Linked Lists vs. Arrays

Arrays:
* fixed size

* O(1) random access

Linked lists:
* O(1) addition

* O(n) random access

Array Containers

An array has a fixed size, but an array container can
grow by swapping in a larger array

struct container {
int count;
int *a;

};

Array Container

Before:
acC
.//73 .//71 8
add to back(ac, 0);
After:

Array Container Performance

Adding to the back:
 Copy existing n items: O(n)

* n items: O(n?)

Adding to the front:
« Copy existing n items: O(n)

* n items: O(n?)

Anticipating Further Additions

We could lower the cost of adding an item if we keep
some extra space in the array

How much extra space?

Double the array’s size each time it needs to be bigger
* Wasted space for n items is O(n)
* Time to add n items: O(n log n)

* On average, adding to n items takes O(log n)

5

-6

Array Doubling

Array Doubling

Array Doubling

Array Doubling

10

Array Doubling

11

Array Doubling

12

Array Doubling

13

Array Doubling

14

Array Doubling

15

Array Doubling

16

Array Doubling

17

Array Doubling

18

Array Doubling

19

Array Doubling

If you need to double the size to add the nth item, then
you’ve doubled only log n times so far

* Each doubling copied less than O(n) items

* Actually adding the item takes O(1)

20-21

Array-Doubling Container

Before:
acC
722 \
e
add to back(ac, 0);
After:
acC
-//'3 4 \

\187?

Array-Doubling Container

Before:
acC
3|4 \
\1 8(7|?
add to back(ac, 0);
After:
acC
4|4 |

\1870

Circular Buffer

What if we want to add or remove at the front!?

... without shifting all data!?

* In addition to count, keep a starting point

 Array content can “wrap around” if items are added
to the end

24-25

Before:

After:

Circular Buffer

%

¥

26

Before:

After:

Circular Buffer

\

¥

\

¥

27

Before:

After:

Circular Buffer

\

¥

\

Y

28

Before:

After:

Circular Buffer

Y

Y

29

Stacks and Queues

Best kind of container depends on what you need

Two common patterns:

» stack: add to one end, remove from same end

array doubling (or even fixed size!) is common

* queue: add to one end, remove from other end

circular buffer is common

30

Linked Lists versus Arrays

Linked lists can implement stacks and queues
* stack: plain linked list

* queue: linked list tracking head and tail

Compared to array containers:
* advatage: closer to O(1) actual — not just average

* disadvatage: less compact and slower overall

Random access in middle: arrays are better

Inserting and deleting in middle: doubly linked list is
better

31-33

