
Part 1

1

Allocation

Constructor calls are allocation:

fun interp():
 match exp_reg

|
| lamD(body_expr):
 v_reg := closV(body_expr, env_reg)

continue()
|

fun continue():
 match k_reg

|
| plusSecondK(r, env, k):
 exp_reg := r

env_reg := sc
k_reg := doPlusK(v_reg, k)
interp()

|

2

Deallocation

Where does free go?

fun continue():

| doPlusK(v1, k):

 v_reg := num_plus(v1, v_reg)
free(k_reg) // ???
k_reg := k
continue()

....
| doAppK(fun_val, k):

 exp_reg := closV.body(fun_val)
env_reg := cons(v_reg,

closV.env(fun_val))
k_reg := k
free(fun_val) // ???
interp()

....

3

Deallocation

| doPlusK(v1, k):
 v_reg := num_plus(v1, v_reg)

free(k_reg) // ???
k_reg := k
continue()

• Without let_cc, this free is fne, because the continuation can’t be
referenced anywhere else

• A continuation object is always freed as free(k_reg), which is why
many language implementations use a stack

4-5

Deallocation

| doAppK(fun_val, k):
 exp_reg := closV.body(fun_val)

env_reg := cons(v_reg,
closV.env(fun_val))

k_reg := k
free(fun_val) // ???
interp()

• This free is not ok, because the closure might be kept in a environment
somewhere

• Need to free only if no one else is using it...

6-7

Code and Data

An object is any record allocated during interp and continue

Assume that expressions are allocated “statically”

• compile uses code_malloc1, etc.

• Only try to free objects allocated during interp and continue

8-10

Part 2

11

Reference Counting

Reference counting: a way to know whether an object has other users

• Attach a count to every object, starting at 0

• When installing a pointer to an object (into a register or another object),
increment its count

• When replacing a pointer to an object, decrement its count

• When a count is decremented to 0, decrement counts for other objects
referenced by the object, then free

12-15

Reference Counting

1
1

1

1

2

1
1

Top boxes are the registers
k_reg, v_reg, etc.

Boxes in the blue area are
allocated with malloc

16

Reference Counting

1
1

0

1

3

1
1

Adjust counts when a pointer is
changed...

17

Reference Counting

1
1

1

2

1
1

... freeing an object if its count
goes to 0

18

Reference Counting

1
1

0

2

1
1

Same if the pointer is in a register

19

Reference Counting

1
1

2

0
1

Adjust counts after frees, too...

20

Reference Counting

1
1

2

1

... which can trigger more frees

21

Reference Counting in an Interpreter

....
| funE(body_expr):

 ref_drop(v_reg)
v_reg := closV(body_expr, env_reg) // <= ref_adds env
ref_add(v_reg)
continue()

....
| doAppK(fun_val, k):

 exp_reg := closV.body(fun_val) // code is static
ref_drop(env_reg)
env_reg := cons(v_reg, closV.env(fun_val)) // <- ref_adds each arg
ref_add(env_reg) // indirectly retains v_reg
ref_add(k)
ref_drop(k_reg) // => ref_drop on fun_val and k
k_reg := k
interp()

22

Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a
cycle...

23

Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments a
count

24

Reference Counting And Cycles

1
1

1

2

1
1

Lower-left objects are
inaccessible, but not deallocated

In general, cycles break reference
counting

25

Part 3

26

Garbage Collection

Garbage collection: a way to know whether an object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because there is no way to
get to other objects

• A garbage collector frees all objects that are not live

• Allocate until we run out of memory, then run a garbage collector to get
more space

27-29

Garbage Collection Algorithm

• Color all objects white

• Color objects referenced by registers gray

• Repeat until there are no gray objects:

Pick a gray object, r

For each white object that r points to, make it gray

Color r black

• Deallocate all white objects

30

Garbage Collection

All objects are marked white

31

Garbage Collection

Mark objects referenced by
registers as gray

32

Garbage Collection

Need to pick a gray object

Red arrow indicates the chosen
object

33

Garbage Collection

Mark white objects referenced by
chosen object as gray

34

Garbage Collection

Mark chosen object black

35

Garbage Collection

Start again: pick a gray object

36

Garbage Collection

No referenced objects; mark
black

37

Garbage Collection

Start again: pick a gray object

38

Garbage Collection

Mark white objects referenced by
chosen object as gray

39

Garbage Collection

Mark chosen object black

40

Garbage Collection

Start again: pick a gray object

41

Garbage Collection

No referenced white objects;
mark black

42

Garbage Collection

No more gray objects; deallocate
white objects

Cycles do not break garbage
collection

43

Part 4

44

Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects, making
allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to to-space

• Choosing a gray object ⇒ walk once though the new to-space, update
pointers

45

Two-Space Collection

Left = from-space
Right = to-space

46

Two-Space Collection

Mark gray = copy and leave
forward address

47

Two-Space Collection

Choose gray by walking through
to-space

48

Two-Space Collection

Mark referenced as gray

49

Two-Space Collection

Mark black = move gray-choosing
arrow

50

Two-Space Collection

Nothing to color gray; increment
the arrow

51

Two-Space Collection

Color referenced object gray

52

Two-Space Collection

Increment the gray-choosing
arrow

53

Two-Space Collection

Referenced is already copied, use
forwarding address

54

Two-Space Collection

Choosing arrow reaches the end
of to-space: done

55

Two-Space Collection

Right = from-space
Left = to-space

56

Part 5

57

Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated object in memory starts with a tag, followed by a sequence
of pointers and immediate integers

The tag describes the shape

58

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

59

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

60

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

61

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 0 0 0 0 0 0 0 0 0 0 0 0 0

 ^
 ^

62

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 0

From: 1 75 2 0 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 0 0 0 0 0 0 0 0 0 0

 ^
 ^

63

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 2 0 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 1 75 0 0 0 0 0 0 0 0

 ^
 ^

64

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 0 0 0 0 0 0 0

 ^
 ^

65

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 0 0 0 0 0 0 0

 ^
 ^

66

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 3 0 0 0 0 0 0

 ^
 ^

67

