
11/15/10	

1	

VERILOG IN THE
WILD
A true story by Dan Parker

ABOUT ME

 Masters student
 Computer Engineer
 Work for Fusion-io

11/15/10	

2	

WHAT’S THIS ALL ABOUT?

 Different point of view?
 Be prepared
 Know what you know

VENDORS

 Altera
 Xilinx
 A billion more
 Or go ASIC
  eASIC is like the half way point
  Just remember to check DigiKey when you want

an IC.

11/15/10	

3	

GET TO KNOW YOUR FPGA

 Size
 Speed
 Package (Signals)
 Configurable IO
 Hard IP Blocks
 Other awesome stuff (PLLs, BRAMs, partial

reconfiguration, IODELAY)

SPARTAN-3E LIBRARIES GUIDE FOR
HDL DESIGNS

 Tells you how to use its special pieces

11/15/10	

4	

TOOLS AND SUCH

 Linux
 Command Line
 Scripts
 Simulators
 Revision control
  IP
 ChipScope

INTELLECTUAL PROPERTY

 Guard yours (copyright notices and discretion)
 Mostly opposite philosophy from school: don’t

write things yourself if you can find the answer
on the internet.

 All kinds of great products available from
synthesis to verification to synthesizable
verification blocks.

 The first question you should ask when
something becomes non-trivial is “Can I buy this
from somebody else?” The next question is “Can
my company allocate the funds?”

 Service contracts are important

11/15/10	

5	

SIMULATORS

 ModelSim
 QuestaSim
 NCSim – My Favorite
 VCS
  Icarus + GTKWave - Free
  ISim

REVISION CONTROL

 SVN
 Mercurial
 Perforce
 Accurev
 Whatever you like really…
 Make sure you can track code changes and revert

if things get too messed up.
 Allows you to freely experiment with no

permanent damage.

11/15/10	

6	

LET’S TALK ABOUT CODE

 Parameterization
 Generate statements
 Question mark notation
 Always size you literals (13’h4)
 Schematic capture? – Sorry, but no.
 Naming conventions, just some ideas I’ve seen:

parameters in all caps
add _i or _o for ports depending on direction
add _n for active low signals
add R for a registered version of the signal

 Style?

COOL EXAMPLE

11/15/10	

7	

A BIT MORE ON PARAMETERIZATION

 To create a parameterized module type:
 module <module type> # (<parameter list>)

(<port list>);

 To instantiate a parameterized module:
 <module type> #(<parameter list>) <instance

name> (<port list>);

GENERATE

 My favorite feature
 Starts with generate ends with endgenerate
 Let’s you do if statements, always blocks, for

loops.
  Just be careful, errors in a generate block are

hard to track sometimes.

11/15/10	

8	

THE TICK VERSUS THE APOSTROPHE

  ` ’
 Tick is like a compiler directive
 Gives you macros and conditional blocks
  `timescale 1ns/1ps
  `define Y 5
  `define X(a,b) (a+b);
 To access you use f=`Y; or `X(g,h)
  `ifdef Y
  `else
  `endif

DATA TYPES

 wire
  reg
  tri1
  tri0
 wor
 wand

11/15/10	

9	

VERIFICATION

 Unit testing
 System level testing
 Self-checking tests
 Constrained random
 Directed tests
 ABSTRACTION!!!
 SystemVerilog
 Assertions/Coverage
 Simulation V.S. Synthesis

COOL EXAMPLE

11/15/10	

10	

“IT WORKS IN SIMULATION”

 The craziest things will work in simulation, but
are not remotely synthesizable.

 Use “<=“ instead of “=” for synthesizable code.
 Assign statements are great.
 Remember, subsequent lines of code are not

subsequent clock cycles. << Biggest mistake

WAIT, REPEAT THAT LAST PART

 wait(data==7); blocks until data==7
  repeat(5)

 @(posedge clk); waits 5 clock cycles
  #100; waits 100 time units

 Another cool thing, you can traverse the design
hierarchy in simulation. E.g. you can read:

 proc.datapath.alu.ALUout

11/15/10	

11	

CONSTRAINT DRIVEN OPTIMIZATION

 The ISE synthesizer is cruel
 The constraint system is nice. (and treats DCMs

correctly)

CLOCK DOMAINS

  1 is the easiest
 Crossing clock domains is really nasty
 Asynchronous FIFOs help
 Your Xilinx BRAMs can take 2 different clocks

for 2 different ports. This is great for frame
buffers.

 Your FPGA may implement your solution in a
way that breaks.

 Consider checking OpenCores.
 Or coregen in ISE.

11/15/10	

12	

FIFOS

 First In First Out
 Take a dual ported RAM of some kind
 Create a head pointer and a tail pointer
 When you write you store to RAM[head] and

increment the head pointer
 When you read you read from RAM[tail] and

increment the tail pointer
 Empty is when tail==head
 Full is when (head+1)==tail (Remember this is

modular arithmetic.)

JUST SOME TIPS

 Get your assembler done soon, if it isn’t done
already. You need your assembler to test your
processor and you need your processor to test
your assembler.

 You can save your waveform configuration ISIM
so you don’t have to keep finding signals.

 Make sure to divide things appropriately into
modules.

 Debouce your keyboard input. It’s not actual
bounce, it’s just super noisy.

 LEDs are your friend.

11/15/10	

13	

QUALITY MATTERS

 Read your warnings!!! You don’t want a latch.
  If you don’t test it, it doesn’t work.
 Code lingers, if you write it well the first time

you will have a long and fruitful relationship.
  In case I forget my stories (Sr. Proj and nand

connection test.)

