VERILOG IN THE
WILD

A true story by Dan Parker

ABOUT ME

Masters student
Computer Engineer
Work for Fusion-io

11/15/10

WHAT’S THIS ALL ABOUT?

Different point of view?
Be prepared
Know what you know

VENDORS

Altera

Xilinx ‘
A billion more

Or go ASIC
eASIC is like the half way point

Just remember to check DigiKey when you want
an IC. i

11/15/10

GET TO KNOW YOUR FPGA

o Size

o Speed

o Package (Signals)
o Configurable 10
o Hard IP Blocks

o Other awesome stuff (PLLs, BRAMs, partial
reconfiguration, IODELAY)

SPARTAN-3E LIBRARIES GUIDE FOR
HDL DESIGNS

o Tells you how to use its special pieces

// Dc: Digital Clock Manager Circuit
rtex-TI/IT-? 3

// simulation " vs. "EAST", see "Synthesis and Simulation Design Guide" for ¢
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

// 7.0,7.5,8.0,5.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0

.CLKFX_DIVIDE(S), // Can be any integer from 1 to 32

.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32

1 // TRUE/FALSE to enable

SYSTEM_SYNCHRONOUS or

/7 wI6H or 1O
// BIGH or TOW
/1 D

frequency mode for frequency synthesis
frequency mode for DLL
; cycle correction,

-FACTORY_J¥ (16'hC080)
-PHASE_SHIFT(0), // Am 255
s DCM LOCK, TR

DeM_inst
.CLKO(CLRO), // 0 degree DCM CLK output
.CLK180 (CLK180), // 180 degree DOM CLE output

-CLK270 (CLK270), //
-CLK2X (CLK2X), // 2% DCM C
-CLK2X180 (CLE2X180),

CLE ocutput

)

-CLKFB(CLRFB), // DOM clock feedback
.CLKIN(CIKIN), // Clock input (£rom IB!
+PSCLK (PSCLK),, // Dyn

-RST (RST)
);
7

nd of DCM_inst instantiation

11/15/10

TOOLS AND SUCH

Linux
Command Line
Scripts
Simulators
Revision control

IP
ChipScope

INTELLECTUAL PROPERTY

Guard yours (copyright notices and discretion)

Mostly opposite philosophy from school: don’t
write things yourself if you can find the answer
on the internet.

All kinds of great products available from
synthesis to verification to synthesizable
verification blocks.

The first question you should ask when
something becomes non-trivial is “Can I buy this
from somebody else?” The next question is “Can
my company allocate the funds?”

Service contracts are important

11/15/10

SIMULATORS

ModelSim

QuestaSim

NCSim — My Favorite
VCS

Icarus + GTKWave - Free
ISim

REVISION CONTROL

SVN

Mercurial

Perforce

Accurev

Whatever you like really...

Make sure you can track code changes and revert
if things get too messed up.

Allows you to freely experiment with no
permanent damage.

11/15/10

LET’S TALK ABOUT CODE

Parameterization

Generate statements

Question mark notation

Always size you literals (13’h4)
Schematic capture? — Sorry, but no.

Naming conventions, just some ideas I've seen:
parameters in all caps

add _i or _o for ports depending on direction
add _n for active low signals

add R for a registered version of the signal

Style?

COOL EXAMPLE

module cool_logic #(parameter WIDTH=8,
parameter TYPE=0
)(
input [WIDTH-1:0] A,
input [WIDTH-1:0] B,
output [WIDTH-1:0] Y);
localparam ADD=0;
localparam SUB=1;
localparam MUL=2;
localparam MAX=3;

generate
case(TYPE)
ADD: assign Y=A+B;
SUB: assign Y=A-B;
MUL: assign Y=A*B;
MAX: assign Y=A > B ? A : B;
default: assign Y=A|B;
endcase
endgenerate
endmodule // cool_logic

module top();
wire [15:0] A;
wire [15:0] B;
wire [15:0] Y;
cool_logic #(.WIDTH(16),.TYPE(3)) cl (.A(A),.B(B),.Y(Y));

endmodule // top

11/15/10

A BIT MORE ON PARAMETERIZATION

To create a parameterized module type:

module <module type> # (<parameter list>)
(<port list>);

To instantiate a parameterized module:

<module type> #(<parameter list>) <instance
name> (<port list>);

GENERATE

My favorite feature
Starts with generate ends with endgenerate

Let’s you do if statements, always blocks, for
loops.

Just be careful, errors in a generate block are

} 1ocaiparam WiDTH=8;
wire clk;
reg [3*WIDTH-1:0] data:;
genvar i;
generate
for (i=0;i<3;i=i+1)
begin : THIS LOOP_MUST BE_ LABELED TO COMPILE
always @ (posedge clk)
data[i*WIDTH+:WIDTH]=data[i*WIDTH+:WIDTH] + 1;
end
endgenerate

11/15/10

THE TICK VERSUS THE APOSTROPHE

A

Tick is like a compiler directive

Gives you macros and conditional blocks
“timescale 1ns/1ps

“define Y 5

‘define X(a,b) (at+b);

To access you use f="Y; or "X(g,h)

‘ifdef Y

“else

“endif

DATA TYPES

wire
reg
tril
tri0 ™
wor ; R

wand

11/15/10

VERIFICATION

Unit testing

System level testing
Self-checking tests
Constrained random
Directed tests
ABSTRACTION!!!
SystemVerilog
Assertions/Coverage
Simulation V.S. Synthesis

Co0L EXAMPLE

task add;
input [15:0] A;
input [15:0] B;
begin
ALUop = 0;//pretend zero is add
ALUinl = A;
ALUin2 = B;
@ (posedge clk);
if (ALUout != (R+B))
$§display ("ERROR: Add failed. A=%h B=%h
end
endtask

task sub;
endtask
task press_a_key;

endtask

L+B)=%h",A,B,ALUout,A+B);

11/15/10

“IT WORKS IN SIMULATION”

The craziest things will work in simulation, but
are not remotely synthesizable.

Use “<=" instead of “=” for synthesizable code.
Assign statements are great.

Remember, subsequent lines of code are not
subsequent clock cycles. << Biggest mistake

WAIT, REPEAT THAT LAST PART

wait(data==7); blocks until data=="7
repeat(5)

@(posedge clk); waits 5 clock cycles
#100; waits 100 time units

Another cool thing, you can traverse the design
hierarchy in simulation. E.g. you can read:

proc.datapath.alu.ALUout

11/15/10

10

CONSTRAINT DRIVEN OPTIMIZATION

The ISE synthesizer is cruel
The constraint system is nice. (and treats DCMs

correctly)
NET "raw clk"™ LOC = "BE" | IOSTANDARD = LVCMOS33 | PERIOCD = 20ns;
* Routing Results: All Signals Completely Routed
* Timing Constraints: X 1Failing Constraint
* Final Timing Score: 4781122 (Setup: 4781122, Hold: 0, Component Switching Limit: 0) (Timing Report)

CLOCK DOMAINS

1 is the easiest
Crossing clock domains is really nasty
Asynchronous FIFOs help

Your Xilinx BRAMs can take 2 different clocks
for 2 different ports. This is great for frame
buffers.

Your FPGA may implement your solution in a
way that breaks.

Consider checking OpenCores.
Or coregen in ISE.

11/15/10

11

FIFOS

First In First Out
Take a dual ported RAM of some kind

Create a head pointer and a tail pointer

When you write you store to RAM[head] and
increment the head pointer

When you read you read from RAM]|tail] and
increment the tail pointer

Empty is when tail==head

Full is when (head+1)==tail (Remember this is
modular arithmetic.)

JUST SOME TIPS

Get your assembler done soon, if it isn’t done
already. You need your assembler to test your
processor and you need your processor to test
your assembler.

You can save your waveform configuration ISIM
so you don’t have to keep finding signals.

Make sure to divide things appropriately into
modules.

Debouce your keyboard input. It’s not actual
bounce, it’s just super noisy.

LEDs are your friend.

11/15/10

12

QUALITY MATTERS

Read your warnings!!! You don’t want a latch.
If you don’t test it, it doesn’t work.

Code lingers, if you write it well the first time
you will have a long and fruitful relationship.

In case I forget my stories (Sr. Proj and nand
connection test.)

11/15/10

13

