
1

CS/EE 3710

Computer Design Lab
Fall 2010

University of Utah CS/EE 3710

CS/EE 3710

  Computer Design Lab
  T Th 3:40pm-5:00pm

Lectures in WEB 110, Labs in MEB 3133 (DSL)
  Instructor: Erik Brunvand

  MEB 3142
  Office Hours: After class, when my door is open, or

by appointment.
  TA: Michael Kingston

  Office hours to be determined

University of Utah CS/EE 3710

CS/EE 3710

  Web Page - all sorts of information!
  http://www.eng.utah.edu/~cs3710
  Contact:

  3710@list.eng.utah.edu
  Goes to everyone in the class

  teach-3710@list.eng.utah.edu
  Goes to instructor and Ta

  No textbook – I’ll hand out stuff.
  There’s lots of good stuff linked to the web page

University of Utah CS/EE 3710

Prerequsites

  Digital Logic
  CS/EE 3700 or equivalent

  Computer Architecture
  CS/EE 3810 or equivalent

  First assignment is a review of these subjects!
  It’s on the web page now!
  It’s due on Thursday, September 2 at 5:00pm

(hand in in class)

University of Utah CS/EE 3710

Class Goal

  Use skills from both 3700 and 3810 to build a
moderately sized project
  Specifically, a computer processor!
  Based on a commercial RISC core

  Team projects – groups of 3 or 4
  Each group will customize their processor for a

particular application
  You choose the application!
  You choose the customizations!

University of Utah CS/EE 3710

Hardware Infrastructure

  Spartan-3E “starter” Board from Xilinx

FPGA: Spartan-3E FPGA
 500,000 gate equivalents,
 plus 40Kbytes of onboard RAM
Clock: 50 MHz crystal clock oscillator
Memory: 128 Mbit Parallel Flash
 16 Mbit SPI Flash
 64 MByte DDR SDRAM
Connectors and Interfaces:
 Ethernet 10/100 Phy
 JTAG USB download
 Two 9-pin RS-232 serial port
 VGA output connector
 PS/2- style mouse/keyboard port,
 rotary encoder with push button
 Four slide switches
 Eight individual LED outputs
 Four momentary-contact push buttons
 100-Pin expansion connection ports
 Three 6-pin expansion connectors
Display: 16 character - 2 Line LCD

2

University of Utah CS/EE 3710

CAD Software

  Xilinx ISE WebPACK 12.2
  Verilog system definition
  Schematic capture
  Verilog/Schematic simulation
  Synthesis to the Spartan-3E
  Mapping to the Spartan-3E

  This is installed on the DSL machines, in the
CADE PC lab, and is free to install on your
own machine
  It’s a BIG download though…

University of Utah CS/EE 3710

The Big Picture

University of Utah CS/EE 3710

The Big Picture

Our main
focus in 3710

University of Utah CS/EE 3710

The Big Picture

  I’ll hand out a Baseline ISA (it’s on the web site)
  Every group must implement these instructions

  There will be labs that require you to design and
demonstrate steps along the way

  Each group will customize their processor
  New instructions
  New I/O
  Other features

  End up demonstrating code running on your
processor!

University of Utah CS/EE 3710

The Big Picture

  Design with a mix of schematics and Verilog
  Design the datapath

  ALU, register file, shifter, misc. registers, etc.

  Design the control FSM
  Remember Verilog state machine design from 3700?

  Design the I/O system
  Memory mapped I/O
  VGA, PS/2, UART, LCD, etc.

  Use ISE for simulation/synthesis
  Processor runs on the Spartan-3E board

Verilog

  Plan on good Verilog coding style this semester!
  Verilog is NOT a programming language!
  Verilog is a Hardware Description Language

  A huge number of Verilog errors are related to confusion
between combinational and sequential descriptions

  Think of the HW first, before coding

  What is “good” Verilog?
  I like excessive comments in the code
  I like clear distinctions between seq. and comb. code
  I like hierarchy
  I like using a coding style that makes synthesis easy
  I like using a purely synchronous clocking style in this class

University of Utah CS/EE 3710

3

Remember This?

University of Utah CS/EE 3710

Generic Architecture

University of Utah CS/EE 3710

Control
FSM

Generic Architecture

University of Utah CS/EE 3710

• Keyboard
• Mouse
• UART
• Switches
• Etc.

memory

I/O

• VGA
• UART
• LCD
• Etc.

Control
FSM

University of Utah CS/EE 3710

The Short-Term Picture
  Start with a review assignment
  Next assignment is a Finite State Machine (FSM)

mapped to the Spartan-3E board
  Thunderbird tail lights...

  Next assignment will be a very small processor
  I’ll hand out mips.v code from Weste/Harris
  I’ll hand out Verlog code for block RAMs
  I’ll hand out sample Fibonacci assembly code
  You’ll augment the processor with ADDI
  You’ll augment the processor with very simple I/O
  You’ll augment the Fibonacci code

  Then a VGA assignment
  Everyone builds a VGA interface
  VGA version of the Thunderbird…

University of Utah CS/EE 3710

The Medium Term Picture

  We’ll hand out lab kits on Tuesday next week
during class
  We’ll meet in the DSL, MEB 3133

  Be thinking about who to team up with
  Teams will be 3-4 people
  Good teams have a mix of complementary skills

  Start thinking about your project
  Mid-term presentations

  Present your plans and your design so far
  All team members must participate and present

University of Utah CS/EE 3710

The Long Term Picture

  Once teams are formed (Late September)
  Start working on your project
  Start with baseline, augment for your application
  Think about memory and I/O
  Think about support software (assemblers,

compilers, etc.)
  Think about application software

  Whole thing due at the end of class
  Demo day at the end of the semester
  December 9th – 3:40-5:00pm

4

University of Utah CS/EE 3710

Design

  What is design?
  Design is the progression from the abstract to the

concrete
  From the idea for the SuperGizmoWidget until you’ve

actually got the real live hardware in your hands
  How does one go from an idea to a product?
  How does one go from a specification to a piece of

hardware?

University of Utah CS/EE 3710

Exploit Abstraction

  Design from the top down!
  Start with an understanding of the complete

system
  The Big Picture!

  Break it into more manageable chunks
  Describe the chunks in more detail
  Continue until the chunks are easy enough that

you can build them!

University of Utah CS/EE 3710

Actually…

  You can’t really do things totally top-down or
totally bottom-up
  Top-down is usually the best place to start though
  At some point you’ll need to look at the details

  Learning when to switch views is important!
  When do you switch between levels of abstraction?
  Learn by doing and with practice

University of Utah CS/EE 3710

A Couple of Rules

  Don’t build complex systems, build
compositions of simple ones!
  Use appropriate abstractions
  Use hierarchy in your designs

  Don’t reinvent the wheel
  Exploit available resources
  Find tools that will help you
  Reuse modules when it makes sense
  Avoid NIH syndrome! (This isn’t CalTech…)

University of Utah CS/EE 3710

Digital Design Abstractions

  System Architecture
  Instruction Set Architecture (ISA)
  Register-Transfer Level
  Gates

  Boolean logic, FPGAs, gate-arrays, etc…
  Circuits – transistors
  Silicon – mask data, VLSI

University of Utah CS/EE 3710

Another Look at Abstraction

5

University of Utah CS/EE 3710

When to Switch Levels?

  When do you switch to a new level in the
abstraction hierarchy?
  When does a collection of transistors look like a gate?
  When does a collection of gates look like a

register-transfer level module?

  Engineering judgement!
  One mark of a good engineer is one who breaks things

up at the appropriate level of abstraction!

University of Utah CS/EE 3710

Problems With Abstraction

  You may abstract away something important!
  When you jump up a level you lose some info
  When you jump down a level you may get swamped

in the details
  Example: An appropriate collection of transistors

doesn’t always behave like a logic gate!
  Slowly changing signals (slope, rise time, fall time)
  Metastability
  Other electrical effects

  You may also miss some possible optimizations

University of Utah CS/EE 3710

Design Validation

  It’s hard to make sure that different models are
describing the same thing!

  Write a behavioral model in C, then create a
gate-level model in ISE. How do you know
they’re the same?
  Simulation?
  Correct-by-construction techniques?
  Formal proofs?
  Cross your fingers?

University of Utah CS/EE 3710

CAD Tools

  Mask Level
  Magic, Mentor, Cadence, Spice, Spectre, etc.

  Gate Level
  ISE, Mentor, Cadence, COSMOS, IRSIM,

Espresso, MisII, etc.
  RT and up – “High-level” descriptions start to

look a lot like software…
  Verilog, VHDL, HardwareC,
  ISE-XST, Synopsys, Ambit, Leonardo

University of Utah CS/EE 3710

High Level Synthesis

  Allows behavioral descriptions
  Larger and more complex systems can be

designed
  Abstracts away low-level details
  Design cycle is shortened
  Correct by construction

(if you trust the tools!)

University of Utah CS/EE 3710

Synthesis Drawbacks

  Larger circuits
  Slower circuits
  No innovative circuits

  Of course, you can make counter-arguments to
each of these drawbacks…

6

University of Utah CS/EE 3710

Synthesis Tools

  A whole bunch of different CAD tools
  Quite complex

  ISE-XST from Xilinx
  Targets Xilinx FPGAs in particular
  You’ll get to know the Xilinx CAD tools well!

Wrap Up

  3710 is a project-based course
  Main Goals:

  Learn about processor design from the ground up
by building one

  Learn about practical details of processor design
  I/O, memory interfaces, assembly programming, etc.

  Learn about processor support systems
  assemblers, linkers, memory loaders, etc.

  Get experience with a larger design
  Teamwork
  Verilog, schematics, CAD tools, hierarchical design, etc.

  Have Fun!!!
University of Utah CS/EE 3710

