
Part 1

1

Allocation

Constructor calls are allocation:

(define (interp)
 (type-case ExpD expr-reg

 [(lamD body-expr)

(begin
 (set! v-reg (closV body-expr env-reg))
 (continue))]

 ))

(define (continue)

 [(plusSecondK r env k)

(begin
 (set! expr-reg r)
 (set! env-reg sc)
 (set! k-reg (doPlusK v-reg k))
 (interp))]

 )

2

Deallocation

Where does free go?

(define (continue)

 [(doPlusK v1 k)

(begin
 (set! v-reg (num+ v1 v-reg))
 (free k-reg) ; ???
 (set! k-reg k)
 (continue))]

 [(doAppK fun-val k)

(begin
 (set! expr-reg (closV-body fun-val))
 (set! env-reg (cons v-reg

(closV-env fun-val)))
 (set! k-reg k)
 (free fun-val) ; ???
 (interp))]

 )

3

Deallocation

[(doPlusK v1 k)
(begin
 (set! v-reg (num+ v1 v-reg))
 (free k-reg) ; ???
 (set! k-reg k)
 (continue))]

• Without let/cc, this free is fne, because the continuation can’t be
referenced anywhere else

• A continuation object is always freed as (free k-reg), which is why
many language implementations use a stack

���

Deallocation

[(doAppK fun-val k)
(begin
 (set! expr-reg (closV-body fun-val))
 (set! env-reg (cons v-reg

(closV-env fun-val)))
 (set! k-reg k)
 (free fun-val) ; ???
 (interp))]

• This free is not ok, because the closure might be kept in a environment
somewhere

• Need to free only if no one else is using it...

���

Code and Data

An object is any record allocated during interp and continue

Assume that expressions are allocated “statically”

• compile uses code-malloc1, etc.

• Only try to free objects allocated during interp and continue

��1�

Part 2

11

Reference Counting

Reference counting: a way to know whether an object has other users

• Attatch a count to every object, starting at 0

• When installing a pointer to an object (into a register or another object),
increment its count

• When replacing a pointer to an object, decrement its count

• When a count is decremented to 0, decrement counts for other objects
referenced by the object, then free

12�1�

Reference Counting

1
1

1

1

2

1
1

Top boxes are the registers
k-reg, v-reg, etc.

Boxes in the blue area are
allocated with malloc

1�

Reference Counting

1
1

0

1

3

1
1

Adjust counts when a pointer is
changed...

1�

Reference Counting

1
1

1

2

1
1

... freeing an object if its count
goes to 0

1�

Reference Counting

1
1

0

2

1
1

Same if the pointer is in a register

1�

Reference Counting

1
1

2

0
1

Adjust counts after frees, too...

2�

Reference Counting

1
1

2

1

... which can trigger more frees

21

Reference Counting in an Interpreter
...
[(lamE body-expr)
(begin
 (ref- v-reg)
 (set! v-reg

; must ref+ env:
(closV body-expr env-reg))

 (ref+ v-reg)
 (continue))]

...
[(doAppK fun-val k)
(begin
 (set! expr-reg (closV-body fun-val)) ; code is static
 (ref- env-reg)
 (set! env-reg

; must ref+ each arg:
(cons v-reg (closV-env fun-val)))

 (ref+ env-reg) ; => ref+ on v-reg
 (ref+ k)
 (ref- k-reg) ; => ref- on fun-val and k
 (set! k-reg k)
 (interp))]

22

Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a
cycle...

23

Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments a
count

2�

Reference Counting And Cycles

1
1

1

2

1
1

Lower-left objects are
inaccessible, but not deallocated

In general, cycles break reference
counting

2�

Part 3

2�

Garbage Collection

Garbage collection: a way to know whether an object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because there is no way to
get to other objects

• A garbage collector frees all objects that are not live

• Allocate until we run out of memory, then run a garbage collector to get
more space

2��2�

Garbage Collection Algorithm

• Color all objects white

• Color objects referenced by registers gray

• Repeat until there are no gray objects:

Pick a gray object, r

For each white object that r points to, make it gray

Color r black

• Deallocate all white objects

3�

Garbage Collection

All objects are marked white

31

Garbage Collection

Mark objects referenced by
registers as gray

32

Garbage Collection

Need to pick a gray object

Red arrow indicates the chosen
object

33

Garbage Collection

Mark white objects referenced by
chosen object as gray

3�

Garbage Collection

Mark chosen object black

3�

Garbage Collection

Start again: pick a gray object

3�

Garbage Collection

No referenced objects; mark
black

3�

Garbage Collection

Start again: pick a gray object

3�

Garbage Collection

Mark white objects referenced by
chosen object as gray

3�

Garbage Collection

Mark chosen object black

��

Garbage Collection

Start again: pick a gray object

�1

Garbage Collection

No referenced white objects;
mark black

�2

Garbage Collection

No more gray objects; deallocate
white objects

Cycles do not break garbage
collection

�3

Part 4

��

Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects, making
allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to to-space

• Choosing a gray object ⇒ walk once though the new to-space, update
pointers

��

Two-Space Collection

Left = from-space
Right = to-space

��

Two-Space Collection

Mark gray = copy and leave
forward address

��

Two-Space Collection

Choose gray by walking through
to-space

��

Two-Space Collection

Mark referenced as gray

��

Two-Space Collection

Mark black = move gray-choosing
arrow

��

Two-Space Collection

Nothing to color gray; increment
the arrow

�1

Two-Space Collection

Color referenced object gray

�2

Two-Space Collection

Increment the gray-choosing
arrow

�3

Two-Space Collection

Referenced is already copied, use
forwarding address

��

Two-Space Collection

Choosing arrow reaches the end
of to-space: done

��

Two-Space Collection

Right = from-space
Left = to-space

��

Part 5

��

Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated object in memory starts with a tag, followed by a sequence
of pointers and immediate integers

The tag describes the shape

��

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

��

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

��

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

�1

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 0 0 0 0 0 0 0 0 0 0 0 0 0

 ^
 ^

�2

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 0

From: 1 75 2 0 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 0 0 0 0 0 0 0 0 0 0

 ^
 ^

�3

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 2 0 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 1 75 0 0 0 0 0 0 0 0

 ^
 ^

��

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 0 0 0 0 0 0 0

 ^
 ^

��

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 0 0 0 0 0 0 0

 ^
 ^

��

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 5 1 75 2 3 0 0 0 0 0 0

 ^
 ^

��

