
Part 1

1

Identifer Address

Suppose that

{let {[x 88]}
 {+ x y}}

appears in a program; the body is eventually evaluated:

{+ x y}

...

where will x be in the environment?

Answer: always at the beginning:

x = 88 ...

���

Identifer Address

Suppose that

{let {[y 1]}
 {+ x y}}

appears in a program; the body is eventually evaluated:

{+ x y}

...

where will y be in the environment?

Answer: always at the beginning:

y = 1 ...

���

Identifer Address

Suppose that

{let {[y 1]}
 {let {[x 2]}

 {+ x y}}}

appears in a program; the body is eventually evaluated:

{+ x y}

...

where will y be in the environment?

Answer: always second:

x = 2 y = 1 ...

���

Identifer Address

Suppose that

{let {[y 1]}
 {let {[x 88]}
 {* {+ x y} 17}}}

appears in a program; the body is eventually evaluated:

{+ x y}

...

where will x and y be in the environment?

Answer: always frst and second:

x = 88 y = 1 ...

���

Identifer Address

Suppose that

{let {[y 1]}
 {let {[w 10]}

 {let {[z 9]}
 {let {[x 0]}
 {+ x y}}}}}

appears in a program; the body is eventually evaluated:

{+ x y}

...

where will x and y be in the environment?

Answer: always frst and fourth:

x = 0 z = 9 w = 10 y = 1 ...

1��11

Identifer Address

Suppose that

{let {[y {let {[r 9]} {* r 8}}]}
 {let {[w 10]}
 {let {[z {let {[q 9]} q}]}

 {let {[x 0]}
 {+ x y}}}}}

appears in a program; the body is eventually evaluated:

{+ x y}

...

where will x and y be in the environment?

Answer: always frst and fourth:

x = 0 z = 9 w = 10 y = 1 ...

1��1�

Lexical Scope

• For any expression, we can tell which identifers will be in the
environment at run time

• The order of the environment is predictable

1�

Part 2

1�

Compilation of Variables

A compiler can transform an Exp expression to an expression without

identifers — only lexical addresses

; compile : Exp ... -> ExpD

(define-type Exp
 (numE [n : Number])
 (addE [l : Exp]

[r : Exp])
 (multE [l : Exp]

[r : Exp])
 (idE [n : Symbol])
 (lamE [n : Symbol]

[body : Exp])
 (appE [fun : Exp]

[arg : Exp]))

(define-type ExpD
 (numD [n Number])
 (addD [l : ExpD]

[r : ExpD])
 (multD [l : ExpD]

[r : ExpD])
 (atD [pos : Number])
 (lamD [body : ExpD])
 (appD [fun : ExpD]

[arg : ExpD]))

1��1�

Compile Examples

(compile 1 ...) ⇒ 1

(compile {+ 1 2} ...) ⇒ {+ 1 2}

(compile x ...) ⇒ compile: free identifer

(compile {lambda {x} {+ 1 x}} ...)

⇒ {lambda {+ 1 {at 0}}}

(compile {lambda {y} {lambda {x} {+ x y}}} ...)

 ⇒ {lambda {lambda {+ {at 0} {at 1}}}}

1���1

Implementing the Compiler

(define (compile [a : Exp] [env : EnvC])
 (type-case Exp a

 [(numE n) (numD n)]
 [(plusE l r) (plusD (compile l env)

(compile r env))]
 [(multE l r) (multD (compile l env)

(compile r env))]
 [(idE n) (atD (locate n env))]
 [(lamE n body-expr)

(lamD
(compile body-expr

(extend-env (bindE n)
env)))]

 [(appE fun-expr arg-expr)
(appD (compile fun-expr env)

(compile arg-expr env))]))

�����

Compile-Time Environment

Mimics the run-time environment, but without values:

(define-type BindingC
 (bindE [name : Symbol]))

(define-type-alias EnvC (Listof BindingC))

(define (locate name env)
 (cond

[(empty? env) (error 'locate "free variable")]
[else (if (symbol=? name (bindC-name (first env)))

0
(+ 1 (locate name (rest env))))]))

��

interp for Compiled

Almost the same as interp for Exp:

(define (interp a env)
 (type-case ExpD a

 [(numD n) (numV n)]
 [(plusD l r) (num+ (interp l env)

(interp r env))]
 [(multD l r) (num* (interp l env)

(interp r env))]
 [(atD pos) (list-ref env pos)]
 [(lamD body-expr)

(closV body-expr env)]
 [(appD fun-expr arg-expr)

(let ([fun-val (interp fun-expr env)]
[arg-val (interp arg-expr env)])

 (interp (closV-body fun-val)
(cons arg-val

(closV-env fun-val))))]))

��

Timing Effect of Compilation

Given

(define c {{{{lambda {x}
 {lambda {y}

 {lambda {z} {+ {+ x x} {+ x x}}}}}
1}
2}
3})

(define d (compile c mt-env))

then

(interp d empty)

is signifcantly faster than

(interp c mt-env)

Using the built-in list-ref simulates machine array
indexing, but don’t take timings too seriously

�����

Part 3

��

From Racket to Machine Code

{...}

�1

From Racket to Machine Code

{...}

��

From Racket to Machine Code

{...}

• Everything must be a number

��

From Racket to Machine Code

{...}

• Everything must be a number

• No define-type or type-case

��

From Racket to Machine Code

{...}

• Everything must be a number

• No define-type or type-case

• No implicit continuations

��

From Racket to Machine Code

{...}

• Everything must be a number

• No define-type or type-case

• No implicit continuations

• No implicit allocation

��

Part 4

��

From Racket to Machine Code

Step 1:

Exp

{lambda {x}
 {+ 1 x}}

ExpD

{lambda
{+ 1 {at 0}}}

Eliminates all run-time names

�����

From Racket to Machine Code

Step 2:

interp interp + continue

Eliminates implicit continuations

����1

From Racket to Machine Code

Step 3:

function calls regsiters and goto

��

From Racket to Machine Code

Step 3:

function calls

(interp l
env
(plusSecondK r

env
k))

regsiters and goto

(begin
 (set! expr-reg l)
 (set! k-reg (plusSecondK r

env-reg
k-reg))

 (interp))

Makes argument passing explicit

�����

Part 5

��

From Racket to Machine Code

Step 4:

(multSecondK r
env-reg
k-reg)

(malloc3 3
(ref expr-reg 2)
env-reg
k-reg)

��

From Racket to Machine Code

Step 4:

doneK 1
plusSecondK 2
...
numD 8
plusD 9
...
numV 15
closV 16

��

From Racket to Machine Code

Step 4:

(type-case Cont k-reg
 ...
 [(multSecondK r env k)

... r

... env

... k ..]
 ...)

(case (ref k-reg 0)
 ...
 [(3)

... (ref k-reg 1)

... (ref k-reg 2)

... (ref k-reg 3) ...]
 ...)

��

From Racket to Machine Code

Step 4:

(define memory (make-vector 1500 0))
(define ptr-reg 0)

(define (malloc3 tag a b c)
 (begin

 (vector-set! memory ptr-reg tag)
 (vector-set! memory (+ ptr-reg 1) a)
 (vector-set! memory (+ ptr-reg 2) b)
 (vector-set! memory (+ ptr-reg 3) c)
 (set! ptr-reg (+ ptr-reg 4))
 (- ptr-reg 4)))

Makes all allocation explicit

Makes everything a number

�����

