Text Adventure Game

"You are at Home"

> (go! "east")

"You are at School"

> (go! "east")

"You can't go that direction"
> (go! "west")

"You are at Home"

> (go! "south")

"You are at Zoo"

Map

west
{School j@[Home
east

north south

N

Zoo

Model

; A place 1is

; (make-place string list-of-1link)
(define-struct place (name links))

; A link is
; (make-link string place)
(define-struct link (dir dest))

(define home
(make-place "Home"))

-5

Model
west
. east
; A place 1is

; (make-place string list-of-1link) northl, | south
(define-struct place (name links))

; A link is
; (make-link string place)
(define-struct link (dir dest))

(define home
(make-place "Home"
(list (make-link "west" school)
(make-link "south" zoo0))))

Model

west
. east
; A place 1is

; (make-place string list-of-1link)
(define-struct place (name links))

; A link is
; (make-link string place)
(define-struct link (dir dest))

(define school
(make-place "School" ...))

(define home
(make-place "Home"
(list (make-link '"west" school)
(make-link "south" zoo0))))

Model

west
. east
; A place 1is

; (make-place string list-of-1link)
(define-struct place (name links))

; A link is
; (make-link string place)
(define-struct link (dir dest))

(define school
(make-place "School"
(list (make-link "east" home))))

(define home
(make-place "Home"
(list (make-link "west" school)
(make-link "south" zoo0))))

Model

west
. east
; A place 1is

; (make-place string list-of-1link)
(define-struct place (name links))

; A link is
; (make-link string place)
(define-struct link (dir dest))

(define school
(make-place "School"
(list (make-link "east" home))))

(define home Cannot use home

(make-place "Home" before it is defined
(list (m school)

(make-link "south" zo00))))

Creating Cycles with Assignment

(define school (make-place "School" empty))
(define zoo (make-place "Zoo" empty))

(define home
(make-place "Home"
(list (make-link "west" school)
(make-link "south" zo00))))

(set-place-links! school
(list (make-link "east" home)))

(set-place-links! zoo
(list (make-link '"north" home)))

10

Creating Cycles with shared

(define current-place
(shared ([home
(make-place "Home"
(list (make-link "west" school)
(make-link "south" zo0)))]
[school
(make-place '"School™"
(l1ist (make-link "east" home)))]
[zo00
(make-place "Zoo"
(1ist (make-link "north" home)))])
home))

11

e
4
°
4
°
4
e
14

; Effect: sets current-place

4

Moving

go! : string -> string

Changes the current place by moving in the
given direction, if possible, and returns a
description of the new state

(define (go! dir)

(local [(define new-place
(find-place dir
(place-1links current-place)))]

(cond
[(place? new-place)
(begin
(set! current-place new-place)
(string-append "You are at " (place-name new-place)))]
[else

"You can't go that direction"])))

12

Finding a Move

; find-place : string list-of-link -> place-or-false
(define (find-place dir links)
(cond
[(empty? links) false]
[(cons? links)
(1f (in-direction? dir (first links))
(link-dest (first links))
(find-place dir (rest links)))1]))

; in-direction? : string link -> boolean
(define (in-direction? dir link)
(string=? (link-dir link) dir))

13

Looking for a Place

Given a string and a place, determine whether some
place with the given string name 1s reachable from the
given place.

The solution requires an accumulator to record where
you've been—otherwise you might go in circles

14-15

Stuff

Adjust place so that each place has a list of things.
Report all of the things in a location after moving.

Implement get!, which picks up a thing in the current
room. After picking up something, it 1s no longer in the
room, but is instead in the player’s possession. After
picking up somethig, report everyting in the player’s
possession.

16

