» Nesting Variants to Refine Contracts
Common Functionality in Abstract Classes

Nesting without Abstract

Path Classes

IPath

boolean isOk()

Fail

Success

Left

Right

boolean isOk ()

boolean isOk ()

IPath rest

IPath rest

No escape:

boolean isOk ()

boolean isOk ()

new Fail ()

2-3

Path Classes

IPath

boolean isOk()

Fail

Success

Left

Right

boolean isOk ()

boolean isOk ()

IPath rest

IPath rest

Door is an immediate escape:

boolean isOk ()

boolean isOk ()

new Success ()

Path Classes

IPath

boolean isOk()

Fail

Success

Left

Right

boolean isOk ()

boolean isOk ()

IPath rest

IPath rest

boolean isOk ()

boolean isOk ()

Turn left, then right, then you're there:

new Left (new Right (new Success()))

Path Classes

IPath

boolean isOk()

Fail

Success

Left

Right

boolean isOk ()

boolean isOk ()

IPath rest

IPath rest

What’s this?

boolean isOk ()

boolean isOk ()

new Left (new Right(new Fail ()))

We'd prefer to ensure that Left and Right to extend
only successful paths

Paths Reconsidered

Our current definition:

* A path is either
O failure
© immediate success
© |left followed by a path
° right followed by a path

A better definition:

* A path is either
O failure
O success
* A success is either
O immediate
O |left followed by success
© right followed by success

8-9

Nested Variants

* A path is either
© failure
© success
* A success is either
© immediate
© |left followed by success
© right followed by success

To translate this into Java, a variant of the interface
IPath must itself be an interface with variants

10

Revised Path Classes

IPath

boolean isOk()

Fail

boolean isOk ()

ISuccess

boolean isOk()

Immediate

Left

Right

boolean isOk ()

Success rest

Success rest

boolean isOk ()

boolean isOk ()

11

Revised Path Class Code

interface IPath {
boolean isOk() ;

class Fail implements IPath {
Fail() { }
public boolean isOk() { return false; }

interface ISuccess extends IPath {

}

class Immediate implements ISuccess {
Immediate () { }
public boolean isOk() { return true; }

class Right implement ISuccess ({
ISuccess rest;
Right (ISuccess rest) { this.rest = rest; }
public boolean isOk() { return true; }

class Left implements ISuccess ({
ISuccess rest;
Left (ISuccess rest) { this.rest = rest; }
public boolean isOk() { return true; }

) Copy

Nesting Variants to Refine Contracts
» Common Functionality in Abstract Classes

Nesting without Abstract

13

Common Animal Behavior

All animals have a weight field:

IAnimal
boolean isLighter(double)

Snake Ant
String name double weight
double weight Posn loc
String food boolean isLighter (double)
boolean isLighter (double) Ant move (int, int)
boolean likesFood (String)

Dillo

double weight
boolean alive

boolean isLighter (double)
Dillo runOver ()

Common Animal Behavior

Move the common field into the Animal abstract class

Also move isLighter, since it uses only weight

IAnimal

boolean isLighter (double)

Animal

double weight

boolean isLighter (double)

Snake Dillo Ant
String name boolean alive Posn loc
String food Dillo runOver()| |Ant move(int, int)
boolean likesFood(String)

15

Interface

An interface:

IAnimal

boolean isLighter (double)

* No fields

* Methods declared, but not implemented

* new IAnimal () doesn’t work

* Use with implements

interface IAnimal { ... }

class Snake implements IAnimal ({

}

16

Abstract Class

An abstract class:

Animal
double weight
boolean isLighter (double)

Can have fields

Methods implemented

* new Animal () doesn’t work

Use with extends

abstract class Animal implements IAnimal {

class Snake extends Animal { ... }

Fields in Abstract Classes

An abstract class needs a constructor:

abstract class Animal implements IAnimal {
double weight;
Animal (double weight) {
this.weight = weight;
}
boolean islighter (int n) {
return this.weight < n;

18

Classes that extend a Class with Fields

Extensions of Animal must now supply the super class with its
field:

class Snake extends Animal ({

String name;

String food;

Snake (String name, double weight, String food) {
super (weight) ;
this.name = name;
this.food = food;

}

boolean likesFood(String s) {
return this.food.equals(s)

Copy

19

Classes that extend a Class with Fields

Extensions of Animal must now supply the super class with its
field:

class Snake extends Animal ({
String name;
String food;
Snake (String name, double weight, String food) {

super (weight) ;

thiS. A == pAarAA e

this.f The super
} Kk :

eyword in a

boolean yW {

return CoOnstructor calls)
} the extended

} class’s constructor

Copy

20

Classes that extend a Class with Fields

Extensions of Animal must now supply the super class with its
field:

class Snake extends Animal ({
String name;
String food;
Snake (String name, double weight, String food) {
super (weight) ;
this.\ ™Mo = mnama-

this.£ A super call
}

boolean
return Defore the other

} statements

must appear

Copy

21

Nesting Variants to Refine Contracts
Common Functionality in Abstract Classes

» Nesting without Abstract

22

More Common Features

IDoor

IPath escapePath(Person)

Escape Into
String name Room next
IPath escapePath (Person) IPath escapePath (Person)
| |
Short Locked
Room next Room next
double height String keyColor
IPath escapePath (Person) IPath escapePath (Person)

Most new kinds of door will have a next field, like Into

23-24

Doors

IDoor

IPath escapePath(Person)

|)\ |

Escape Into

String name Room next

IPath escapePath (Person) IPath escapePath(Person)

|)\ |

Plain Locked

IPath escapePath (Person) String keyColor

IPath escapePath (Person)

Short
double height

IPath escapePath (Person)

The escapePath method isn’t always the same, but the
this.next.escapePath (p) part is always the same...

25-26

Method Parts in Abstract Classes

abstract class Into extends Door {
Room next;

Into(Room next) {
this.next = next;

}

Path escapePath (Person p) {
return this.next.escapePath (p) ;

}

Copy

27

Chaining to a Super Method

class Short extends Into {
double height;
Short (Room next, double height) {
super (next) ;
this.height = height;
}
Path escapePath (Person p) {
if (p.isShorter (this.height))
return super.escapePath (p) ;
else
return new Fail () ;

Copy

28

Chaining to a Super Method

class Short extends Into {
double height;
Short (Room next, double height) {
super (next) ;
this.height = height;
}
Path escapePath (Person p) {
if (p.isShorter (this.height))
return super.escapePath (p) ;
else
return new Fail () ;

The escapePath in Short overrides the method in
Into

Copy

29

Chaining to a Super Method

class Short extends Into {
double height;
Short (Room next, double height) ({

Using the super keyword in

super .escapePath means to call
the extended class’s method

e de \tl e de DJIIUJL U o u.c.l._’u. <))

return super.escapePath (p);
else
return new Fail() ;

The escapePath in Short overrides the method in
Into

Copy

30

Chaining to a Super Method

class Short extends Into {
double height;
Short (Room next, double height) {
super (next) ;
this.height = height;
}
Path escapePath (Person p) {
if (p.isShorter (this.height))
return super.escapePath (p) ;
else
return new Fail () ;

The escapePath in Short overrides the method in
Into

Copy

31

Plain Door

class Plain extends Into {
Plain (Room next) {
super (next) ;
}
Path escapePath (Person p) ({
return super.escapePath (p);

}

32

Plain Door

class Plain extends Into {
Plain (Room next) {
super (next) ;
}
Path escapePath (Person p) {
return super.escapePath (p);

}
}

The overriding escapePath merely chains to super,
so it isn’t needed

33

Plain Door

class Plain extends Into {
Plain (Room next) {
super (next) ;

The overriding escapePath merely chains to super,
so it isn’t needed

34

Plain Door

class Plain extends Into {
Plain (Room next) {
super (next) ;

The overriding escapePath merely chains to super,
so it isn’t needed

In fact, we can do away with the Plain class

completely, and just make Into non-abstract

35

Doors Revised

IDoor

IPath escapePath(Person)

Escape

Into

String name

Room next

IPath escapePath (Person)

IPath escapePath (Person)

Short

Locked

double height

String keyColor

IPath escapePath (Person)

IPath escapePath (Person)

36

Summary

* An interface can extend an interface

* An abstract class can implement an
interface

« An abstract class can declare fields

* Aclass can extend a class

* Use super (.. .) when the extended class has a
constructor
* Use super.method(...) to chain to an

overridden method

37

