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Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no 
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of 
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these 
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in 
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of 
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of 
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation 
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if 
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential 
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully 
received by the author.

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using KCPSM3 or the UART macros with information about your 
application and how these macros have been useful.
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Design Overview
This design will allow you to investigate the Dallas Semiconductor DS2432 device which is a 1k-Bit Protected EEPROM with internal SHA-1 Engine. This 
device has an interesting 1-Wire interface which is used to provide both power and bidirectional communication. The design employs PicoBlaze to implement 
all the 1-wire communication protocol and provide a simple user interface on your PC via the RS232 serial port (use HyperTerminal or similar). Some of the 
DS2432 commands are fully supported whilst others can be investigated using simple byte write and byte read options.

This design occupies under 5% of the XC3S500E device. It is hoped that the design may be of interest to anyone interested in using the DS2432 or other 
1-wire devices in their own designs.  PicoBlaze can easily be reprogrammed in this design using the JTAG_loader supplied with PicoBlaze. 

HyperTerminal
(or similar)

Dallas Semiconductor
DS2432 

1k-Bit Protected 1-Wire
EEPROM with SHA-1 Engine

USB cable for downloading the design or 
changing the PicoBlaze program.

Hint – It is recommended that you obtain a copy of the DS2432 data sheet. Ideally print this document to refer to whist using this design and reading 
this description.  It is particularly useful to have the flow charts available.

Hint – XAPP780 provides a design which can be used to provide copy protection for your own designs by exploiting the special properties of the DS2432.

RS232 Serial Cable. 
Cable connects J9 on the board to 
your PC serial port. For this you will 

need a male to female straight 
through cable (critically pin2-pin2, 

pin3-pin3 and pin5-pin5).  
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Using the Reference Design

Alternatively use iMPACT manually to configure the XC3S500E device on the Spartan-3E Starter 
Kit via the USB cable with the BIT file provided.

Hint – Stop now and take time to read of the DS2432 data sheet and grasp the fundamentals of the device. It is hoped that this design will help bring 
the data sheet to life and that you should have many “oh, that’s what that means” moments as a result �

Your terminal session should indicate the design is 
working with a version number and simple menu.

Configuring the Spartan-3E ‘The Quick Way’!

Unzip all the files provided into a directory. 
Connect a suitable serial cable (see previous page).
Start a HyperTerminal (or similar) session using 9600 baud, 1 stop and no parity (see following pages). 
Check you have the USB cable connected and the board is turned on.
Double click on the file ‘install_PicoBlaze_DS2432_communicator.bat’.
This should open a DOS window and run iMPACT in batch mode to configure the Spartan device. 

This document is really in two sections. The first covers how to use the design ‘AS IS’ and in the process provides an introduction to the features and
operation of the DS2432 device. The second section covers in some detail the actual design implementation from both the hardware and PicoBlaze 
perspectives. It is recommended that you use the design first to be come familiar with what it offers to make the second section easier to understand.
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Serial Terminal Setup 
An RS232 serial link is used to communicate with the design. Any simple terminal program can be used, but HyperTerminal is adequate for the task and 
available on most PCs. 

A new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings and protocol 
required by an alternative terminal utility. 

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at 
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is 
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 9600
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Go to next page to 
complete set up…
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HyperTerminal Setup 
4 - Disconnect

5 - Open the properties dialogue

To select a different 
COM port and change 
settings (if not correct).

6 - Open Settings

7 - Open ASCII Setup 

Ensure boxes are filled in as shown. 

The design will echo characters that 
you type so you do not need the ‘Echo 
typed characters locally’ option.

The design transmits carriage return 
characters (ODHEX) to indicate end of 
line so you do need the ‘Append line 
feeds to incoming line ends’ option to 
be enabled.

8 - Connect

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are 
few other protocol settings which need to be set or verified for the PicoBlaze 
design to work as expected. 

8 - ‘OK’ the boxes to get back to 
main screen and then Connect.

Optional steps…..
Select VT100 and then click 
‘Terminal Setup’
Set ‘Rows’ to 40.
(May require you to stretch main 
screen later to fit).

Optional step…..
Set Font to 
Courier New,
Regular, 10



PicoBlaze DS2432 Communicator   7

System Overview 

The 1-wire interface is an open collector ‘bus’ which allows either the master (PicoBlaze inside the Spartan-3E in this case) or the DS2432 to pull the 
signal Low. If both devices have released the ‘bus’ then the pull-up provides the ‘High’. To maintain power, the High level is maintained for the majority of 
time and signal is only pulsed Low for a few micro-seconds at a time.

Obviously, all communication with the DS2432 must be performed serially using specific timing. PicoBlaze implements all this in software using the 
50MHz clock as the reference for all timing. After initialisation of the DS2432, all serial communication is performed using serial bytes (8-bits) which are 
transmitted and received least significant bit (LSB) first. 

The DS2432 has a 1-wire interface. Not only does this single wire provide bidirectional serial communications, it is also the only way in which 
the device is powered. Therefore this wire is generally held High by an external pull-up resistor of 680Ω.

The RS232 serial communications are implemented by some simple UART macros including 16-byte FIFO buffers (supplied with PicoBlaze). These 
isolate PicoBlaze from the intricacies of the UART signalling and timing although PicoBlaze is responsible for all characters transmitted and interpreting 
all characters received. In fact, the user interface is a large part of the program.

Spartan-3E

PicoBlaze

DS2432

GND

1-WIRE

3.3v

680Ω
U4

OE

UART

M14

R7

Tx

Rx

C9
50MHz
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Master Reset 

After configuring Spartan-3E with the reference design you are guided to issue a master reset pulse 
because this is the only valid option. In other words, the PicoBlaze program attempts to guide you thorough 
the flow chart show in the DS2432 data sheet and this is why it is useful to have available when using this 
design.

Before any communication with the DS2432 can take place it must be initialised. This is achieved by an exceptionally long duration Low pulse on DS-wire by 
PicoBlaze. If the DS2432 is functional, it responds with a short Low pulse of its own (the ‘presence pulse’). This master reset sequence must also be repeated 
after command sequences have been performed so that a new sequence can begin (Hint – this is to support a true bus system with multiple devices). 

Spartan-3E DS2432

GND

1-WIRE

Hint – ‘H’ will simply display the available menu options again. 

Enter ‘1’ to issue the master reset. If the DS2342 responds with its ‘presence pulse’ then PicoBlaze will 
display the ‘Pass’ message and proceed to the next menu. Otherwise it will report ‘Fail’ and only you will 
have to enter another master reset.

The ROM function commands become available after the presence pulse has been received. 
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ROM Commands 
Entering ‘2’ executes the read ROM command sequence. First PicoBlaze transmits the command byte 33 
Hex and then it reads back 8 bytes from the DS2432 which are displayed….

First byte is the device code which should be 33 hex.
The next 6 bytes are the unique 48-bit serial number (registration number) of your device.

These are received LS-Byte first (in this case 92 followed by AC etc.)
The last byte is an 8-bit Cyclic Redundancy Check (CRC) used to confirm the previous

7 bytes. PicoBlaze also calculates the CRC and displays a ‘Pass’ or Fail’ as required. 

After a presence pulse has been received, the DS2432 state machine progresses to the next stage in which one of seven ROM commands is expected. This 
design only supports two commands called ‘Read ROM’ and ‘Skip ROM’ either of which must be executed to reach the next and final level of commands.

If a ROM command has been executed successfully the you reach the memory and 
SHA Functions level of the DS2432 state machine and PicoBlaze provides a new 
selection of options.

Other ROM Commands

Skip ROM (supported) is the same as Read ROM but you just do not get the device code and unique 
serial number returned or displayed. This would speed up communication in a real application.  

Match ROM, Search ROM and Resume commands are used in situations where there are multiple 
devices connected to the same 1-wire bus. The Starter Kit has only one device.

Overdrive Skip ROM and Overdrive Match ROM commands have the same general use as Skip 
ROM and Match ROM commands but have the additional effect of increasing the speed of eth serial 
communications. Although PicoBlaze is more than capable of supporting the higher speed, he regular 
speed was adequate for this design and avoids the complication of supporting both rates.
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Read Memory Command 
Entering ‘2’ executes the read memory command sequence. First PicoBlaze transmits the command byte 
F0 Hex. Then it transmits a 16-bit address LS-Byte first  which indicates the start address in memory for 
the read. In this design, PicoBlaze always transmits 0000 hex so that it starts at the beginning.

PicoBlaze is then able to read bytes back from the DS2432 until it reaches address 0097. These are 
displayed in a tabular style with the address for the first byte of each line on the left side.

Hint - The read memory command always reads until the end of memory unless a master reset is issued to 
abort the process.

The read memory command allows the complete memory contents to be observed plus some other 
information.

Addresses 0000 to 007F cover the 128 bytes forming the 1K-bit memory. This can 
always be read, but requires knowledge of the secret to write. 

After any memory of SHA function command the DS2432 state machine expects a master reset followed by a 
ROM command. Therefore PicoBlaze limits the options to guide you through the required sequence.

Addresses 0080 to 0087 are the locations holding the 64-bit secret which for obvious 
reasons can not be read directly and is masked to ‘FF’.

Addresses 0090 to 0097 provide the same device code, 48-bit unique serial number and 
8-bit CRC code as the read ROM command.

Addresses 0088 to 008F indicate write protection settings and the ’55’ shown at address 
008B is a read only ‘Factory Byte’
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Write Scratchpad Command 

Entering ‘3’ executes the write scratchpad command sequence. First PicoBlaze transmits the 
command byte 0F Hex. 

Next, PicoBlaze must transmit a 16-bit address LS-Byte first. This will be the target address if the 
data is finally written to the EEPROM array and is loaded into the TA1 and TA2 registers of the 
DS2432.   which indicates the start address in memory for the read. You are prompted with the 
‘address=‘ to enter the 4 digit hexadecimal address. Illegal characters will result in the prompt being 
repeated. 

Hint – Only addresses in the range 0000 to 008F are valid for the DS2432 device. Any address above 
this range will cause the command sequency to terminate at the DS2432 and in PicoBlaze.
Hint – Internally to the DS2432 the least significant 3 bits of the address are always reset to zero such 
that the data always falls onto 8-byte boundaries.

The EEPROM array of the DS2432 is not written to directly. Instead a RAM based scratch pad 
memory is provided to which you write both the target address and data. This can then be verified 
before writing it into the EERPROM array. This is particularly useful when writing a secret since it is 
impossible to very it by conventional means. The scratch pad is also used in the generation of 
Message Authentication Codes (MACs).

After any memory of SHA function command the DS2432 state machine expects a master reset followed by a 
ROM command. Therefore PicoBlaze limits the options to guide you through the required sequence.

The DS2432 then expects PicoBlaze to write 8 bytes of data into the scratch pad. This 
time PicoBlaze prompts you to enter each byte in turn rejecting any illegal characters by 
repeating a particular data prompt.

After writing all data, PicoBlaze read back a CRC formed of all 11 bytes of this 
command sequence. This is a 16-bit CRC (not the 8-bit CRC used in the read ROM 
command) and the value has been 1’s complemented. PicoBlaze also calculates this 
CRC and reports a ‘Pass’ or ‘Fail’ as appropriate.
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Read Scratchpad Command 

Entering ‘4’ executes the read scratchpad command sequence. First PicoBlaze transmits the 
command byte AA Hex. 

Then PicoBlaze is able to read 13 bytes as follows…

The first 2 bytes read (LS-byte first) are the contents of the target address registers TA1 and TA2. 

Hint – The DS2432 internally resets the least significant 3 bits of the address to zero and therefore 
the address read may not match that which was set during the write scratchpad command.

The next byte is the ending offset/data status byte (E/S). This should be ‘5F’ hex if all has been 
successful. A value of ‘DF’ (MSB is set) would indicate that the scratchpad contents have also been 
successfully copied into the EEPROM array using another command. Any other values are bad news! 

The read scratch pad command is the complement to the write scratchpad command and can be 
used to verify that the data is good before proceeding with other commands.

After any memory of SHA function command the DS2432 state machine expects a master reset followed by a 
ROM command. Therefore PicoBlaze limits the options to guide you through the required sequence.

Then the 8-bytes of data can be read and are displayed.

Finally, PicoBlaze can read back a 16-bit CRC formed of all 12 bytes of this command 
sequence. This complimented 16-bit CRC value is also calculated by PicoBlaze which 
reports a ‘Pass’ or ‘Fail’ as appropriate.
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Write Byte and Read Byte

Hint – Try manually entering a write scratchpad command to ensure that you understand 
that command fully and can follow the flow chart.

All the DS2432 commands supported by this design allow you to investigate the basic 
communication with the device but do not allow you to actually modify the EEPROM array contents 
or use the SHA-1 functions. These will be covered in a separate reference design in which the 
aspects covered in this design are taken for granted. However, this design does provide two simple 
menu options which allow you to manually write and read bytes.  

These simple options enable you to manually execute any of the commands following the flow 
charts in the DS2432 data sheet. Option ‘1’ enable you to issue a master reset at the end of any 
command sequence or to abort if you get confused! 

To write a byte enter the ‘5’ option and then provide a 2 digit hexadecimal value to the 
‘Byte=‘ prompt. Illegal characters will result in the prompt being repeated.

The example shown here is the start of a manual attempt to execute the load first secret 
command which requires the following sequence…

1) Write the secret to scratch pad with address 0080 (see write scratchpad example).
2) Verify the secret and note address and E/S values (see read scratchpad example).
3) Write the load first secret command 5A hex.
4) Write the values of TA1, TA2 and E/S. These are in order 80, 00 and 5F.
5) Read the DS2432 as many times as you like and confirm response is AA (see below).
6) Master reset to finish sequence.

Write 5A

Write 80

Read AA

Read scratchpad command 
confirms write of secret was 

successful with E/S now ‘DF’.

Write 00
Write 5F

Not shown
Master Reset
Read ROM

Not shown
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PicoBlaze Design Size
The images and statistics on this page show that the design occupies just 156 slices and 1 BRAM. This is only 3.4% of the slices and 5% of the BRAMs 
available in an XC3S500E device and would still be less than 17% of the slices in the smallest XC3S100E device. 

Number of occupied Slices:    156 out of   4,656    3%
Number of Block RAMs:           1 out of      20    5%

Total equivalent gate count for design:  78,719

PicoBlaze and the UART macros make extensive use of the distributed 
memory features of the Spartan-3E device leading to very high design 
efficiency. If this design was replicated to fill the XC3S500E device, it 
would represent the equivalent of over 1.5 million gates. Not bad for a 
device even marketing claims to be 500 thousand gates �

MAP report

FPGA Editor view Floorplanner view

XC3S500E
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Design Files
For those interested in the actual design implementation, the following pages provide some details and an introduction to the source files provided. This 
description may be expanded in future to form a more complete reference design. As well as these notes, the VHDL and PicoBlaze PSM files contain many 
comments and descriptions describing the functionality.

The source files provided for the reference design are…..

picoblaze_DS2432_communicator.vhd

bbfifo_16x8.vhd

kc_uart_tx.vhd

Top level file and main description of hardware.

PicoBlaze program source assembler code

kcpsm3.vhd PicoBlaze processor for Spartan-3E devices.

control.vhd

uart_rx.vhd

bbfifo_16x8.vhd

kc_uart_rx.vhd

UART transmitter and receiver with 16-byte FIFO buffers.

I/O constraints file for Spartan-3E Starter Kit 
and timing specification for 50MHz clock.

control.psm

Assembled program for PicoBlaze (stored in a Block memory) 

Note: Files shown in green are not included with the reference design as they are all provided with PicoBlaze download. Please visit the PicoBlaze 
Web site for your free copy of PicoBlaze, assembler and documentation. www.xilinx.com/picoblaze

picoblaze_DS2432_communicator.vhd

uart_tx.vhd
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DS2432 Initialisation
The DS2432 is initialised by an active Low master reset pulse. A reset pulse >480µ will force the DS2432 to initialise in ‘regular speed’ mode. Only if the 
DS2432 has previously been placed in the faster ‘overdrive speed’ mode (using an appropriate command) will the faster timing of the overdrive reset pulse be 
valid and initialise the device whilst remaining in overdrive speed mode. 

Following the master reset pulse, the DS2432 acknowledges with an active Low ‘presence pulse’. The relative time of which confirms the speed mode. The 
diagrams below are shown reasonably to scale to show how an active presence pulse between 60 and 120µs is unique to the regular mode.

300µs200µs100µs0µs

Red – Spartan/PicoBlaze drives Low

Blue – DS2432 drives Low

Black – Resistor pulls line High

Overdrive Mode

48µs to 80µs 39µs

Regular Mode

>480µs 60µs

120µs

The PicoBlaze code provided generates a master reset pulse of 500µs to initiate regular mode and a pulse of 64µs to initiate overdrive mode. It then 
checks for a presence pulse occurring only after 60µs and then waits the full 300µs before returning to ensure the DS2432 has any activity that may 
happen as completed. 

Can be used at any time.
Device will be in regular mode after reset.

Can only be used if device us already in overdrive mode (set using an Overdrive Skip ROM or Overdrive Match ROM command).
Device will remain in overdrive mode mode after reset.
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Initialisation Code

DS_init_regular_mode: LOAD s0, 00                     
OUTPUT s0, DS_wire_out_port
LOAD s2, 01                     
LOAD s1, BD

rm_wait_500us: CALL delay_1us                  
SUB s1, 01                      
SUBCY s2, 00
JUMP NC, rm_wait_500us          
LOAD s0, 01                     
OUTPUT s0, DS_wire_out_port
LOAD s1, 38                    

rm_wait_60us: CALL delay_1us                 
SUB s1, 01                     
JUMP NZ, rm_wait_60us          
LOAD s2, 01                    
LOAD s1, B6                    

rm_poll_240us: CALL delay_1us                 
CALL read_DS_wire
AND s2, s0                     
SUB s1, 01                     
JUMP NZ, rm_poll_240us         
TEST s2, 01                  
RETURN

In this design, PicoBlaze is used to implement the 1-wire communication 100% in software. The fact that a processor is sequential in nature means that the 
required delays can be formed simply by executing the appropriate number of instructions. PicoBlaze simplifies the task of writing code because all 
instructions execute in two clock cycles under all conditions. At the clock rate of 50MHz, this mean that all instructions take 40ns to execute.  

CONSTANT delay_1us_constant, 0B 
delay_1us: LOAD s0, delay_1us_constant
wait_1us: SUB s0, 01

JUMP NZ, wait_1us
RETURN

The PicoBlaze program supplied implements a 1µs delay in software which it then uses as 
the base for many of the 1-wire operations. This subroutine is invoked with a ‘CALL 
delay_1us’ which then LOADs register s0 with 11 (0B hex). This in turn causes the SUB and 
JUMP NZ instructions to execute 11 times before RETURN completes the routine. This 
means that a delay of exactly 1µs is formed by the 25 instructions each taking two clock 
cycles at 50MHz. 

The final delay loop is of 240us. This loop is formed by 33 instructions requiring 182 
repetitions. There are more instructions in this loop because PicoBlaze polls the 
DS_wire (read_DS_wire subroutine) at approximately 1us intervals looking to detect 
an active Low presence pulse. If a Low is detected a flag in register ‘s2’ is cleared.

A delay of 500us is equivalent to 12500 instructions at 50MHz. Because the loop calling 
the 1µs delay routine requires 3 instructions, there are actually 28 instructions being 
executed per iteration. This means that only 446 (01BD hex) iterations are required and 
not the obvious 500 which would produce a delay of 560µs.

The master reset routine uses this 1µs delay routine many times. To be more precise (although not really required in this application) the delays are further 
refined by calculating the total number of instructions which will be executed for each delay. This prevents an accumulated error caused by the act of calling 

the basic 1µs delay many times.

Drive DS_wire Low

Release DS_wire to be pulled High by external resistor

Wait 60us to miss any overdrive mode response. This time there are 27 instructions 
per iteration requiring 56 repetitions (56×27×40ns=60.48µs)

Set CARRY flag if no presence pulse detected.

Hint – The ‘control.psm’ file contains comprehensive notes 
and comments (more than shown in the boxed below).
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Initialisation and Speeds
These oscilloscope screen shots show the reset pulses generated by PicoBlaze and the 
presence pulses generated by the DS2432.

Regular Mode

On a scale of 100µs/division, the it can be seen that the master reset pulse generated 
by PicoBlaze is 500µs. This is then followed by a presence pulse with a duration of just 
over 100µs.

Overdrive Mode

Although not directly supported by the design provided, experiments were conducted 
using overdrive mode and the screen shots below clearly show how a master reset 
pulse of 64µs appears to be almost immediately followed by a much shorter presence 
pulse. Sampling the presence pulse only after 60µs will clearly prevent detection of the 
presence pulse for overdrive mode.

100µs/division

10µs/division.100µs/division

Zoom in
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1-Wire Writing and Reading
Data is written to the DS2432 using the 1-wire interface and requires some careful timing. Although PicoBlaze is more than capable of implementing the 
higher speed ‘overdrive mode’, the code provided in this reference design implements only the slower ‘regular speed’ mode. This simplifies the operation 
when first understanding this device because the ‘overdrive’ mode is only achieved by first writing an Overdrive ROM command at regular speed!

Red – Spartan/PicoBlaze drives Low

Blue – DS2432 drives Low

Black – Resistor pulls line High

Slot Time = 80µs 

8µs

Hint - The PicoBlaze code provided implements all timing using software delay loops based on the 
50MHz oscillator provided on the Starter kit board. If a different clock rate is used, the delays 
implemented in the routines ‘write_Low_slow’, ’write_High_slow’ and ‘read_bit_slow’ should be revised.

The following diagrams show the approximate timing of the routines provided with this reference design. These timing meet the limits specified in the 
DS2432 data sheet for regular speed mode which should be consulted for more detail.

DS2432
read zone

DS2432
read zone

PicoBlaze
read point

4µs

12µs

Reading ‘1’

Reading ‘0’

Writing ‘1’

Writing ‘0’

A write is initiated by the PicoBlaze driving the wire Low for 1 to 15µs (8µs implemented). 
PicoBlaze then continues to drive the wire Low to write a ‘0’ or releases the wire to write a ‘1’
which is sampled by the DS242 at some point between 15 and 60us. The wire must be 
released and High for at least 1µs to complete the write operation (2µs implemented)..2µs

All the write and read routines have been implemented to fit an 80µs slot time which covers the 
60µ minimum and allows more than adequate recovery time between successive reads/writes.

A read is initiated by the PicoBlaze driving the wire Low for at least 1µs (4µs implemented). 
PicoBlaze then releases the wire which allows the DS242 to either continue to hold the wire 
Low or release the wire for a High. Since the DS2432 may only hold the wire low for up to 
15us, PicoBlaze must read the line before this time expires (12µs implemented). After reading 
the bit value, enough time must be allowed for a slow DS2432 to release the wire and recover 
for which the 80µs time slot is more than adequate.

60µs
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1-Wire Code to Write 
Separate routines provide the ability to transmit a Low or a High with the correct timing. These again use the fundamental 1µs delay routine.

Drive DS_wire Low to initiate write and following on to Low data value 

Release DS_wire to be pulled High by external resistor

Delay 78us (72 iterations × 27 instructions × 40ns = 77.68µs)

write_Low_slow: LOAD s0, 00
OUTPUT s0, DS_wire_out_port
LOAD s1, 48 

wls_wait_78us: CALL delay_1us
SUB s1, 01
JUMP NZ, wls_wait_78us
LOAD s0, 01
OUTPUT s0, DS_wire_out_port
CALL delay_1us
CALL delay_1us
RETURN

write_High_slow: LOAD s0, 00
OUTPUT s0, DS_wire_out_port
LOAD s1, 08

whs_wait_8us: CALL delay_1us
SUB s1, 01
JUMP NZ, whs_wait_8us
LOAD s0, 01
OUTPUT s0, DS_wire_out_port
LOAD s1, 43

whs_wait_72us: CALL delay_1us
SUB s1, 01
JUMP NZ, whs_wait_72us
RETURN

Writing ‘1’

Writing ‘0’

Delay 2us

Release DS_wire to be pulled High by external resistor to represent High data value

Delay 8us (8 iterations × 27 instructions × 40ns = 8.64µs)

Drive DS_wire Low to initiate write 

Delay 72us (67 iterations × 27 instructions × 40ns = 72.36µs)
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1-Wire Code to Read 
Separate routines provide the ability to transmit a Low or a High with the correct timing. These again use the fundamental 1µs delay routine.

Release DS_wire to be pulled High by external resistor or held Low by DS2432.

Delay 4us (4 iterations × 27 instructions × 40ns = 4.32µs)

Reading ‘0’ or ‘1’

Subroutine reads the DS_wire and tests it. This means that the value of DS_wire is 
available in the LSB of register ‘s0’ and also reflected in the status of the CARRY flag.

Delay 68us (63 iterations × 27 instructions × 40ns=68.04µs)

Drive DS_wire Low to initiate write 
read_bit_slow: LOAD s0, 00

OUTPUT s0, DS_wire_out_port
LOAD s1, 04

rbs_wait_4us: CALL delay_1us
SUB s1, 01
JUMP NZ, rbs_wait_4us
LOAD s0, 01
OUTPUT s0, DS_wire_out_port
LOAD s1, 08

rbs_wait_8us: CALL delay_1us
SUB s1, 01
JUMP NZ, rbs_wait_8us
CALL read_DS_wire
SRA s3                                 
LOAD s1, 3F

rbs_wait_68us: CALL delay_1us
SUB s1, 01
JUMP NZ, rbs_wait_68us
RETURN

Delay 8us (8 iterations × 27 instructions × 40ns = 8.64µs)

DS_wire actually sampled 13µs after start of initiation pulse which is before the 15µs 
required. Read bit is shifted into register ‘s3’ (used when reading bytes).

read_DS_wire: INPUT s0, DS_wire_in_port
AND s0, DS_wire
TEST s0, DS_wire
RETURN
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write_byte_slow: LOAD s2, 08
wbs_loop: RR s3

JUMP C, wbs1                           
CALL write_Low_slow
JUMP next_slow_bit

wbs1: CALL write_High_slow
next_slow_bit: SUB s2, 01

JUMP NZ, wbs_loop
RETURN

All data values and commands are communicated as bytes transmitted and received least significant bit first. To achieve this simply requires 8 
repetitions of the single bit read and write operations. 

It is interesting to observe that these byte writing and reading routines are now free of any timing and physical input and output detail. So it is from this level 
and above that the code becomes one of pure state machine, protocol and application.

Reading and Writing Bytes

The byte to be transmitted must be provided in register ‘s3’.

‘s2’ acts as a bit counter.

The input byte ‘s3’ is rotated right 8 times. Each rotation allows the next least significant bit 
to be observed via the CARRY flag and for the appropriate write High or write Low routine to 
be executed. Since ‘s3’ is rotated 8 times the value is returned unchanged.

read_byte_slow: LOAD s2, 08
rbs_loop: CALL read_bit_slow

SUB s2, 01
JUMP NZ, rbs_loop
RETURN

Writing a byte

Reading a byte
The byte read is returned in register ‘s3’.

‘s2’ acts as a bit counter.

The read_bit_slow routine shifts each received bit into the MSB of ‘s3’. Therefore after 
reading all 8 bits the fist received has been shifted down to the LSB position.
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1-Wire Signals

Writing

The writing of read ROM command.
33 hex = 00110011 binary.

Note the 8µs Low preceding the write of a ‘1’ and 
the 2µs High completing the writing of a ‘0’.

The complete read ROM command 
and response (below). 

1+8 bytes = 72 bits
72 bits @ 80µs/bit = 5.76ms

These oscilloscope screen shots were captured at pin 2 of the DS2432 device when performing the ‘read ROM’ command. Initially the command byte 33 
hex is written which allows the write operations to be seen. PicoBlaze then reads 8 bytes of which the first is the family code (which is also 33 hex). This  
allows the read process to be observed and shows how the DS2432 drives the wire Low for approximately 30µs on my board.

‘1’ ‘1’ ‘0’ ‘0’ ‘1’

50µs/division.
Scale of 50µs/division.

Reading

The reading of the family code.
33 hex = 00110011 binary.

Note the 4µs Low preceding the read of a ‘1’ and 
how the DS2432 is driving Low for ~30µs in this 
case.

‘1’ ‘1’ ‘0’ ‘0’ ‘1’
1ms/division.

M
S

B
 o

f W
rit

e 
’0

’

50µs/division.
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Command Code
All higher level code is used to directly to trace the path of the flow charts in the DS2432 data sheet. Obviously some interaction is required with the UART 
to obtain and display results but otherwise the correlation should be easy to follow. This example shows the read memory command.

;**********************************************************************************
; DS2432 Read Memory Command.
;**********************************************************************************
;
; The read memory command (F0 hex) allows the entire memory contents to be read
; except for the secret. This routine displays the address followed by 8 bytes
; of data on each line until the address 0097 is reached.
;
; The initial 'F0' command must be followed by the 16-bit start address transmitted
; LS-byte first. Then reads must continue until address 0097 has been read for the
; command to complete naturally (otherwise a master reset is required).
;

read_memory_command: LOAD s3, F0             ;read memory Command
CALL write_byte_slow ;transmit command
LOAD s5, 00             ;initial address in [s5,s4]=0000
LOAD s4, 00
LOAD s3, s4             ;transmit address
CALL write_byte_slow
LOAD s3, s5
CALL write_byte_slow

rmc_line_loop: CALL send_CR
LOAD s0, s5             ;display 16-bit address
CALL send_hex_byte
LOAD s0, s4
CALL send_hex_byte
CALL send_space
CALL send_space

rmc_data_loop: CALL send_space
CALL read_byte_slow ;read data into s3
LOAD s0, s3             ;display byte
CALL send_hex_byte
ADD s4, 01              ;increment address
ADDCY s5, 00
TEST s4, 07             ;test for 8-byte boundary
JUMP NZ, rmc_data_loop
COMPARE s4, 98          ;test for last address
JUMP NZ, rmc_line_loop
CALL send_OK
JUMP reset_menu ;needs master reset next

Hint
This code is shown with all the comments 
and is typical of all the code provided

Set address to 0000 hex

UART 
display 
stuff!

Flow chart from 
the DS2432 
data sheet
(page 14) 
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8-bit CRC Code
The 8-bit and 16-bit CRC functions are also implemented in the supplied code and illustrate some true computation can be performed by PicoBlaze. 

compute_CRC8: FETCH s3, family_code
FETCH s4, serial_number0
FETCH s5, serial_number1
FETCH s6, serial_number2
FETCH s7, serial_number3
FETCH s8, serial_number4
FETCH s9, serial_number5
LOAD s2, 38
LOAD s0, 00

crc8_loop: LOAD s1, s0
XOR s1, s3
TEST s1, 01
JUMP NC, crc8_shift
XOR s0, 18

crc8_shift: SR0 s1
SRA s0
SR0 s9
SRA s8
SRA s7
SRA s6
SRA s5
SRA s4
SRA s3
SUB s2, 01
JUMP NZ, crc8_loop
RETURN

The 8-bit CRC routine (shown left) really handles everything directly in local registers having 
copied all relevant data from scratch pad memory. The 16-bit CRC routine shows how less 
registers can be used by working with scratch pad memory more interactively.

s9 s8 s7 s6 s5 s4 s3

There are 56-bits(38 hex) to be processed LSB first. This is achieved by loading 7 registers 
with the data and shifting the whole chain right by one position each iteration.

Shift input data

56
times?

Diagram from the 
DS2432 data sheet

(page 4) 

s0

‘s0’ is used to represent the 8-bit CRC register exactly the same as in the diagram

LSB in

s1

s3 XOR

CY=1?

s0

0 0 0 1 1 0 0 0

s0

XOR

SRA

The input LSB’s of the input and CRC are XORed in ‘s1’. If the 
result is a ‘1’ then bits 3 and 4 of the  CRC value are inverted 
before shifting the CRC right with the new bit.


