Compound Data So Far

A posn is
(make-posn X Y)

where X is a num and Y is a num

* (make-posn 1 2) isa value
* (posn-x (make-posn 1 2)) — 1

* (posn-y (make-posn 1 2)) — 2

So much for computation... how about program design?

1-2

Body

If the input is compound data, start the body by selecting the parts

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num

; Return the X part of p is it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)

c..)

(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num
; Return the X part of p is it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)

ce. (pOosn-x p) ... (posn-y p) ...)

(check-expect (max-part (make-posn 10 11)) 11)
(check-expect (max-part (make-posn 7 5)) 7)

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num
; Return the X part of p is it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)

(cond

[(> (posn-x p) (posn-y p)) (posn-x p)]
[else (posn-y p)l))
(check-expect (max-part (make-posn 10 11)) 11)

(check-expect (max-part (make-posn 7 5)) 7)

Body

If the input is compound data, start the body by selecting the parts

; max-part : posn -> num
; Return the X part of p is it's bigger
; than the Y part, otherwise the Y part
(define (max-part p)

(cond

[(> (posn-x p) (posn-y p)) (posn-x p)]
[else (posn-y p)l))
(check-expect (max-part (make-posn 10 11)) 11)

(check-expect (max-part (make-posn 7 5)) 7)

Since this guideline applies before the usual body work, let’s split it
into an explicit step

Design Recipe |l
Data
* Understand the input data
Contract, Purpose, and Header
* Describe (but don’t write) the function
Examples
* Show what will happen when the function is done
Template
* Set up the body based on the input data (and only the input)
Body
* The most creative step: implement the function body
Test

* Run the examples

Body Template
If the input is compound data, start the body by selecting the parts

; max-part : posn -> num
;e e
(define (max-part p)
ee. (posn-x p) ... (posn-y p) ...)

Check: number of parts in template =
number of parts data definition named in contract

A posn is
(make-posn X Y)

where X is a num and Y is a num

10-12

Body Template

If the input is compound data, start the body by selecting the parts

Handin artifact: a comment (required starting with HW 2)

max-part : posn -> num

Return the X part of p is it's bigger
than the Y part, otherwise the Y part
(define (max-part p)

ce. (pOosn-x p) ... (posn-y p) ...)
define (max-part p)

ee. (posn-x p) ... (posn-y p) ...)
(check-expect (max-part (make-posn 10 11)) 11)

(check-expect (max-part (make-posn 7 5)) 7)

AN, M0 | WNO W we

13

Other Kinds of Data

Suppose we want to represent snakes:
* name
* weight
- favorite food

What kind of data is appropriate?

Not num, bool, sym, image, or posn...

15-16

Data Definitions and define-struct

Here’s what we’d like:

A snake is
(make-snake sym num sym)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:
(define-struct snake (name weight food))
Creates the following:

* make-snake
* snake-name
snake-weight
snake-food

17-20

Data Definitions and define-struct

Here’s what we’d like:

A snake is
(make-snake sym num sym)

... but make-snake is not built into DrRacket

We can tell DrRacket about snake:

(define-struct snake (name weight food))
Creates the following:

(snake-name (make-snake X Y Z)) @ X
(snake-weight (make-snake X Y Z)) 0 Y
(snake-food (make-snake X Y Z)) 2

21

snake

'Slinky|10|'rats

(make-snake 'Slinky 10 'rats)

.rsnake—l

snake

'Slimey| 8 | 'pudding

(define-struct snake (name weight food)) (make-snake 'Slimey 8 'pudding)

posn

3|4

(make-posn 3 4)

posn

8 -2

(define-struct posn (x y)) (make-posn 8 -2)

Data

Deciding to define snake is in the first step of the design recipe

Handin artifact: a comment and/or define-struct

A snake 1is
(make-snake sym num sym)

we o

(define-struct snake (name weight food))

Now that we’ve defined snake, we can use it in contracts

23-25

Programming with Snakes

Implement snake-skinny?, which takes a snake and
returns true if the snake weights less than 10 pounds,

false otherwise

Implement feed-snake, which takes a snake and
returns a snake with the same name and favorite food,
but five pounds heavier

26-27

Programming with Armadillos

Pick a representation for armadillos (“‘dillo” for short),
where a dillo has a weight and may or may not be alive

Implement run-over-with-car, which takes a dillo
and returns a dead dillo of equal weight

Implement feed-dillo, where a dillo eats 2 pounds of
food at a time

... unless it's dead

28-31

