Part |

Identifier Address

Suppose that

{let {[x 88]}
{+ x y}}

appears in a program; the body is eventually evaluated:

T

where will x be in the environment!?

Answer: always at the beginning:

x = 88

2-3

Identifier Address

Suppose that

{let {[y 11}
{+ x y}}

appears in a program; the body is eventually evaluated:

T

where will y be in the environment?

Answer: always at the beginning:

y=1

Identifier Address

Suppose that

{let {[y 11}
{let {[x 2]}

{+ x y}}}

appears in a program; the body is eventually evaluated:

T

where will y be in the environment?

Answer: always second:

6-7

Identifier Address

Suppose that

{let {[y 1]}
{let {[x 88]}

{* {+ x y} 17}}}

appears in a program; the body is eventually evaluated:

T

where will x and y be in the environment?

Answer: always first and second:

x = 88 y=1

8-9

Identifier Address

Suppose that

{let {[y 1]}
{let {[w 10]}
{let {[z 9]}
{let {[x 0]}

{+ x y}}}}}

appears in a program; the body is eventually evaluated:

Tl

where will x and y be in the environment?

Answer: always first and fourth:

Il
'—I

x =0 z =9 w = 10 Y

10-11

Identifier Address

Suppose that

{let {[y {let {[r 2]} {* r 8}}]}
{let {[w 10]}

{let {[z {let {[q 2]} q}l}
{let {[x O]}

{+ x y}}}}}

appears in a program; the body is eventually evaluated:

Tl

where will x and y be in the environment?

Answer: always first and fourth:

Il
'—I

x =0 z =9 w = 10 Y

12-13

Lexical Scope

* For any expression, we can tell which identifiers will be in the
environment at run time

* The order of the environment is predictable

14

Part 2

15

Comepilation of Variables

A compiler can transform an Exp expression to an expression without

identifiers — only lexical addresses

; compile : Exp ... -> ExpD
(define-type Exp (define-type ExpD

(numE [n : Number]) (numD [n Number])
(addE [1 : Exp] (addD [1 : ExpD]

[r : Exp]) [r : ExpD])
(multE [1 : Exp] (multD [1 : ExpD]

[r : Exp]) [r : ExpD])
(1dE [n : Symbol]) (atD [pos : Number])
(lamE [n : Symbol] (lamD [body : ExpD])

[body : Exp]) (appD [fun : ExpD]
(appE [fun : Exp] [arg : ExpD]))

[arg : Exp]))

16-17

(compile
(compile
(compile

(compile

Compile Examples

1] ...) = 1

{(+ 12} ...) =|[{+1 2}

x| ...) = compile: free identifier

{lambda {x} {+ 1 x}}| ...)

= {lambda {+ 1 {at 0}}}

(compile

{lambda {y} {lambda {x} {+ x y}}}

= {lambda {lambda {+ {at 0} {at 1}}}}

18-21

Implementing the Compiler

(define (compile [a : Exp] [env :

(type-case Exp a
[(numE n) (numD n)]
[(PlusE 1 r) (plusD (compile
(compile
[(multE 1 r) (multD (compile
(compile

[(idE n) (atD (locate n env))

[(lLamE n body-expr)
(lamD
(compile body-expr

1
r
1
r
]

EnvC])

env)
env))]
env)
env))]

(extend-env (bindE n)
env)))]

[(appE fun-expr arg-expr)

(appD (compile fun-expr env)

(compile arg-expr env))]))

22-25

Compile-Time Environment

Mimics the run-time environment, but without values:

(define-type BindingC
(bindE [name : Symbol]))

(define-type-alias EnvC (Listof BindingC))

(define (locate name env)
(cond
[(empty? env) (error 'locate "free wvariable")]
[else (if (symbol=? name (bindC-name (first env)))
0
(+ 1 (locate name (rest env))))]))

26

interp for Compiled

Almost the same as interp for Exp:

(define (interp a env)
(type-case ExpD a
[(humD n) (numV n)]
[(plusD 1 r) (num+ (interp 1 env)
(interp r env))]
[(multD 1 r) (num* (interp 1 env)
(interp r env))]
[(atD pos) (list-ref env pos)]
[(lamD body-expr)
(closV body-expr env)]
[(appD fun-expr arg-expr)
(let ([fun-val (interp fun-expr env)]
[arg-val (interp arg-expr env)])
(interp (closV-body fun-val)
(cons arg-val
(closV-env fun-val))))l1))

27

Timing Effect of Compilation

Given

(define c | {{{{lambda {x}
{lambda {y}
{lambda {z} {+ {+ x x} {+ x x}}}}}
1}
2}
3})

(define d (compile ¢ mt-env))

then

(interp d empty)

is significantly faster than

(interp ¢ mt-env)

Using the built-in 1ist-ref simulates machine array
indexing, but don’t take timings too seriously

28-29

Part 3

30

From Racket to Machine Code

\ 4

s

31

From Racket to Machine Code

Wy

32

From Racket to Machine Code

* Everything must be a number

33

From Racket to Machine Code

* Everything must be a number

* No define-type or type-case

34

From Racket to Machine Code

* Everything must be a number

* No define-type or type-case

* No implicit continuations

35

From Racket to Machine Code

* Everything must be a number
* No define-type or type-case
* No implicit continuations

* No implicit allocation

36

Part 4

37

From Racket to Machine Code

Step I:
Exp > ExpD

{lambda {x} {lambda
{+ 1 x}} {+ 1 {at 0}}}

Eliminates all run-time names

38-39

From Racket to Machine Code

Step 2:

interp > interp + continue

Eliminates implicit continuations

40-41

Step 3:

From Racket to Machine Code

function calls —> regsiters and goto

42

From Racket to Machine Code

Step 3:
function calls —> regsiters and goto
(interp 1 (begin
env (set! expr-reg 1)
(plusSecondK r (set! k-reg (plusSecondK r
env env-reg
k)) k-reg))
(interp))

Makes argument passing explicit

43-44

Part 5

45

From Racket to Machine Code

Step 4:
(multSecondK r > (malloc3 3
env-reg (ref expr-reg 2)
k-reqg) env-reg

k-reqg)

46

Step 4:

From Racket to Machine Code

donekK
plusSecondK
numbD

plusD

numV
closV

\

\

\/

\j

v

15
16

47

From Racket to Machine Code

Step 4:

(type-case Cont k-reg > (case (ref k-reg 0)

[(3)

[(multSecondK r env k)

. r ... (ref k-reg 1)
.. env ... (ref k-reg 2)
.k ..] ... (ref k-reg 3)

..) c.)

48

From Racket to Machine Code

Step 4:

(define memory (make-vector 1500 0))
(define ptr-reg 0)

(define (malloc3 tag a b c)
(begin

(vector-set! memory ptr-reg tag)
(vector-set! memory (+ ptr-reg 1) a)
(vector-set! memory (+ ptr-reg 2) b)
(vector-set! memory (+ ptr-reg 3) c)
(set! ptr-reg (+ ptr-reg 4))
(- ptr-reg 4)))

Makes all allocation explicit

Makes everything a number

49-50

