
CS 3520/6520
Programming Languages

Fall 2023

Instructors: Ben Greenman
Matthew Flatt

TA: Alec Mills

1

CS 3520/6520 Programming Languages

2

CS 3520/6520 Programming Languages

 a survey course:

an object-oriented language

a functional language

a logic language

3

CS 3520/6520 Programming Languages

Not a survey course:

an object-oriented language

a functional language

a logic language

4

CS 3520/6520 Programming Languages

This course is about programming language concepts

lexical scope closures recursion

λ-calculus objects classes

continuations eager and lazy evaluation

state type checking polymorphism

soundness type inference subtyping

compilation garbage collection

... especially functional programming concepts

use one language, implement many languages

5-8

CS 3520/6520 Programming Languages

This course is about programming language concepts

• To help you understand new programming languages

• To make you a better programmer in any language

9-10

Course Details

See syllabus in Canvas

In person, livestreamed and recorded via Zoom

Formal prerequisite: CS 3500

Informal prerequisite: more programming experience than that

Grading:

• Weekly homework (55%)

• Two mid-term exams (30%)

• Extended fnal homework (10%)

• Online quizzes (5%)

Late policy for homework: up to 48 hours, two automatic “free lates”

11-13

Lectures are Online

All slide presentations are online

• Watch the videos before class

• Take the quiz before class

≥ 60% over semester ⇒ 100%
no late quizzes

• Meet as a class for more examples and homework solutions
a.k.a. “recitation”
guideline: no new material introduced in class
will need in-class volunteers

14-17

Interpreters

• Learn concepts by implementing interpreters

1+2 3

new concept ⇒ new interpreter

We’ll always call the language that we implement Moe, even though the
language keeps changing

Moe = successor to Curly

18-21

Racket and Shplait

• Implement interpreters using Shplait, a variant of Racket

Historically: Lisp ⇒ Scheme ⇒ Racket ⇒ Rhombus ⇒ Shplait

22-23

Racket and Shplait

• Implement interpreters using Shplait, a variant of Racket

Historically: Lisp ⇒ Scheme ⇒ Racket ⇒ Rhombus ⇒ Shplait ⇒ OCaml

Racket is

• a programming language

• a language for creating programming languages

... including Shplait

Sh = Shrubbery, a notation
PLAI = Programming Languages: Application and Interpretation, a textbook
t = types, a la ML

24-27

DrRacket

28

Preview: Shplait Tutorial

http://docs.racket-lang.org/shplait

29

Preview: Shplait Notation

f(x) f(x)

1+2 1 + 2

1+2*3 1 + 2 * 3

s=6 def s = 6

f(x)=x+1 fun f(x):
 x + 1

{x<0 -1
x=0 0
x>0 1

cond
| x < 0: -1
| x == 0: 0
| x > 0: 1

30

Preview: Shplait Data

• Numbers and strings obvious

1 -42 "Hello, World!"

• Booleans straightforward

#true #false

• Symbols unusual

#'apple #'def

31-33

Preview: Shplait Quoted Code

• Single quote ' instead of string " convenient

'x'

'x + 1'

'fun f(x):
 x + 1'

34

Preview: Shplait Datatypes

type Shape
| circle(radius :: Int)
| rectangle(width :: Int,

height :: Int)

fun area(s):
 match s

| circle(r): 3 * r * r
| rectangle(w, h): w * h

check: area(circle(2))

~is 12
check: area(rectangle(4, 5))

~is 20

35

Preview: Interpreters

See lambda.rhm

Example Shplait program:

type Value
| intV(n :: Int)
| closV(arg :: Symbol,

body :: Exp,
env :: Env)

Example Moe program:

3 * 4 + 8

Example Moe program as a Shplait value:

'3 * 4 + 8'

36-39

Datatype and Function Shapes Match

type Shape
| circle(radius :: Int)
| rectangle(width :: Int,

height :: Int)
| adjacent(left :: Shape,

right :: Shape)

fun area(s):
 match s

| circle(r): 3 * r * r
| rectangle(w, h): w * h
| adjacent(l, r): area(l)

 + area(r)

check: area(circle(2))

~is 12
check: area(rectangle(4, 5))

~is 20
check: area(adjacent(circle(2), rectangle(4, 5)))

~is 32

40

Datatype and Function Shapes Match

type Shape
| circle(radius :: Int)
| rectangle(width :: Int,

height :: Int)
| adjacent(left :: Shape,

right :: Shape)

fun area(s):
 match s

| circle(r): 3 * r * r
| rectangle(w, h): w * h
| adjacent(l, r): area(l)

 + area(r)

check: area(circle(2))

~is 12
check: area(rectangle(4, 5))

~is 20
check: area(adjacent(circle(2), rectangle(4, 5)))

~is 32

41

Datatype and Function Shapes Match

type Shape
| circle(radius :: Int)
| rectangle(width :: Int,

height :: Int)
| adjacent(left :: Shape,

right :: Shape)

fun area(s):
 match s

| circle(r): 3 * r * r
| rectangle(w, h): w * h
| adjacent(l, r): area(l)

 + area(r)

check: area(circle(2))

~is 12
check: area(rectangle(4, 5))

~is 20
check: area(adjacent(circle(2), rectangle(4, 5)))

~is 32

42

Course Outline

Functional programming

Interpreters

State

Control

Compilation and GC

Objects and classes

Types

Macros and more

43

Rest of Today

• Take “Syllabus” quiz

• Watch “Shplait Tutorial” videos (~30 minutes)

• Take “Shplait Tutorial” quiz

Quizzes due by the end of the day

44

Homework 0

• Create handin account

• Shplait warm-up exercises

Due Friday, August 25

45

