
Practice Midterm Exam 1

CS 3520/5520, Fall 2018

September 25

Instructions: You have eighty minutes to complete this open-book, open-note, closed-interpreter exam.
Please write all answers in the provided space, plus the back of the exam if necessary.
Note on actual exam: The exam may refer to the env.rkt, lambda.rkt, and store-with.rkt interpreters.
If you need the interpreters for reference to answer the questions, please bring a copy (paper or electronic)
with you.

1) [15 pts] Given the following grammar:

〈weed〉 = leaf

| (branch 〈weed〉 〈weed〉)
| (stem 〈weed〉)

Provide a define-type declaration for Weed that is a suitable representation for 〈weed〉s.

1



2) [25 pts] Implement the function weed-forks, takes a Weed and returns the number of branches that
it contains. Your implementation must follow the shape of the data definition, and it must include
tests.

2



3) [20 pts] For each of the following expressions, a show the store that would be returned with the
program’s value when using the store-with.rkt interpreter. Instead of nested override-stores, you
can show the store as a list of cells. Recall that locations are allocated starting at 1.

a) {box {+ 1 2}}

b) {let {[b {box {+ 1 2}}]}

{begin

{set-box! b 4}

{box 5}}}

c) {let {[f {lambda {x}

{box x}}]}

{set-box! {f 0} {f 1}}}

d) {let {[f {lambda {x}

{box x}}]}

{let {[b {f 0}]}

{set-box! b b}}}

3



4) [40 pts] The following expression is evaluated using the lambda.rkt interpreter:

{let {[g {lambda {x} {lambda {y} {+ y x}}}]}

{let {[x 13]}

{let {[f {g 6}]}

{f x}}}}

(Note: the actual exam will also use lambda.rkt.) Describe a trace of the evalaution in terms of
arguments to an interp function for every call. (There will be 15 calls.) The interp function takes
two arguments — an expression and an environment — so show both for each call. Put each call
to interp and in a rectangle, and show recursive calls within the same rectangle by using nested
rectangles; show the interp result at the end of each rectangle. Number the calls to interp to reflect
the actual order of the calls when running the interpreter.

You can omit the rectangle around the first call and everything else, leaving it implicit. If you can’t
get all of a box’s content on one page, you can write a placeholder for a nested box and write the
actual box separately (possibly on a separate page). It’s ok to leave out calls to parse and just quote
concrete syntax. Use the following abbreviations to save time and space:

X0 = the whole expression, quoted
X1 = `{lambda {x} {lambda {y} {+ y x}}}
X2 = `{let {[x 13]} {let {[f {g 6}]} {f x}}}
X3 = `{let {[f {g 6}]} {f x}}

4



Answers

1) [15 pts]

(define-type Weed

(leaf)

(stem [rest : Weed]]

(branch [left : Weed]

[right : Weed]))

2) [25 pts]

(define (weed-forks [w : Weed]) : Number

(type-case Weed w

[(leaf) 0]

[(stem rest) (weed-forks rest)]

[(branch l r) (+ 1

(+ (weed-forks l)

(weed-forks r)))]))

(test (weed-forks (leaf)) 0)

(test (weed-forks (stem (leaf))) 0)

(test (weed-forks (stem (branch (leaf) (leaf)))) 1)

(test (weed-forks (branch (branch (leaf) (leaf)) (leaf))) 2)

3) [20 pts]

a) (list (cell 1 (numV 3)))

b) (list (cell 2 (numV 5)) (cell 1 (numV 4)) (cell 1 (numV 3)))

c) (list (cell 1 (boxV 2)) (cell 2 (numV 1)) (cell 1 (numV 0)))

c) (list (cell 1 (boxV 1)) (cell 1 (numV 0)))

4) [40 pts]

5



1 (interp X0

mt-env)

2 (interp X1

mt-env)

result is C1 = (closV ’x `{lambda {y} {+ y x}} mt-env)

3 (interp X2

E1 = (extend-env (bind ’g C1) mt-env))

4 (interp `13

E1)

result is (numV 13)

5 (interp X3

E2 = (extend-env (bind ’x (numV 13)) E1))

6 (interp `{g 6}
E2)

7 (interp `g

E2)

result is C1

8 (interp `6

E2)

result is (numV 6)

9 (interp `{lambda {y} {+ y x}}
E3 = (extend-env (bind ’x (numV 6)) mt-env))

result is C2 = (closV ’y `{+ y x} E3)

result is C2

10 (interp `{f x}
E4 = (extend-env (bind ’f C2) E2))

11 (interp `f

E4)

result is C2

12 (interp `x

E4)

result is (numV 13)

13 (interp `{+ y x}
E5 = (extend-env (bind ’y (numV 13)) E3))

14 (interp `y

E5)

result is (numV 13)

15 (interp `x

E5)

result is (numV 6)

result is (numV 19)

result is (numV 19)

result is (numV 19)

result is (numV 19)

result is (numV 19)

6



An alternate form of the same solution that fits more easily on multiple pages:

1 (interp X0

mt-env)

2 (interp X1

mt-env)

result is C1 = (closV ’x `{lambda {y} {+ y x}} mt-env)

3 (interp X2

E1 = (extend-env (bind ’g C1) mt-env))

4 (interp `13

E1)

result is (numV 13)

5 (interp X3

E2 = (extend-env (bind ’x (numV 13)) E1))

BOX A
BOX B
result is (numV 19)

result is (numV 19)

result is (numV 19)

BOX A =
6 (interp `{g 6}

E2)

7 (interp `g

E2)

result is C1

8 (interp `6

E2)

result is (numV 6)

9 (interp `{lambda {y} {+ y x}}
E3 = (extend-env (bind ’x (numV 6)) mt-env))

result is C2 = (closV ’y `{+ y x} E3)

result is C2

BOX B =
10 (interp `{f x}

E4 = (extend-env (bind ’f C2) E2))

11 (interp `f

E4)

result is C2

12 (interp `x

E4)

result is (numV 13)

13 (interp `{+ y x}
E5 = (extend-env (bind ’y (numV 13)) E3))

14 (interp `y

E5)

result is (numV 13)

15 (interp `x

E5)

result is (numV 6)

result is (numV 19)

result is (numV 19)

7


