
CS/EE 3710 — Computer Design Lab
Lab 2 — Mini-MIPS processor

Controller modification, memory mapping, assembly code

Due Thursday, September 23rd, 2010

Laboratory Objectives

The objectives of this lab are to understand and extend a very very simply processor, read and write
to block memory on the Xilinx chip, use memory mapped I/O with your processor, use the switches and
LEDs on the Spartan3e board, and write a program to run on your processor. This will give you a start on
seeing the bigger picture for your semester project by essentially doing a simpler version of most of the
basic tasks. To accomplish this, do the following:

1. Read and understand the code for the tiny MIPS processor. This processor is from the CMOS VLSI
Design book by Weste and Harris. The Verilog code from the appendix of that book is on the class
web site in mips.v.

2. Read and understand the exmem.v code, also on the class web site, that implements a 256 byte
memory module used by the mips.v code.

3. Read and understand the fibn.asm code on the class web site that runs on the combined mips.v/exmem.v
circuit. This code computes the 8th Fibonacci number and stores the answer (0D hex) in memory
location 255.

4. I’ll also hand out an excerpt from the book that describes the processor that you should read and
understand. This describes the instructions, the instruction encoding, the initial Fibonacci code, the
block diagram of the processor, and the control finite state machine.

5. Modify the mips.v controller to include an ADDI (add-immediate) instruction to the instruction set.
This instruction (listed in Table 1.7 in the MIPS handout) is an “I” format instruction that takes two
register arguments $1 and $2, and an 8-bit immediate value. The function is $1← $2 + imm.

6. Modify the mips.v/exmem.v system with very simple memory mapped I/O. The memory map will
use the top two address bits to define regions of memory. If the top two bits are 11, then you are
reading and writing to and from I/O space. Reading from I/O space will load the value on the four
switches, and writing to I/O space will write the register value to the LEDs on the FPGA board.

7. Write a new Fibonacci assembly program that computes all of the first 14 Fibonacci numbers (num-
bered 0 through 13) and stores them in consecutive memory locations starting at location 128. Then
the program should enter a loop where it reads the value on the switches and uses that as an address.
The value in memory at that offset from address 128 (i.e. the Fibonacci number with that index)
should be displayed on the LEDs.

8. Demonstrate your mini-MIPS processor running your Fibonacci code on your Spartan3e board. The
demo will involve loading your processor onto the Spartan3e part, and your Fibonacci code into a
block RAM. Then your processor will run that code. With the code running you should be able to
set the switches to number 0 through 13 (0 through 0D hex) and have the n-th Fibonacci number
show up on the LEDs.
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Details and Discussion

This may seem like a daunting lab, but break it into pieces and it’s not so bad! First you should read
the handout from the book and make sure you understand the processor’s instruction set, and the given
Fibonacci code. If you understand what each instruction does, then you should be able to “execute” the
program in your head or on paper to see what’s happening. You don’t really need to step through each
instruction on paper, but do make sure you understand what’s going on.

Adding the ADDI instruction

I would first take a look at Fig 1.54 and understand the control state machine that makes the processor
work. Note that this is a strange little processor - it has 8-bit data paths (thus 8-bit registers), but a 32-bit
instruction format. The memory is a 256 word, 8-bit memory. So, each instruction takes 4 bytes, and thus
four locations in memory. This means that the instruction fetch portion of the state machine takes four
cycles. After those four memory reads, the 32-bit instruction is in the Instruction Register and you can
proceed to decode and execute that instruction.

If you walk thought the state machine you should be able to understand how each of the instructions
in Table 1.7 are executed. This will let you decide how to add the ADDI instruction to the processor. You
may need to add states to the state machine. You may need to add other support in the Verilog code. As a
hint, if you’re adding a LOT of stuff to the Verilog code you’re probably making it more complex than it
needs to be. It’s a fairly simple change to the code.

Once you have the ADDI instruction added to the code, you should be able to execute the Fibonacci
code in Fib 1.51 in the ISE simulator and make sure that your ADDI is working properly. The code is
working properly if it correcly computes the 8th Fibonacci number (starting at 0 the 8th Fibonacci number
is 1101 or 0D hex) and stores it in memory location 255.

See the exmem.v code on the web site to see both how to implement memory in the Block RAM, and
how to initialize that memory with a program. You basically use a data file that Verilog loads into that
memory. This data file is also used by the ISE tool when it’s building the Xilinx programming information
so that the Block RAM on the FPGA also gets loaded with that data.

Memory Mapped I/O

Now that you have a working mini-MIPS processor with an ADDI instruction, you should look at
modifying the memory system so that you can read a value from the switches and write to the LEDs. The
technique to use is to map those I/O devices into the memory space of your mini-MIPS. What this means
is that for a certain range of memory addresses, reading and writing to that range of addresses has the side
effect of reading or writing to the I/O device instead of actually writing to memory.

In this case, you should divide your memory space into four equal sections. The memory for this
processor is extremely limited - it’s only 256 memory locations because the address is only 8-bits. For
this lab the memory will be divided into four regions of 64 locations each. The first three will be “regular”
memory, and the upper section will be I/O. You can decide what region of memory you’re in by looking
at the top two address bits. If those top address bits are 00, 01, or 10, you are in “regular” memory. If
those top two address bits are 11, then you are in the “I/O” region of memory.

If you read from a memory address with 11 in the top two bits you should get the value that’s on the
switches. If you write to the an address with 11 in the top two bits you should cause the value to be written
to the LEDs.

To achieve this memory mapping you will design a circuit that looks at the top two bits of the address
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to know what to do on each memory operation. You should also use memory with enable signals so that
you can decide which of the memory devices is active on that memory operation. If you are in “regular”
space, then the block RAM should be enabled. If you’re in “I/O” space, then the switches and LEDs
should be enabled. For reading from the switches this is likely just a MUX that decides whether the data
that comes back from your processor is coming from the memory or from the switches. For the LEDs,
you’ll need a separate register to hold that value (so that things don’t change between writes). That register
should be enabled only if the top two bits are 11.

One thing to consider is that there are only four slider switches on the Spartan3e board, and the register
that you’re reading into is 8-bits wide. You should force 0’s into the top four bits of the register and the
switch values in the the low four bits of the register on an I/O read.

You can build this I/O and Memory structure with Verilog or schematics or a mix. I ended up using
Verilog for some of the decoding and muxing, and a schematic to connect the mini-MIPS to the various
memory structures (the block RAM, the LED register, the muxes, the decoders, etc).

New Fibonacci Code

Now that you have a modified mini-MIPS system that has an ADDI instruction and simple memory
mapped I/O, you can write your new Fibonacci code. This code should compute the first 14 Fibonacci
numbers (starting at 0). It should store those numbers into memory locations 128 through 141 (decimal).
In other words, the ouptut starts at location 128 and the index beyond that starting location is the nth
Fibonacci number. Location 128+3 is Fibonacci(3).

Now that your program has computed and stored those numbers, it should enter a loop where it reads
the value from the switches, and uses that value as an index. It then looks up the contents of memory
location 128+index and stores that value to the LEDs. The effect when this program is running is that
when you change the switches on the board, the Fibonacci number coresponding to that index shows up
on the LEDs.

Write this Fibonacci code in the MIPS assembly code from Table 1.7. You’ll have to assemble it by
hand (or write your own simple assembler, although in this case that’s probably too much effort) into
machine code. Then you can make a fib-new.dat data file and load it into the Block RAM. You should be
able to simulate and demonstrate this code on the Spartan3e board.

Notes

There are a few things you will need to keep in mind when you’re doing all this.

• When you first connect your mips processor to the block RAM you can do this either in a piece of
Verilog code or in a schematic. I recommend you use a schematic because that will make it easier
(I think) to add the memory mapping to the system.

• Pay careful attention to the instruction encoding, especially where the register address go. For
example, an ADD instruction is

ADD $4, $5, $6 : the effect is that $4 gets the value $5 + $6

Now if you look in Figure 1.49 you can see how to encode this. An ADD is an R type instruction.
For this example, Rd (the destination register) is $4, Ra (source register a) is $5, and Rb (source
register b) is $6. The encoding is not in the same order as in the symbolic assembly code. The
encoding is:
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opcode ra rb rd 0 function
--------------------------------------------

000000 00101 00110 00100 00000 100000

• When you put an instruction into the .dat file that gets loaded into the Block RAM (either for
simulation or for mapping to the FPGA), the byte ordering is little ending. So, that previous 32 bit
machine encoding for the ADD $4, $5, $6 instruction would look like the following in the .dat file
(note that the addresses of the bytes in the file start at 0 and increase as you go down the page so
these are bytes 0, 1, 2, and 3 as they go down the page):

00100000
00100000
10100110
00000000

• In order for the .dat file to work for mapping the FPGA, you MUST have exactly 256 lines in the file
so it matches up exactly with the 256 byte capacity of the Block RAM that’s defined in exmem.v.
You need to pad the file with 0-bytes after the program portion. See the fibn.asm file on the web
site for an example.

• Note that the machine code in Fig 1.51 has a couple typos in the book version. I’ve noted them in
the handout.

– The beq instruction needs to have an offset of 4 instead of the 5 that’s in the book. This is
because the PC has already been incremented by the time the offset is added for a branch, so
even though the branch-to location is 5 instructions further on than the beq instruction, the PC
is already at “beq + 1” so the offset should be 4. Another way to look at this is if you want to
branch back to the very same instruction, you’d need an offset of -1.
Note here also that the displacements for the branches are in terms of instruction words, not
bytes. So, a displacement of 2 means to branch to the third instruction following the branch,
not the third byte following the branch. Likewise, all read and write addresses are word-
adresses not byte addresses.

– The opcode for the sb instruction on the last line is incorrect. It should be 101000.

• Note that the register file described in mips.v has only 8 registers (each 8-bits wide). So, even
though the MIPS instruction encoding has 5 bits for a register address, this mini-MIPS has only 8
registers. Don’t use more than 8 registers in your new Fibonacci code.

• Just to make sure we’re all looking for the same answers, here are the Fibonacci numbers that I
expect to be computed by your code:
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Index Fibonacci Number
Dec Bin Dec Bin
0 0000 0 00000000
1 0001 1 00000001
2 0010 1 00000001
3 0011 2 00000010
4 0100 3 00000011
5 0101 5 00000101
6 0110 8 00001000
7 0111 13 00001101
8 1000 21 00010101
9 1001 34 00100010
10 1010 55 00110111
11 1011 89 01011001
12 1100 144 10010000
13 1101 233 11101001

What to Turn In

1. A README file that describes your results, problems you encountered, and what files you’re in-
cluding in the rest of the documentation.

2. Your modified mips.v code with comments around each line that you changed when you added the
ADDI instruction.

3. The schematics and/or Verilog code for the whole system including the memory mapping circuits.

4. A simulation that shows your mips/exmem system executing the fibn.asm code from the book. This
code, and the fibn.dat file, can be found on the class web site. Your simulation (a waveform is
sufficient) should show the 8’h0D value being written to memory location 255.

5. The symbolic assembly code for your new Fibonacci program

6. A simulation that shows your processor, including the memory mapping circuits, executing your
new Fibonacci program at least far enough to demonstrate computing all of the Fibonacci numbers
and reading at least one back from memory and writing it to the LEDs. A waveform is sufficient,
but please annotate it with information about what we’re looking at.

7. Demonstrate your working circuit to the TA or instructor.
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