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Allocation

Constructor calls are allocation:

(define (interp)
  (type-case ExpD expr-reg

  ....
  [(lamD body-expr)

(begin
  (set! v-reg (closV body-expr env-reg))
  (continue))]

  ....))
 
(define (continue)
  ....
  [(plusSecondK r env k)

(begin
  (set! expr-reg r)
  (set! env-reg sc)
  (set! k-reg (doPlusK v-reg k))
  (interp))]

  ....)
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Deallocation

Where does free go?

(define (continue)
  ....
  [(doPlusK v1 k)

(begin
  (set! v-reg (num+ v1 v-reg))
  (free k-reg) ; ???
  (set! k-reg k)
  (continue))]

  ....
  [(doAppK fun-val k)

(begin
  (set! expr-reg (closV-body fun-val))
  (set! env-reg (cons v-reg

(closV-env fun-val)))
  (set! k-reg k)
  (free fun-val) ; ???
  (interp))]

  ....)
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Deallocation

[(doPlusK v1 k)
(begin
  (set! v-reg (num+ v1 v-reg))
  (free k-reg) ; ???
  (set! k-reg k)
  (continue))]

• Without let/cc, this free is fne, because the continuation can’t be
referenced anywhere else

• A continuation object is always freed as (free k-reg), which is why
many language implementations use a stack
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Deallocation

[(doAppK fun-val k)
(begin
  (set! expr-reg (closV-body fun-val))
  (set! env-reg (cons v-reg

(closV-env fun-val)))
  (set! k-reg k)
  (free fun-val) ; ???
  (interp))]

• This free is not ok, because the closure might be kept in a environment
somewhere

• Need to free only if no one else is using it...
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Code and Data

An object is any record allocated during interp and continue

Assume that expressions are allocated “statically”

• compile uses code-malloc1, etc.

• Only try to free objects allocated during interp and continue
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Reference Counting

Reference counting: a way to know whether an object has other users

• Attatch a count to every object, starting at 0

• When installing a pointer to an object (into a register or another object),
increment its count

• When replacing a pointer to an object, decrement its count

• When a count is decremented to 0, decrement counts for other objects
referenced by the object, then free
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Reference Counting
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Top boxes are the registers
k-reg, v-reg, etc.

Boxes in the blue area are
allocated with malloc
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Reference Counting
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Adjust counts when a pointer is
changed...
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Reference Counting
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... freeing an object if its count
goes to 0
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Reference Counting
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Same if the pointer is in a register
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Reference Counting
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Adjust counts after frees, too...
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Reference Counting
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... which can trigger more frees
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Reference Counting in an Interpreter
...
[(lamE body-expr)
(begin
  (ref- v-reg)
  (set! v-reg

; must ref+ env:
(closV body-expr env-reg))

  (ref+ v-reg)
  (continue))]

...
[(doAppK fun-val k)
(begin
  (set! expr-reg (closV-body fun-val)) ; code is static
  (ref- env-reg)
  (set! env-reg

; must ref+ each arg:
(cons v-reg (closV-env fun-val)))

  (ref+ env-reg) ; => ref+ on v-reg
  (ref+ k)
  (ref- k-reg) ; => ref- on fun-val and k
  (set! k-reg k)
  (interp))]
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Reference Counting And Cycles
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An assignment can create a
cycle...
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Reference Counting And Cycles
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Reference Counting And Cycles
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Lower-left objects are
inaccessible, but not deallocated

In general, cycles break reference
counting
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Garbage Collection

Garbage collection: a way to know whether an object is accessible

• An object referenced by a register is live

• An object referenced by a live object is also live

• A program can only possibly use live objects, because there is no way to
get to other objects

• A garbage collector frees all objects that are not live

• Allocate until we run out of memory, then run a garbage collector to get
more space
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Garbage Collection Algorithm

• Color all objects white

• Color objects referenced by registers gray

• Repeat until there are no gray objects:

Pick a gray object, r

For each white object that r points to, make it gray

Color r black

• Deallocate all white objects
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Garbage Collection

All objects are marked white
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Garbage Collection

Mark objects referenced by
registers as gray
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Garbage Collection

Need to pick a gray object

Red arrow indicates the chosen
object
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Garbage Collection

Mark white objects referenced by
chosen object as gray
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Garbage Collection

Mark chosen object black
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Garbage Collection

Start again: pick a gray object
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Garbage Collection

No referenced objects; mark
black
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Garbage Collection

Start again: pick a gray object
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Garbage Collection

Mark white objects referenced by
chosen object as gray
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Garbage Collection

Mark chosen object black
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Garbage Collection

Start again: pick a gray object
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Garbage Collection

No referenced white objects;
mark black
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Garbage Collection

No more gray objects; deallocate
white objects

Cycles do not break garbage
collection

�3



Part 4

��



Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects, making
allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to to-space

• Choosing a gray object ⇒ walk once though the new to-space, update
pointers
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Two-Space Collection

Left = from-space
Right = to-space
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Two-Space Collection

Mark gray = copy and leave
forward address
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Two-Space Collection

Choose gray by walking through
to-space
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Two-Space Collection

Mark referenced as gray
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Two-Space Collection

Mark black = move gray-choosing
arrow
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Two-Space Collection

Nothing to color gray; increment
the arrow
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Two-Space Collection

Color referenced object gray
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Two-Space Collection

Increment the gray-choosing
arrow
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Two-Space Collection

Referenced is already copied, use
forwarding address
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Two-Space Collection

Choosing arrow reaches the end
of to-space: done
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Two-Space Collection

Right = from-space
Left = to-space
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Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated object in memory starts with a tag, followed by a sequence
of pointers and immediate integers

The tag describes the shape
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 7  Register 2: 0

From:  1 75  2  0  3  2 10  3  2  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
To:  0  0  0  0  0  0  0  0  0  0  0  0  0

 ^
 ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 0

From:  1 75  2  0  3  2 10 99  0  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
To:  3  2  2  0  0  0  0  0  0  0  0  0  0

 ^
          ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3  2  0  3  2 10 99  0  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
To:  3  2  2  1 75  0  0  0  0  0  0  0  0

 ^
                ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3 99  5  3  2 10 99  0  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
To:  3  2  5  1 75  2  0  0  0  0  0  0  0

          ^
                      ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3 99  5  3  2 10 99  0  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
To:  3  2  5  1 75  2  0  0  0  0  0  0  0

                ^
                      ^
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Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Register 1: 0  Register 2: 3

From: 99  3 99  5  3  2 10 99  0  2  3  1  4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^     ^     ^        ^        ^      
To:  3  2  5  1 75  2  3  0  0  0  0  0  0

                      ^
                      ^
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