Testing Functions with State

(check-expect (begin
(set! WORKING O0)
(add-digit 7)
WORKING)
7)

Testing Functions with State

(chec. Setup...

begin
(set! WORKING O0)
(add-digit 7)
WORKING)

7)

Testing Functions with State

(chec! (begin
.. call ... (set! WORKING 0)
(add-digit 7)
WORKING)
7)

Testing Functions with State

(check-expect (begin
(set! WORKING O0)
(add-digit 7)
WORKING)
7)

... result

Testing Functions with State

(check-expect (begin
(set! WORKING O0)
(add-digit 7)
WORKING)
7)

Problem: WORKING is left in a strange state

Testing Functions with State

(check-expect (begin
(set! WORKING O0)
(add-digit 7)
(local [(define r WORKING)]
(begin
(set! WORKING 0)

r)))
7)

Testing Functions with State

(check SEtUp - Degin
(set! WORKING O0)
(add-digit 7)
(local [(define r WORKING)]
(begin
(set! WORKING 0)

r)))
7)

Testing Functions with State

(check ‘begin
- call . (set! WORKING 0)
(add-digit 7)
(local [(define r WORKING)]
(begin
(set! WORKING 0)

r)))
7)

Testing Functions with State

(check-expect (begin
WORKING 0)
git 7)
(local ['(define r WORKING)]
(begin
(set! WORKING 0)
r)))

... result ...

7)

Testing Functions with State

(check-expect (begin
(set! WORKING 0)
(add-digit 7)
ocal [(define r WORKING)]
‘begin
(set! WORKING 0)
r)))

... teardown

7)

10

Testing Functions with State

(check-expect (begin
(set! WORKING 53)
(add-digit 1)
(local [(define r WORKING)]
(begin
(set! WORKING 0)

r)))
531)

11

Testing Functions with State

(check-expect (begin
(set! TOTAL 3)
(set! WORKING 5)
(change-total * 5)

(local [(define r (list TOTAL

(begin
(set! TOTAL 0)
(set! WORKING 0)

r)))
(list 15 0))

WORKING))]

12

Model-View—Controller

Suppose we want a GUI to manage a fish

LFeed 1|| Feed 31['

Run

New rule: keep the view and control separate from
the model

* The view and control are in the GUI

* The model is a fish with a weight

Design the model first

13-15

Fish Model

The only operation in the model is feed

feed : num -> num
Grows the fish by n, returns new size

Effect: adjusts the fish's weight

°
4
°
4

°
4

feed

P

QWEIGHT

16-17

Fish Model

The only operation in the model is feed

feed : num -> num
Grows the fish by n, returns new size

Effect: adjusts the fish's weight

°
4
°
4

°
4

n|feed (define (feed n)
‘Q ... n ... WEIGHT
WEIGHT ... (set! WEIGHT ...) ...)

(check-expect (begin
(set! WEIGHT 1)
(local [(define rl (feed 10))
(define r2 WEIGHT)]
(set! WEIGHT O0)
(list rl r2)))
(list 11 11))

18-19

Fish Model Implementation

(define WEIGHT O0)

°
14
°
14

°
14

feed : num -> num
Grows the fish by n, returns new size
Effect: adjusts the fish's weight

(define (feed n)

(begin
(set! WEIGHT (+ WEIGHT n))
WEIGHT))

(check-expect (begin

(set! WEIGHT 1)
(local [(define rl (feed 10))
(define r2 WEIGHT)]
(set! WEIGHT 0)
(list rl r2)))
(list 11 11))

20

Implementing the View and Controller

LFeed 1|J Feed 3=l!l

Use the GUI teachpack to construct view and control
* Message objects implement the view

* Button callbacks implement the control

View 2 Control «<—2 Model

Often, the model never calls the control

21

Complete Fish Program

; The model:
(define WEIGHT 3)
; feed : num -> num

Copy

(define (feed n)
(begin
(set! WEIGHT (+ n WEIGHT))
WEIGHT))
... tests here ...

; The view:
(define msg (make-message (number->string WEIGHT)))
; The control:
(define (feed-button n)
(make-button (string-append "Feed " (number->string n))
(lambda (evt)
(draw-message
msg
(number->string (feed n))))))
(create-window
(list (list msg) (list (feed-button 1) (feed-button 3))))

22

Multiple Fish

As we saw last time, if we want multiple fish, we can use
local

(define (create-fish init-weight)
(local [(define WEIGHT init-weight)
(define (feed n)

(begin
(set! WEIGHT (+ WEIGHT n))
WEIGHT))

-]

(create-window ...)))

23

Evaluating create-fish

(define (create-fish init-weight)
(local [(define WEIGHT init-weight)
(define (feed n)

(begin
(set! WEIGHT (+ WEIGHT n))
WEIGHT))
-1
(create-window ...)))

(create-fish 5)

-

(local [(define WEIGHT 5)
(define (feed n)

(begin
(set! WEIGHT (+ WEIGHT n))
WEIGHT))

-]

(create-window ...))

24-25

Evaluating create-fish

(local [(define WEIGHT 5)
(define (feed n)

(begin
(set! WEIGHT (+ WEIGHT n))
WEIGHT))
-1
(create-window ...))

(define WEIGHT. 5)
(define (feeds; n)

(begin
(set! WEIGHT¢s (+ WEIGHT¢ n))
WEIGHTs))

(create-window ...)

26-27

Multiple Fish

Every time we call create-fish a new WEIGHT is

created for the new fish

We can make a whole aquarium....
How can we get the current total weight of all fish?

Problem: create-fish returns only a window

The renamed WEIGHT is completely hidden

28-30

Returning the Weight

Does this help!?

; create-fish : num -> num
(define (create-fish init-weight)
(local [(define WEIGHT init-weight)

e
(begin

(create-window ...)
WEIGHT)))
No:
(create-fish 5)
— (local [(define WEIGHT 5) ...] ... WEIGHT)
— (deflne WEIGHT73 5) P WEIGHT73
— (define WEIGHT,; 5) ... 5

A variable is not a value

31-32

Variable Structs

A struct is a value:

(define-struct fish (weight))
(define sam (make-fish 3))

sam — (make-fish 3)

A struct is variable:

(fish-weight sam) — 3
(set-fish-weight! sam 4)
(fish-weight sam) — 4

33-34

Returning a Fish

(define-struct fish (weight))

; create-fish : num -> fish

(define (create-fish init-weight)
(local [(define FISH (make-fish init-weight))

ce o]

(begin
(create-window ...)
FISH)))

35

Variable Structs

Evaluating make-£fish establishes a fish’s identity:

(define samuel (make-fish 3))
(define sam samuel)

(fish-weight sam) — 3
(set-fish-weight! samuel 4)
(fish-weight sam) — 4

36

Evaluation with Variable Structs

(define samuel (make-fish 3))
(define sam samuel)
(fish-weight sam)
(set-fish-weight! samuel 4)
(fish-weight sam)

—

(define* FISH;; (make-fish 3))
(define samuel FISH;;)

(define sam samuel)
(fish-weight sam)
(set-fish-weight! samuel 4)
(fish-weight sam)

define* binds an identifier as a value

37-38

Evaluation with Variable Structs

(define* FISH;; (make-fish 3))
(define samuel FISH;;)

(define sam samuel)
(fish-weight sam)
(set-fish-weight! samuel 4)
(fish-weight sam)

-

(define* FISH,; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,,)
(fish-weight sam)
(set-fish-weight! samuel 4)
(fish-weight sam)

39-40

Evaluation with Variable Structs

(define* FISH;; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,;)
(fish-weight sam)
(set-fish-weight! samuel 4)
(fish-weight sam)

-

(define* FISH,; (make-fish 3))
(define samuel FISH;;)

(define sam FISH;,)
(fish-weight FISH;,)
(set-fish-weight! samuel 4)
(fish-weight sam)

41-42

Evaluation with Variable Structs

(define* FISH;; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,;)
(fish-weight FISH;,)
(set-fish-weight! samuel 4)
(fish-weight sam)

-

(define* FISH,; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,,)

3

(set-fish-weight! samuel 4)
(fish-weight sam)

43-44

Evaluation with Variable Structs

(define* FISH;; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,;)

3

(set-fish-weight! samuel 4)
(fish-weight sam)

-

(define* FISH,; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,,)

3

(set-fish-weight! FISH,;; 4)
(fish-weight sam)

45-46

Evaluation with Variable Structs

(define* FISH;; (make-fish 3))
(define samuel FISH;;)

(define sam FISH,,)

3

(set-fish-weight! FISH;; 4)
(fish-weight sam)

—

(define* FISH,; (make-fish 4))
(define samuel FISH;,)

(define sam FISH,,)

3

(void)

(fish-weight sam)

47-48

Evaluation with Variable Structs

(define* FISH;; (make-fish 4))
(define samuel FISH,,)

(define sam FISH,,)

3

(void)

(fish-weight sam)

—

(define* FISH,; (make-fish 4))
(define samuel FISH;,)

(define sam FISH,,)

3

(void)

(fish-weight FISH,,)

49-50

Evaluation with Variable Structs

(define* FISH;; (make-fish 4))
(define samuel FISH,,)

(define sam FISH,,)

3

(void)

(fish-weight FISH;,)

—

(define* FISH,; (make-fish 4))
(define samuel FISH;;)

(define sam FISH;,)

3

(void)

4

51-52

Allocation

The step from

(make-fish 3)

to

(deflne* FISHgg
FISHgo

is called allocation

(make-fish 3))

53

The eg? operator compares identity:

(define samuel (make-fish 3))
(define sam samuel)
(define gil (make-fish 3))

(equal? sam gil) — true
(eg? sam gil) — false
(eq? sam samuel) — true

54

Object Allocation

Java is the same:

* new allocates an object
* = changes a field’s value

« == compares identity

55

Varying Fields

class Fish {
int weight;
Fish(int weight) { this.weight = weight;
void feed(int amt) {
this.weight = this.weight + amt;
}
int getWeight () {
return this.weight;

}

56

Object Allocation and Identity

Fish samuel = new

Fish sam = samuel;

Fish (3) ;

Fish gil = new Fish(3);

t.checkExpect (sam.
sam. feed (1) ;

t.checkExpect (sam.
t.checkExpect (gil.
t.checkExpect (sam
t.checkExpect (sam

getWeight (), 3);

getWeight (), 4)
getWeight (), 3);
== samuel, true);
== gil, false);

57

|dentities for non-Structs and non-Obijects

|dentity is sometimes underspecified:
* strings in Java

* humbers in Racket

Beware!

58

