[7:0]

[8]

[7:0]

INC/RST

data_in[11:0] data_out[11:0]

Decode
5FE hex

= 99.9%

CLKB

DIBP[0:0]

ADDRB[10:0]

DOPB[0:0]
WEB

ENB
SSRB

DIB[7:0] DOB[7:0]

‘1’

‘0’

[10:3]

[8]

[11:9]

Count 0 to 1534

CE Q[10:0]

INC/LOAD
601 hex

Decode
7FF hex

Count 1537 to 2047
(511 states)

[11:9][11:9]

[2:0]

[7:0]

Delay
512

[2:0] Delay
512

[5:3] Delay
512

[8:6] [11:9]data_in[11:9] data_out[11:9]

[11]

‘B’ port is used to form a 512 stage delay which is used 3 times
by 3 bits. The diagram to the right shows the equivalence of the
signals being used.

delay_1536x12.vhd

Memory
Efficiency

Efficient Video Line Stores 28

768 Pixel Line Stores
The 768 pixel line store can exploit the same dual port technique. This time using the fact that 768 is 3×256 to pack the remaining space via the second
port.

768 Line Store (24-bit)

RAMB16_S18_S18

DIB DOB18 18

767 × 18
255
×
18

DIB DOB18 18

767 × 18
257
×
18

The BRAM is used in 1024×18 aspect ratio since this is deep enough to support a direct delay of 768 stages for 18-bits. This then leaves enough memory
to implement 256 stage delays for another 18-bits. Since 768 is 3×256, then each additional bit just has to pass through the ‘B’ port delay 3 times. Once
again we are faced with a convenient division of the bits which allow the 18-bit port to provide exactly 6 additional bits of line delay.

24-bit
Line Store

8

8

8

8

8

8

Delay = 768×18

Delay = 256×18
= 768×6

24-bits is an ideal system fit for 8-bit RGB pixel data.
One complete line store per BRAM.

= 99.9%Memory
Efficiency

Efficient Video Line Stores 29

768 Pixel Line Store (24-bit)
Dual port combined with READ_FIRST mode is enabling virtually all the memory to be used to provide a 768 line store of 24-bits.

RAMB16_S18_S18

CLKA

DIAP[1:0]

ADDRA[9:0]

DOPA[1:0]
WEA

ENA
SSRA

DIA[15:0] DOA[15:0]

CE Q[9:0]

‘1’

‘0’

CE

CLK

[17:16]

[15:0]

INC/RST

data_in[23:0] data_out[23:0]

Decode
2FE hex

CLKB

DIBP[1:0]

ADDRB[9:0]

DOPB[1:0]
WEB

ENB
SSRB

DIB[15:0] DOB[15:0]

‘1’

‘0’

[21:6]

[23:18]

Count 0 to 766

CE Q[9:0]

INC/LOAD
301 hex

Decode
3FF hex

Count 769 to 1023
(255 states)

[23:18][23:18]

[5:0]

[15:0]

Delay
256

[5:0] Delay
256

[11:6] Delay
256

[17:12] [23:18]data_in[23:18] data_out[23:18]

[23:22]

‘B’ port is used to form a 256 stage delay which is used
3 times by 6 bits. The diagram to the right shows the
equivalence of the signals being used.

[17:16]

[15:0]

[17:16]

delay_768x24.vhd

= 99.9%Memory
Efficiency

Efficient Video Line Stores 30

1279 × 9 769 × 9

1280 Pixel Line Stores
The 1280 pixel line store is even more of a challenge. To only use a BRAM to form 9-bits of delay of this length would mean a memory efficiency of only
62.5% which is something we just can not accept when using Spartan device in high volume applications. So once again the solution is to exploit the dual
port of the memory to unlock that unused potential.

DIA DOA9 9

DIB DOB9 9 Although the ‘B’ port unlocks enough memory to form a
delay of 768 stages of 9 bits, this length of delay is not
immediately convenient for creating further delays of 1280
stages since it is 5 × 256.

000 7FF

RAMB16_S9_S9

1279 × 9 767 × 9

‘A’ port directly implements a delay of 1280 stages of 9 bits
using 1279 memory locations and the synchronous
READ_FIRST mode.

For greatest memory efficiency, the ‘B’ port can be used to form delay of 640 stages which is half of the required 1280 stages. This then enables
additional bits of data to be supported resulting in a total of 13 bits with a memory efficiency of 90.1%.

1279 × 9 769 × 9
DIA DOA9 9

DIB DOB8 8
000 7FF

RAMB16_S9_S9

1279 × 9 639 × 8

‘B’ port provides delay of 640 stages of 8 bits which can be
used to form a delay of 1280 × 4.

130 memory locations are completely unused and the ‘parity
bit’ will be unused on the ‘B’ port.

‘A’ port directly implements a delay of 1280 stages of 9 bits
using 1279 memory locations and the synchronous
READ_FIRST mode.

Note: For every 2 instances of this structure, the 640 × 1 delay associated with the ‘parity bit’ of the ‘B’ port in each instance could be used to form an
additional line. However we will soon see that multiple BRAMs working together can achieve a higher system efficiency.

Efficient Video Line Stores 31

1280 Pixel Line Store (13-bit)
Dual port combined with READ_FIRST mode is enabling 90% of the memory to be used to provide a 1280 line store of 13-bits.

RAMB16_S9_S9

CLKA

DIAP[0:0]

ADDRA[10:0]

DOPA[0:0]
WEA

ENA
SSRA

DIA[7:0] DOA[7:0]

CE Q[10:0]

‘0’

CE

CLK

[8]

[7:0]

[8]

[7:0]

INC/RST

data_in[12:0] data_out[12:0]

Decode
4FE hex

= 90.1%

CLKB

DIBP[0:0]

ADDRB[10:0]

DOPB[0:0]
WEB

ENB
SSRB

DIB[7:0] DOB[7:0]

‘0’

[11:4]

[12:9]

Count 0 to 1278

CE Q[10:0]

INC/LOAD
581 hex

Decode
7FF hex

Count 1409 to 2047
(639 states)

[12:9][11:8]

[3:0]

[7:0]

Delay
640

[3:0] Delay
640

[7:4] [11:8]data_in[12:9] data_out[12:9]‘B’ port is used to form a 640 stage delay which is used 2 times
by 4 bits. The diagram to the right shows the equivalence of the
signals being used.

‘1’

‘1’

delay_1280x13.vhd

Memory
Efficiency

Efficient Video Line Stores 32

Improving 1280 Pixel Line Store Density
Even though use of the second port has enabled a 13-bit line store to be implemented in a single BRAM, the efficiency is still only 90.1%. The
implementation is wasting 1809 bits of memory which is clearly enough to implement at least one more 1280x1 line delay. The solutions is to return to the
observation that 1280 is equivalent to 5 × 256 and implement more line stores using several BRAMs arranged to support various multiples of 256 delay.

To further assist, we will exploit yet another feature of the BRAM; that being the ability for each port of a BRAM to be configured as a different aspect ratio.
When using a mixed aspect ratio, the same memory is still accessed from each port but it is presented a different way on each port. In this case we will be
using the RAMB16_S9_S18 primitive. The data width of the ‘B’ port is twice that of the ‘A’ port (18-bits verses 9-bits) but the ‘B’ port only has half the
address range of the ‘A’ port (1024 location verses 2048). In other words, each 18-bit word located at a single address of the ‘B’ port appears as two 9-bit
words located at two adjacent addresses of the ‘A’ port.

511 × 9
DIA DOA9 9

DIB DOB18 18

RAMB16_S9_S18

767 × 18

If the ‘A’ port is used to implement 9-bit delays of 512 stages,
then there is still just over three quarters of the memory unused
(1537×9). When this memory is viewed from the ‘B’ port it still
appears that three quarters of the memory is unused, but it is
now presented as 768×18 which is adequate to implement 18-bit
delays of 768.

So this BRAM is 99.9% efficient when implementing….
512 × 9 delay where 512 = 2 × 256
768 ×18 delay where 768 = 3 × 256

256
×
18

1537 × 9

512 × 9

768 × 9

9

18

9

18

9

9 9

Initially this combination of delays does not appear to be very helpful.
However, cascading the 512 stage delay with the 768 stage delay does
result in the desired 1280 stage delay but only for 9-bits. On its own, this is
only 62.4% efficient because the remaining 768 stage delay of 9-pixels is
unused. All that is required to turn these unused delays into full 1280 stage
delays are more 512 stage delays which are a very convenient power of
two which can be formed in another BRAM.

RAMB16_S9_S18

1280 × 9 delay

768 × 9 delay

Efficient Video Line Stores 33

1280 Pixel Line Store (72-bit)
Using the mixed 512×9 and 768×18 combination of BRAM four times (the
address counters can be shared) results in a desired 1280×36 delay but
also provides a 768×36 delay which is not useful and would be wasteful.

Fortunately a single BRAM can then be configured to provide the 512×36
delays required to supplement all the 768 stage delays.

512 × 9

768 × 9

9

18

9

18

9

9 9

RAMB16_S9_S18

512 × 9

768 × 9

9

18

9

18

9

9 9

RAMB16_S9_S18

512 × 9

768 × 9

9

18

9

18

9

9 9

RAMB16_S9_S18

512 × 9

768 × 9

9

18

9

18

9

9 9

RAMB16_S9_S18

511 × 18
DIA DOA18 18

DIB DOB18 18

RAMB16_S18_S18

513 × 18

511 × 18 511 × 18

data_in[71:0]

data_out[71:0]

The same 9-bit address counter can be used for both ports since the delay
implemented by each is the same. The actual address required by the BRAM is
then 10-bits so the MSB should be forced Low on one port and High on the
other to divide the memory into two halves. This counter can also be used to
address the ‘A’ port in the first four BRAMs whilst forcing the remaining two
MSBs to “00”.

Efficiency = 99.8% Average of 14.4 line-bits/BRAM

Hint – A single port BRAM with 36-bit aspect ratio is not used as this would
prevent access to the dedicated multiplier located next to the BRAM.

delay_1280x72.vhd

Efficient Video Line Stores 34

1920 Pixel Line Store (48-bit)

Although the 1920 delay of 9 bit is already 93.7% efficient,
it still leaves capacity to implement a 9-bit delay of 128
stages. This does not seem particularly useful until you
remember that 1920 is equivalent to 15×128. Therefore
combining this otherwise wasted delay from several
BRAMs can provide enough to form a few more complete
line-bits of 1920 stages.

1919 × 9

127 × 9

DIA DOA9 9

DIB DOB9 9

RAMB16_S9_S9

1919 × 9

5 BRAMs provides 48-bits and is the best fit

5 × ‘A’ ports each providing 9-bits of full 1920 stage delay = 45 lines

5 × ‘B’ ports each providing 9-bits of 128 stage delay = 45 delays of 128 stages
= 3 lines of 1920 stages

In gaining the 3 additional bits the data width of 48-bits also becomes a more convenient fit for 12-bit pixel data.

delay_1920x48.vhd

= 99.9%Memory
Efficiency

