
11/15/10	

1	

VERILOG IN THE
WILD
A true story by Dan Parker

ABOUT ME

 Masters student
 Computer Engineer
 Work for Fusion-io

11/15/10	

2	

WHAT’S THIS ALL ABOUT?

 Different point of view?
 Be prepared
 Know what you know

VENDORS

 Altera
 Xilinx
 A billion more
 Or go ASIC
  eASIC is like the half way point
  Just remember to check DigiKey when you want

an IC.

11/15/10	

3	

GET TO KNOW YOUR FPGA

 Size
 Speed
 Package (Signals)
 Configurable IO
 Hard IP Blocks
 Other awesome stuff (PLLs, BRAMs, partial

reconfiguration, IODELAY)

SPARTAN-3E LIBRARIES GUIDE FOR
HDL DESIGNS

 Tells you how to use its special pieces

11/15/10	

4	

TOOLS AND SUCH

 Linux
 Command Line
 Scripts
 Simulators
 Revision control
  IP
 ChipScope

INTELLECTUAL PROPERTY

 Guard yours (copyright notices and discretion)
 Mostly opposite philosophy from school: don’t

write things yourself if you can find the answer
on the internet.

 All kinds of great products available from
synthesis to verification to synthesizable
verification blocks.

 The first question you should ask when
something becomes non-trivial is “Can I buy this
from somebody else?” The next question is “Can
my company allocate the funds?”

 Service contracts are important

11/15/10	

5	

SIMULATORS

 ModelSim
 QuestaSim
 NCSim – My Favorite
 VCS
  Icarus + GTKWave - Free
  ISim

REVISION CONTROL

 SVN
 Mercurial
 Perforce
 Accurev
 Whatever you like really…
 Make sure you can track code changes and revert

if things get too messed up.
 Allows you to freely experiment with no

permanent damage.

11/15/10	

6	

LET’S TALK ABOUT CODE

 Parameterization
 Generate statements
 Question mark notation
 Always size you literals (13’h4)
 Schematic capture? – Sorry, but no.
 Naming conventions, just some ideas I’ve seen:

parameters in all caps
add _i or _o for ports depending on direction
add _n for active low signals
add R for a registered version of the signal

 Style?

COOL EXAMPLE

11/15/10	

7	

A BIT MORE ON PARAMETERIZATION

 To create a parameterized module type:
 module <module type> # (<parameter list>)

(<port list>);

 To instantiate a parameterized module:
 <module type> #(<parameter list>) <instance

name> (<port list>);

GENERATE

 My favorite feature
 Starts with generate ends with endgenerate
 Let’s you do if statements, always blocks, for

loops.
  Just be careful, errors in a generate block are

hard to track sometimes.

11/15/10	

8	

THE TICK VERSUS THE APOSTROPHE

  ` ’
 Tick is like a compiler directive
 Gives you macros and conditional blocks
  `timescale 1ns/1ps
  `define Y 5
  `define X(a,b) (a+b);
 To access you use f=`Y; or `X(g,h)
  `ifdef Y
  `else
  `endif

DATA TYPES

 wire
  reg
  tri1
  tri0
 wor
 wand

11/15/10	

9	

VERIFICATION

 Unit testing
 System level testing
 Self-checking tests
 Constrained random
 Directed tests
 ABSTRACTION!!!
 SystemVerilog
 Assertions/Coverage
 Simulation V.S. Synthesis

COOL EXAMPLE

11/15/10	

10	

“IT WORKS IN SIMULATION”

 The craziest things will work in simulation, but
are not remotely synthesizable.

 Use “<=“ instead of “=” for synthesizable code.
 Assign statements are great.
 Remember, subsequent lines of code are not

subsequent clock cycles. << Biggest mistake

WAIT, REPEAT THAT LAST PART

 wait(data==7); blocks until data==7
  repeat(5)

 @(posedge clk); waits 5 clock cycles
  #100; waits 100 time units

 Another cool thing, you can traverse the design
hierarchy in simulation. E.g. you can read:

 proc.datapath.alu.ALUout

11/15/10	

11	

CONSTRAINT DRIVEN OPTIMIZATION

 The ISE synthesizer is cruel
 The constraint system is nice. (and treats DCMs

correctly)

CLOCK DOMAINS

  1 is the easiest
 Crossing clock domains is really nasty
 Asynchronous FIFOs help
 Your Xilinx BRAMs can take 2 different clocks

for 2 different ports. This is great for frame
buffers.

 Your FPGA may implement your solution in a
way that breaks.

 Consider checking OpenCores.
 Or coregen in ISE.

11/15/10	

12	

FIFOS

 First In First Out
 Take a dual ported RAM of some kind
 Create a head pointer and a tail pointer
 When you write you store to RAM[head] and

increment the head pointer
 When you read you read from RAM[tail] and

increment the tail pointer
 Empty is when tail==head
 Full is when (head+1)==tail (Remember this is

modular arithmetic.)

JUST SOME TIPS

 Get your assembler done soon, if it isn’t done
already. You need your assembler to test your
processor and you need your processor to test
your assembler.

 You can save your waveform configuration ISIM
so you don’t have to keep finding signals.

 Make sure to divide things appropriately into
modules.

 Debouce your keyboard input. It’s not actual
bounce, it’s just super noisy.

 LEDs are your friend.

11/15/10	

13	

QUALITY MATTERS

 Read your warnings!!! You don’t want a latch.
  If you don’t test it, it doesn’t work.
 Code lingers, if you write it well the first time

you will have a long and fruitful relationship.
  In case I forget my stories (Sr. Proj and nand

connection test.)

