Part |



Shplait vs.Algebra

4 * 3+8-7 = 12 +8 -7 = 12 + 1



Shplait vs.Algebra

In Shplait, we have a specific order for evaluating sub-expressions:

4 * 3+8-7 = 12 +8 -7 = 12 + 1



Shplait vs.Algebra

In Shplait, we have a specific order for evaluating sub-expressions:

4 * 3+8-7 = 12 +8 -7 = 12 + 1

In Algebra, order doesn’t matter:
(43)+(8-7) = 12+(8-7) = I12+]
or

(43)+(8-7) = (“3)r1 = 12+]



Algebraic Shortcuts
In Algebra, if we see
f(x,y) = x
g(z) = ...

f(17, g(g(e(e(e(18))))))

then we can go straight to
|7

because the result of all the g calls will not be used



Algebraic Shortcuts
In Algebra, if we see
f(x,y) = x
g(z) = ...

f(17, g(g(e(e(e(18))))))

then we can go straight to
|7

because the result of all the g calls will not be used

But why would a programmer write something like that?



Avoiding Unnecessary Work

fun layout text(txt, w, h):
def lines:
// lots of work to flow a paragraph

make pict(w,
hl
fun (dec, x, y):
// draw paragraph lines

-)
def speech = layout text("Four score...",

800,
600)

pict _width (speech)



Avoiding Unnecessary Work

fun read all chars(f):
if is_at eof (f)
| [1

| cons(read char(f), read all chars(f))
def content = read all chars(open file(user file))
if first(content) == "#"

| process file(rest(content))
| error (#'parser, "not a valid file")



Recursive Definitions

fun numbers from(n) :
cons (n, numbers from(addl(n)))

def nonneg = numbers from(0)
list get(nonneg, 10675)



Lazy Evaluation

Languages like Shplait, Java, and C are called eager

* An expression is evaluated when it is encountered

10



Lazy Evaluation

Languages like Shplait, Java, and C are called eager

* An expression is evaluated when it is encountered

Languages that avoid unnecessary work are called lazy

* An expression is evaluated only if its result is needed

11



Part 2

12



Lazy Evaluation in Shplait

Use

#lang shplait
~lazy

to run a Shplait program with lazy evaluation

13



Lazy Evaluation in Shplait

For coverage reports in DrRacket:

In the Choose Language... dialog, click Show Details and then
Syntactic test suite coverage

(Works for both eager and lazy languages)

* Black means evaluated at least once
. means not yet evaluated

* Normal coloring is the same as all black

14



Part 3

15



letrec Interpreter in Lazy Shplait

Doesn’t work because result of set_box is never used:

fun interp(a, env):
match a
| ...
| letrecE(n, rhs, body) :
let b = box(none()) :
let new_env = extend env(bind(n, b),
env) :
set box (b, some(interp(rhs, new_env)))
interp (body, new_env)

16



letrec Interpreter in Lazy Shplait

Working implementation is more direct:

fun interp(a, env):
match a
| ...
| letrecE(n, rhs, body) :
letrec new_env = extend env(bind(n, interp(rhs, new_env)),
env) :
interp (body, new_env)

17



Part 4

18



<Exp>

Lazy Language

<Int>
<Symbol>
<Exp> + <Exp>
<Exp> * <Exp>

fun (<Symbol>) :

<Exp> (<Exp>)

<Exp>

19



Lazy Language

<Int>
<Symbol>
<Exp> + <Exp>
<Exp> * <Exp>

<Exp>

<Exp> (<Exp>)

(fun (x): 0) (1 + (fun (y):
(fun (x): x) (1 + (fun (y):

fun (<Symbol>) :

<Exp>

2)) = 0
2)) = error

20



Lazy Language

<Int>

<Symbol>

<Exp> + <Exp>

<Exp> * <Exp>

fun (<Symbol>): <Exp>
<Exp> (<Exp>)

<Exp>

(fun (x): 0)(1 + (fun (y): 2)) = 0
(fun (x): x) (1 + (fun (y): 2)) = error

let x =1 + (fun (y): 2):
0
= 0

21



Part 5

22



Implementing Laziness

Option #1: Run the interpreter in shplait ~lazy!

23



Implementing Laziness

Option #1: Run the interpreter in shplait ~lazy!

fun interp(a, env):
match a
| ...
| appE (fn, argqg):
match interp(fn, env)
| closV(n, body, c_env):
interp (body,
extend env(bind(n, interp(arg, env)),
c_env))
| ~else: error (#'interp, "not a function")

n never used = interp call never evaluated

24



Implementing Laziness

Option #2: Use Shplait and explicitly delay arg interpretation

25



Implementing Laziness

Option #2: Use Shplait and explicitly delay arg interpretation

fun interp(a, env):
match a
| ...
| appE (fn, argqg):
match interp(fn, env)
| closV(n, body, c_env):
interp (body,
extend env(bind(n, delay(arg, env)),
c_env))
| ~else: error (#'interp, "not a function")

26



Thunks and Bindings

type Thunk
| delay(arg :: Exp,
env :: Env)

type Binding

| bind(name :: Symbol,

val :: Thunk)

27



Implementing Laziness

fun interp(a, env):
match a

|
| ...
| appE (fn, arg):

extend env(bind(n, delay(arg, env)),
c_env)

28



Implementing Laziness

fun interp(a, env):
match a

| idE(s): force(lookup(s, env))
| ...
| appE (fn, argqg):

extend env(bind(n, delay(arg, env)),
c_env)

29



Implementing Laziness

fun interp(a, env):
match a

| idE(s): force(lookup(s, env))
| ...
| appE (fn, argqg):

extend env(bind(n, delay(arg, env)),
c_env)

fun force(t :: Thunk) :: Value:
match t
| delay(arg, env): interp(arg, env)

30



Part 6

31



Redundant Evaluation

32



Redundant Evaluation

(fun (x): x + x + x + x)(4 + 5 - 8 + 9)

How many times is 8 + 9 evaluated?

33



Redundant Evaluation

(fun (x): x + x + x + x)(4 + 5 - 8 + 9)
How many times is 8 + 9 evaluated?

Since the result is always the same, we'd like to evaluate
4 + 5 - 8 + 9atmostonce

34



Caching Force Results

type Thunk
| delay (arg

env .

done

Exp,
Env,
Boxof (Optionof (Value)))

35



Fix Up Interpreter

fun interp(a, env):

| appE (fn, argqg):
delay (arg, env, box(none()))

36



Caching Force Results

fun force(t :: Thunk)
match t
| delay(arg, env):

:: Value:

interp(arg, env)

37



Caching Force Results

fun force(t :: Thunk)
match t
| delay(arg, env):

fun force(t :: Thunk)
match t

:: Value:

interp(arg, env)

:: Value:

| delay(arg, env, done):
match unbox (done)

| none() :

let v = interp(arg, env):
set box(done, some(v))

v
| some(v): v

38



Part 7

39



Terminology

40



Call-by-value means eager

Terminology

Shplait, Java, C, Python...

41



Terminology

Call-by-value means eager

Call-by-name means lazy, no caching of results

Shplait, Java, C, Python...

... which is impractical

4?2



Terminology

Call-by-value means eager

Call-by-name means lazy, no caching of results

Call-by-need means lazy, with caching of results

Shplait, Java, C, Python...

... which is impractical

Haskell, Clean...

43



Terminology

Normal order vs Applicative order

... good terms to avoid

44



