Data So Far

* Built-in atomic data: num, bool, sym, and image
* Built-in compound data: posn

* Programmer-defined compound data:
define-struct plus a data definition

* Programmer-defined data with varieties: data
definition with "either"

Today: more examples

Example |: Managing Grades

Suppose that we need to manage exam grades

100 E E

* Record a grade for each student

* Distinguish zero grade from missing the exam

We want to implement passed-exam?

Programming with Grades

Data
* Use a number for a grade, obviously

* For a non-grade, use the built-in constant empty

empty is something that you can use to represent nothing.

It's not a num, bool, sym, image, or posn.

3-

Data

Examples:

Programming with Grades

A grade 1is either
- num
- empty

| W W

100

empty

5-

Programming with Grades

Contract, Purpose, and Header

; passed-exam? : grade -> bool

Programming with Grades

Contract, Purpose, and Header

passed-exam? : grade -> bool
Determines whether g is 70 or better

we we

Programming with Grades

Contract, Purpose, and Header

passed-exam? : grade -> bool
Determines whether g is 70 or better
(define (passed-exam? g)

c..)

we we

Programming with Grades

Examples

passed-exam? : grade -> bool
Determines whether g is 70 or better
(define (passed-exam? g)

c..)

we we

(check-expect (passed-exam? 100) true)
(check-expect (passed-exam? 0) false)
(check-expect (passed-exam? empty) false)

10

Programming with Grades

Template

passed-exam? : grade -> bool
Determines whether g is 70 or better
(define (passed-exam? g)

we we

(cond
[(number? g) ...]
[(empty? g) ...]))

varieties = cond

(check-expect (passed-exam? 100) true)
(check-expect (passed-exam? 0) false)
(check-expect (passed-exam? empty) false)

11

Body

Programming with Grades

passed-exam? : grade -> bool
Determines whether g is 70 or better
(define (passed-exam? qg)

N, MO0 MO |0 N N =

(cond
[(number? g) ...]
[(empty? g) ...]))
define (passed-exam? Q)
(cond

[(number? g) (>= g 70)]
[(empty? g) false]))

(check-expect (passed-exam? 100) true)

(check-expect (passed-exam? 0) false)
(check-expect (passed-exam? empty) false)

12

Grades and Re-takes

Suppose that we allow one re-test per student

100 0 T 807 Q

A grade 1is either
- num
- posn
- empty

|V | N WO

13-14

Programming with Grades and Retests

Contract, Purpose, and Header

passed-exam? : grade -> bool
Determines whether g is 70 or better
(define (passed-exam? qg)

c..)

we o

15

Programming with Grades and Retests

Examples

passed-exam? : grade -> bool
Determines whether g is 70 or better
(define (passed-exam? qg)

c..)

we o

(check-expect (passed-exam? 100) true)
(check-expect (passed-exam? (make-posn 0 80)) true)
(check-expect (passed-exam? empty) false)

16

Programming with Grades and Retests

Template

passed-exam? : grade -> bool
Determines whether g is 70 or better

(define (passed-exam? qg)
(cond
[(number? g) ...]

[(posn? g) ...]
[(empty? g) ...]))

we o

varieties = cond
(check-expect (passed-exam? 100) true)

(check-expect (passed-exam? (make-posn 0 80)) true)
(check-expect (passed-exam? empty) false)

17

Programming with Grades and Retests

Template

passed-exam? : grade -> bool
Determines whether g is 70 or better

(define (passed-exam? qg)
(cond
[(number? g) ...]
[(posn? g) ... (posn-passed-exam? g) ...]

[(empty? g) ...]))

we o

data-defn reference = template reference
(check-expect (passed-exam? 100) true)

(check-expect (passed-exam? (make-posn 0 80)) true)
(check-expect (passed-exam? empty) false)

18

Complete Function

; passed-exam? : grade -> bool
(define (passed-exam? qg)
(cond
[(number? g) (>= g 70)]
[(posn? g) (posn-passed-exam? g)]

[(empty? g) false]))

; posn-passed-exam? : posn -> bool
(define (posn-passed-exam? p)
(or (>= (posn-x p) 70)
(>= (posn-y p) 70)))

Plus tests and templates...

19

Shapes of Data and Functions

As always, the shape of the function matches the shape of the data

A grade is either
- num
- posn
- empty

| | WO WO

A posn is
(make-posn num num)

we

e

(define (func-for-grade gq)

(cond
[(number? g) ...]
[(posn? g) ... (func-for-posn g) ...]
[(empty? g) ...]))

(define (func-for-posn p)
(posn-x p) ... (posn-y p) ..)

20

Example #2: Day Planning

Suppose that we need to manage day-planner entries

@office

Each day-plan is either empty or an
appointment with person and place

Implement close-blinds?

for Adam’s sensitive eyes during
office meetings

21

Programming with Day-Plans

Data
; An day-plan is either
; - empty
; - (make-appt image sym)
(define-struct appt (who where))
Examples:

(make-appt

22-23

Programming with Day-Plans

Contract, Purpose, and Header

; close-blinds? : day-plan -> bool

24

Programming with Day-Plans

Contract, Purpose, and Header

close-blinds? : day-plan -> bool

Determines whether dp is a meeting
with Adam at office

| Wwe W

25

Programming with Day-Plans

Contract, Purpose, and Header

close-blinds? : day-plan -> bool

Determines whether dp is a meeting
with Adam at office

define (close-blinds? dp)
cel)

o~ N W we

26

Programming with Day-Plans

Examples

close-blinds? : day-plan -> bool

Determines whether dp is a meeting
with Adam at office

define (close-blinds? dp)

...)
(check-expect (close-blinds? empty) false)
L

S, | W\ W

(check-expect (close-blinds? (make-appt 'office))
true)
(check-expect (close-blinds? (make-appt ‘lab))

false)

27

Programming with Day-Plans

Template

close-blinds? : day-plan -> bool

Determines whether dp is a meeting
with Adam at office

define (close-blinds? dp)
cel)

S, | W\ W

An day-plan is either
- empty
- (make-appt image sym)

|V W WO

28

Programming with Day-Plans

Template

close-blinds? : day-plan -> bool

Determines whether dp is a meeting
with Adam at office

define (close-blinds? dp)

S, | W\ W

(cond
[(empty? dp) ...]
[(appt? dp) ...]1))

varieties = cond

An day-plan is either
- empty
- (make-appt image sym)

|V W WO

29

Programming with Day-Plans

Template

close-blinds? : day-plan -> bool
Determines whether dp is a meeting
with Adam at office
define (close-blinds? dp)
(cond
[(empty? dp) ...]
[(appt? dp)
... (appt-who dp)
... (appt-where dp) ...]))

S, | W\ W

compound data = extract parts

An day-plan is either
- empty
- (make-appt image sym)

|V W WO

30

Programming with Day-Plans

Body

close-blinds? : day-plan -> bool
Determines whether dp is a meeting
with Adam at office
define (close-blinds? dp)
(cond
[(empty? dp) false]

[(appt? dp)
(and

S, | W\ W

(image=? (appt-who dp) 5%5?§u)
(symbol=? (appt-where dp) 'office))]))

31

Shapes of Data and Functions

As always, the shape of the function matches the shape
of the data

; An day-plan is either
; — empty
; - (make-appt image sym)

(define (close-blinds? dp)
(cond
[(empty? dp) ...]
[(appt? dp)
(appt-who dp)
(appt-where dp) ...]))

32

Summary

Today’s examples show:

* A data definition with variants need not involve
structure choices

* A data definition with variants can include
make-something directly

... usually when the structure by itself isn’t useful

 Implementation shape still matches the data shape

No recipe changes!

33

