
Software Implementation
of Pulse Width

Modulation (PWM).
A reference design using the

Spartan-3E Starter Kit

Ken Chapman
Xilinx Ltd
24th May 2006

Rev.1

PicoBlaze PWM for the Spartan-3E Starter Kit 2

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully
received by the author.

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using KCPSM3 or the UART macros with information about your
application and how these macros have been useful.

PicoBlaze PWM for the Spartan-3E Starter Kit 3

Design Overview
This design allows you to experiment with Pulse Width Modulation (PWM) implemented by a PicoBlaze processor. As supplied , the design will allow you to
control 12 PWM channels; 8 channels control the intensity of the 8 LEDs on the board and the remaining 4 channel are provided on connector ‘J4’ which you
can observe should you have access to an oscilloscope. You may also like to experiment with simple resistor-capacitor (RC) smoothing circuits connected to
the header pins to create additional digital to analogue (D/A) converters or experiment with controlling motors via drive transistors.

The PWM implemented has a pulse repetition frequency (PRF) of 1KHz and an 8-bit resolution (256 steps). The duty cycle for Each LED or ‘J4’ output can be
set independently using simple commands entered at a simple terminal program on your PC (HyperTerminal is ideal).

The PicoBlaze processor and UART macros occupy less than 5% of the XC3S500E device. It is hoped that the design may be of interest to anyone interested
in PWM and will help you to realise that PicoBlaze is small enough to include in a design even if dedicated to a task such as PWM.

HyperTerminal
(or similar)

RS232
Serial Communication

9600 baud
8-bits
No Parity
No flow control

8 LEDs

4 header pins (J4)

PRF=1KHz
(PRI=1ms)

8-bit resolution
(256 steps of 3.9µs)

Duty=17/256

Duty=188/256

Duty=239/256

Duty=34/256

IO9

IO10

IO11

IO12

LD
0

LD
1

LD
2

LD
3

LD
4

LD
5

LD
6

LD
7Intensity control

PicoBlaze PWM for the Spartan-3E Starter Kit 4

Using the Design
The design is provided as a configuration BIT file for immediate programming of the Spartan XC3S500E provided on the Spartan-3E Starter Kit. Source
design files are also provided for those more interested in the intricacies of the design itself. There is also an alternative PicoBlaze program provided along
with its compiled XSVF file to demonstrate how PicoBlaze programs can be modified in circuit and further demonstrate PWM control of LED intensity.

USB cable plus some devices on
board essentially provide the same
functionality as a Platform Cable
USB and is used in conjunction

with iMPACT.

Initially used to configure the
Spartan-3E with the PicoBlaze

based design (BIT file).

Can subsequently be used to
update the PicoBlaze program

stored in an internal Block Memory
(BRAM) allowing rapid software

changes and experiments.

RS232 Serial Cable.
Used for setting PWM duty factors

for each channel.

Cable connects J9 on the board to
your PC serial port. For this you will

need a male to female straight
through cable (critically pin2-pin2,

pin3-pin3 and pin5-pin5).

+5v supply
Don’t forget to switch the board on too!

(SWP)

PC

To make this task really easy the first time, unzip all the files
provided into a directory and then….

double click on ‘install_picoblaze_pwm_control.bat’.
Assuming you have the Xilinx software installed, your board
connected with the USB cable and the board powered (don’t forget
the power switch), then this should open a DOS window and run
iMPACT in batch mode to configure the Spartan-3E with the design
(configuration BIT file). You should see the LEDs turn on and a
message appear on your PC terminal window.

Quick Start - Configure the Spartan-3E with the design Quick Change – Changing the PicoBlaze program
Make sure you have the base design configured into the Spartan-3E
device (see left) and then….

double click on ‘update_picoblaze_auto_pwm.bat’.
This should open a DOS window and run iMPACT in batch mode to
‘play’ the XSVF file containing a new PicoBlaze program such that it
is downloaded into a BRAM inside the Spartan-3E device via the
user port of the JTAG block (this is the JTAG_loader utility provided
with PicoBlaze in action). This program will automatically execute
and drive the LEDs in a pattern using PWM. Notice how the intensity
of each LED grows and fades rather than simple on/off.

PicoBlaze PWM for the Spartan-3E Starter Kit 5

Serial Terminal Setup
An RS232 serial link is used to communicate with the design. Any simple terminal program can be used, but HyperTerminal is adequate for the task and
available on most PCs.

A new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings and protocol
required by an alternative terminal utility.

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 9600
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Go to next page to
complete set up…

PicoBlaze PWM for the Spartan-3E Starter Kit 6

HyperTerminal Setup
4 - Disconnect

5 - Open the properties dialogue

To select a different
COM port and change
settings (if not correct).

6 - Open Settings

7 - Open ASCII Setup

Ensure boxes are filled in as shown.

The design will echo characters that
you type so you do not need the ‘Echo
typed characters locally’ option.

The design transmits carriage return
characters (ODHEX) to indicate end of
line so you do need the ‘Append line
feeds to incoming line ends’ option to
be enabled.

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are
few other protocol settings which need to be set or verified for the PicoBlaze
design to work as expected.

8 - ‘OK’ the boxes to get back to
main screen and then Connect.

Optional steps…..
Select VT100 and then click
‘Terminal Setup’
Set ‘Rows’ to 40.
(May require you to stretch main
screen later to fit).

Optional step…..
Set Font to
Courier New,
Regular, 10

PicoBlaze PWM for the Spartan-3E Starter Kit 7

PWM Control

Welcome message

Enter commands in upper or lower case

Valid commands acknowledged with ‘OK’

Any mistakes in command entry results in ‘Error’

Type commands to the prompt.
Backspace key is supported to allow simple editing.
Single space between command and hex value.
End command entry with Carriage Return.

Commands to control LEDs (PWM channels 0 to 7)….

LDn hh

Where
'n' is an LED number in the range 0 to 7.
'hh' is a 2 digit hex value to specify the PWM duty factor

(range 00 to FF).

Commands to set simple outputs on connector J4….

IOk hh

Where
‘k' is an IO number in the range 9 to 12.
'hh' is a 2 digit hex value to specify the PWM duty factor

(range 00 to FF).

The duty cycle for each PWM channel can be set independently using
some simple commands typed at the terminal on your PC. Commands
should be formatted exactly as described for this simple program to
understand them.

Some command examples are shown in this HyperTerminal session.

Note that PicoBlaze is able to perform the interpretation of the
commands including the simple line editor function whilst maintaining
accurate generation of the 12 PWM channels.

Exercise – Determine the smallest duty cycle value which makes an
LED visible in daylight and in the dark. Estimate the duty cycle values
required to increase the intensity of an LED in what appears to be a
linear fashion to the human eye.

PicoBlaze PWM for the Spartan-3E Starter Kit 8

Default PWM Settings
Although practical implementations of PWM generators would tend to initialise to the off state (duty cycle of zero), this design is provided to give a mixture
of outputs which you can observe and then modify via the terminal commands. The initial duty cycles are as shown below but can be easily changed in the
PicoBlaze program if the design is used in a real application.

The LEDs should all appear to be on to some degree
with the intention that LD0 should appear to be very
dim and LD7 very bright. This demonstrates how PWM
can be used to control the intensity of an LED and also
indicates how PWM can be used in general to achieve
intermediate drive strengths by an averaging process
of fully ‘on’ or ‘off’ states.

Duty
17/256

Duty
188/256

Duty
239/256

Duty
34/256

This oscilloscope plot shows the default output from the 4 simple IO pins on
connector J4. It shows that the PRF is approximately 1KHz (see page 13) and
four different duty cycle settings.

PRF
997Hz

Exercise – Connect a simple R-C circuit to IO9 and measure the voltage level realised for
different duty cycle settings. Your RC time constant should be large in comparison to the PRF
period if you intend to have a smooth output level (R × C » 1ms). Think in terms of a smoothing
capacitor after a rectifier and consider how a load will also have an effect on ripple. GND

IO9

VDC

R

C

PicoBlaze PWM for the Spartan-3E Starter Kit 9

PicoBlaze Design Size
The images and statistics on this page show that the design occupies just 165 slices and 1 BRAM. This is only 3.5% of the slices and 5% of the BRAMs
available in an XC3S500E device and would still be less than 18% of the slices in the smallest XC3S100E device.

Number of occupied Slices: 165 out of 4,656 3%
Number of Block RAMs: 1 out of 20 5%

Total equivalent gate count for design: 78,962

PicoBlaze and the UART macros make extensive use of the distributed
memory features of the Spartan-3E device leading to very high design
efficiency. If this design was replicated to fill the XC3S500E device, it
would represent the equivalent of over 1.5 million gates. Not bad for a
device even marketing claims to be 500 thousand gates �

MAP report

FPGA Editor view Floorplanner view

XC3S500E

PicoBlaze PWM for the Spartan-3E Starter Kit 10

Design Files
The source files provided for the reference design are…..

picoblaze_pwm_control.vhd Top level file and main description of hardware.

PicoBlaze program source assembler code

kcpsm3.vhd PicoBlaze processor for Spartan-3E devices.

pwm_ctrl.vhd

I/O constraints file for Spartan-3E Starter Kit
and timing specifications for 50MHz clock.

pwm_ctrl.psm

Assembled program for PicoBlaze (stored in a Block memory)

Note: The files shown in green are not included with the reference design as they
are provided with PicoBlaze download. Please visit the PicoBlaze Web site for your
free copy of PicoBlaze, UART, assembler, JTAG_loader and documentation.

www.xilinx.com/picoblaze

Hint - If you only want to write new programs for PicoBlaze using the existing hardware design, then use the JTAG_Loader utility supplied with PicoBlaze.
The design supplied is already equipped with the JTAG loading circuit (see schematic on next page).

auto_pwm.xsvf
Alternative PicoBlaze program which can be downloaded directly to the PicoBlaze program memory using the
pre-compiled XSVF files provided (See page 4 and JTAG_Loader utility supplied with PicoBlaze).

auto_pwm.psm

bbfifo_16x8.vhd

kc_uart_tx.vhd

uart_rx.vhd

bbfifo_16x8.vhd

kc_uart_rx.vhd

uart_tx.vhd

UART transmitter and receiver with 16-byte FIFO buffers.

picoblaze_pwm_control.ucf

Hint – Source files contain many
comments and descriptions to help
you understand the design further.

PicoBlaze PWM for the Spartan-3E Starter Kit 11

PicoBlaze Circuit Diagram

buffer_full

uart_rx receive

serial_in

clk

data_out

reset_buffer

buffer_data_present

en_16_x_baud

read_buffer

buffer_half_full
rx_half_full

rx_full

rx_data_present

read_from_uart

rx_data
rx_female

buffer_full

uart_tx
transmit

data_in

clk

serial_out

reset_buffer

en_16_x_baud

write_buffer

buffer_half_full

tx_half_full

tx_full

out_port
tx_female

write_to_uart

9

baud_count

Decode 325

clk

en_16_x_baud

UART macros include 16-byte
FIFO buffers

baud_timer

counter

s
t
a
t
u
s
_
p
o
r
t

interrupt_control
interrupt_event

‘JTAG_loader’ allows rapid
PicoBlaze code development.

(Try downloading the alternative
program - see page 4)

port_id

kcpsm3 processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port

i
n
s
t
r
u
c
t
i
o
n

a
d
d
r
e
s
s

pwm_ctrl

program_rom

instruction

addressclk

port_id

out_port

r
e
a
d
_
s
t
r
o
b
e

interrupt_ack

interrupt

in_port

JTAGproc_reset

clk

k
c
p
s
m
3
_
r
e
s
e
t

0

read_from_uart

write_to_uart

input_ports

0

5

7

w
r
i
t
e
_
s
t
r
o
b
e

led[7:0]

6
simple[3:0]

8

interrupt_countclk

counter
Decode 195

Interrupt generated every 3.92µs

Baud rate = 9600 J4 – IO[12:9]

LD[7:0]

PicoBlaze PWM for the Spartan-3E Starter Kit 12

This design deliberately explores the generation of PWM using software executed by PicoBlaze rather than using PicoBlaze in conjunction with PWM
hardware peripherals (which will be covered in a subsequent reference design). This means that the dynamics of the PWM are totally flexible by software
definition but also means that there are some limits as to what can be achieved.

PWM and the Limits of Software

The two key parameters of PWM are the Pulse Repetition Frequency (PRF) and the resolution (number of steps) by which the duty cycle of each pulse can
be set. The design supplied has a PRF or 1KHz and a resolution of 8-bits (256 steps). As such, each step must be resolved at intervals of 3.92µs.

PRF=1KHz
(1/1000=1ms) 8-bit resolution = 256 steps

1ms/256 = 3.90625µs)

Exercise – Determine the maximum PRF which can be achieved for a single channel PWM controller if the resolution is to be 100 steps (8-bit values
expressing percent of cycle 0% to 100%). Allow 25% overhead for PicoBlaze to perform higher level tasks using the same 50MHz clock source.

Hint – Even if the limits of software execution are reached, it is quite possible to use more than one PicoBlaze processor in any Spartan device. PicoBlaze
used in this way can provide ‘intelligent’ PWM peripherals to another PicoBlaze or MicroBlaze processor acting as the main system controller.

PicoBlaze is a highly predictable processor requiring 2 clock cycles to execute every instruction. Although PicoBlaze can be clocked faster even in the
slowest speed grade of Spartan device, this reference makes direct use of the 50MHz oscillator on the board. As such, PicoBlaze is able to execute 25 million
instructions per second (MIPS) or one instruction every 40ns. Although this is relatively fast for a small 8-bit microcontroller, it means that it can only execute
97 instructions within the 3.90625µs step interval to support the PRF and resolution described above. However, 97 instructions are adequate to drive the
PWM signals for all 12 channels and still have ~50% of the processor bandwidth available for the higher level control tasks (dealing with the UART and
processing text commands in this case). It should be noted that in this design the PWM generation is continuous. It is quite common for software
implementations of PWM with microcontrollers to only support bursts of pulses in order to have time to perform other processing tasks. Such a compromise
should never be required when using an FPGA given the high performance of PicoBlaze and the ability to include hardware peripherals if required.

Increasing PRF and/or increasing the duty resolution will reduce the number of instructions which can be executed during each step. In the limit, there will
only be enough instructions available to describe the PWM itself and PicoBlaze will have no capacity to actually do anything else. Higher clock rates can be
considered, but really this is when a hardware peripheral implemented in the FPGA fabric will make more sense.

PicoBlaze PWM for the Spartan-3E Starter Kit 13

Store PWM duty factor in SPM

Interpret command and deduce channel
and PWM duty factor setting if valid

Using the fact that all instructions take 2 clock cycles to execute, it is possible to implement PWM 100% in software. However, only by fully dedicating the
PicoBlaze to the task of timing generation can the PRF and duty cycles be generated accurately. In most cases, we would want PicoBlaze to provide other
functions as well and it would then become almost inevitable that fluctuations in the PRF and duty cycle would result as the various tasks take more or less
time to complete. If such variations can be tolerated then such practices can be used and it can be a very efficient use of the processor especially when the
PRF and resolution required are relatively low such that the fluctuations appear small.

In this design, the objective has been to provide an accurate PRF and duty resolution and also to provide a high degree of consistency. This is achieved by
the use of interrupts which set the fundamental timing of the resolution steps and then absolves the software of any timing requirements other than to be fast
enough.

Interrupts Define PWM Timing

PicoBlaze

interruptCounter
0 to 195

50MHz

The design uses a simple hardware counter to set the timing for the interrupts. The counter has 196
states and generates the interrupt pulses (see page 11 for more details). This actually equates to an
interrupt every 3.92µs and a subsequent PRF of 996.5Hz Although this provides a fixed timing, this
could be changed by reprogramming the Spartan-3E device with a modified hardware design. This
is often easier and always more efficient than creating a programmable counter/timer module which
in turn has to be set up by PicoBlaze software. Of course the implementation of a software
programmable counter/timer is always possible, but you should always ask if it is necessary when
creating designs which are to be efficient, low cost and reliable.

Interrupt Service Routine

Fetch Duty Counter value from SPM

Read command from UART (up to
16 characters with basic line editing)

Initialise system and enable interrupts

Preserve contents of resisters to be used in SPM

Restore resister contents from values in SPM

Fetch PWM duty factor settings from SPM

Increment Duty Counter

Store new Duty Counter value back in SPM

Compare duty factors with Duty Counter
and drive PWM outputs appropriately.

Scratch Pad Memory (SPM)

SPM allows the interrupt
service routine (ISR) to

maintain isolation from the rest
of the code and essentially
make the PWM function an

independent task.

Certain SPM locations are
dedicated to the PWM task.
One byte is assigned to the
duty factor setting of each

PWM channel. Others ensure
that the main program is free

to use all registers.

Main Program

PicoBlaze PWM for the Spartan-3E Starter Kit 14

The Interrupt Service Routine (ISR) is the location of the actual code responsible for generating the PWM signals in this design. Part of that code is shown
below together with some explanations of how it works. Note that the source code is provided with many additional comments and further explanations for
this section and all other parts of the program.

PWM Software
ADDRESS 3FF
JUMP ISR

A PicoBlaze interrupt forces the program counter to address 3FF (a virtual CALL 3FF instruction).
Therefore the very end of the program must direct the program flow to the ISR which is achieved with
the ADDRESS assembler directive and a simple JUMP instruction.

ISR: STORE s0, ISR_preserve_s0
STORE s1, ISR_preserve_s1
STORE s2, ISR_preserve_s2
FETCH s1, PWM_duty_counter
ADD s1, 01
STORE s1, PWM_duty_counter
FETCH s0, PWM_channel11
COMPARE s1, s0
SLA s2
FETCH s0, PWM_channel10
COMPARE s1, s0
SLA s2
FETCH s0, PWM_channel9
COMPARE s1, s0
SLA s2
FETCH s0, PWM_channel8
COMPARE s1, s0
SLA s2
OUTPUT s2, simple_port
.
.
FETCH s0, ISR_preserve_s0
FETCH s1, ISR_preserve_s1
FETCH s2, ISR_preserve_s2
RETURNI ENABLE

The contents of registers ‘s0’, ‘s1’ and ‘s2’ are stored in scratch pad memory (SPM) so that the
registers are free to be used in the ISR without effecting the main program on return.

Restore registers ‘s0’, ‘s1’ and ‘s2’ to their original states.

Return to main program with interrupts enabled ready to respond to the for the next step of PWM.

SPM location ‘PWM_duty_counter’ is used to count interrupts and hence the progress though the
256 steps (00 to FF) of each PWM cycle. Register ‘s1’ then holds the counter value during the ISR.

s1

s0

COMPARE

CY

s2
SLA

Drive ‘J4’ output port with all 4 channels at the same time.
OUTPUT

Same procedure repeated to drive the 8 channels associated with the LED port (not shown here).

Each duty cycle setting is compared with the counter value. COMPARE is the
same as SUB (subtract) but the result is discarded. However, the carry flag is
still set if that result is negative. Hence if the duty cycle value is greater than the
current counter value then carry is High and this corresponds
with the requirement for the PWM output to be High.

The SLA instruction shifts the status of the carry flag
into the LSB of the s2 register. After 4 shifts all PWM
signals for the ‘J4’ connector are stored in ‘s2’.

Hint – Linear coding is used in the ISR. Although this results in a larger program, it executes much faster than a smaller routine with repeats (loops). In
fact it is not possible to process all 12 channels in the available time if the apparently more elegant coding style is adopted in this case.

PicoBlaze PWM for the Spartan-3E Starter Kit 15

The implementation provided can turn any channel off completely using a duty cycle value of zero (00 hex). However, the maximum value of 255 (FF hex)
actually only represents a duty cycle of 99.6% because the largest value is 255/256.

Maximum and Minimum Duty

Exercise - Modify the PicoBlaze code to enable both 0% and 100% duty cycle factors to be specified. The design should still use 8-bit values, but the
resolution should be reduced to 255 steps such that zero (00 hex) represents fully off and FF hex represents fully on. In your modified design, 01 hex will
represents 1/255 rather than 1/256 of the cycle period but the pulse duration will still be 3.92µs.

Hint – You should find that reducing the steps per cycle to 255 with the existing interrupt hardware will take you closer to a perfect 1KHz PRF.

Hint – Use the JTAG_loader facility with the existing hardware design to verify your code modifications.

Duty
01 hex

Duty
FF hex

Duty
FE hex

Duty
FD hex

1 step High = 3.92µs
255 Steps Low = 999.6µs

255 steps High = 999.6µs
1 Step Low = 3.92µs

254 steps High = 995.68µs
2 Step Low = 7.84µs

253 steps High = 991.76µs
3 Step Low = 11.76µs

