
The Food Chain

Implement the function food-chain which takes a list
of fish and returns a list of fish where each has eaten all
of the fish to the left

→

The Food Chain

Implement the function food-chain which takes a list
of fish and returns a list of fish where each has eaten all
of the fish to the left

(food-chain '(3 2 3))

→
'(3 5 8)

Implementing the Food Chain

(define (food-chain l)
 (cond

[(empty? l) ...]
[else
... (first l)
... (food-chain (rest l)) ...]))

Is the result of (food-chain '(2 3)) useful for
getting the result of (food-chain '(3 2 3))?

(food-chain '(3 2 3))
→ ... 3 ... (food-chain '(2 3)) ...
→ ... 3 ... '(2 5) ...
→ → '(3 5 8)

Implementing the Food Chain

Feed the first fish to the rest, then cons:

(define (food-chain l)
 (cond

[(empty? l) empty]
[else
(cons (first l)

(feed-fish (food-chain (rest l))
(first l)))]))

(define (feed-fish l n)
 (cond

[(empty? l) empty]
[else (cons (+ n (first l))

(feed-fish (rest l) n))]))

The Cost of the Food Chain

How long does (feed-fish l) take when l has n fish?

(define (food-chain l)
 (cond

[(empty? l) empty]
[else
(cons (first l)

(feed-fish (food-chain (rest l))
(first l)))]))

T(0) = k1
T(n) = k2 + T(n-1) + S(n-1)

where S(n) is the cost of feed-fish

The Cost of the Food Chain with feed-fish

T(0) = k1
T(n) = k2 + T(n-1) + S(n-1)

(define (feed-fish l n)
 (cond

[(empty? l) empty]
[else (cons (+ n (first l))

(feed-fish (rest l) n))]))

S(0) = k3
S(n) = k4 + S(n-1)

Overall, S(n) is proportional to n
T(n) is proportional to n2

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Real fish:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

How Much a Food Chain should Cost

With 100 fish, our food-chain takes 10,000 steps to
feed all the fish

Real fish are clearly more efficient!

Our algorithm:

Practical Feeding

With real fish, eating accumulates a bigger fish while
progressing up the chain:

Real fish:

Practical Feeding

With real fish, eating accumulates a bigger fish while
progressing up the chain:

Real fish:

Practical Feeding

With real fish, eating accumulates a bigger fish while
progressing up the chain:

Real fish:

Practical Feeding

With real fish, eating accumulates a bigger fish while
progressing up the chain:

Real fish:

Let’s imitate this in our function

;
;
food-chain-on
 : list-of-num num -> list-of-num

; Feeds fish in l to each other,
; starting with the fish so-far
(define (food-chain-on l so-far) ...)

Accumulating Food

(define (food-chain-on l so-far)
 (cond

[(empty? l) empty]
[else
(cons (+ so-far (first l))

(food-chain-on
(rest l)
(+ so-far (first l))))]))

(define (food-chain l)
 (food-chain-on l 0))

(food-chain '(3 2 3))

→
(food-chain-on '(3 2 3) 0)

Accumulating Food

(define (food-chain-on l so-far)
 (cond

[(empty? l) empty]
[else
(cons (+ so-far (first l))

(food-chain-on
(rest l)
(+ so-far (first l))))]))

(define (food-chain l)
 (food-chain-on l 0))

(food-chain-on '(3 2 3) 0)

→ →
(cons 3 (food-chain-on '(2 3) 3))

Accumulating Food

(define (food-chain-on l so-far)
 (cond

[(empty? l) empty]
[else
(cons (+ so-far (first l))

(food-chain-on
(rest l)
(+ so-far (first l))))]))

(define (food-chain l)
 (food-chain-on l 0))

(cons 3 (food-chain-on '(2 3) 3))

→ →
(cons 3 (cons 5 (food-chain-on '(3) 5)))

Accumulating Food

(define (food-chain-on l so-far)
 (cond

[(empty? l) empty]
[else
(cons (+ so-far (first l))

(food-chain-on
(rest l)
(+ so-far (first l))))]))

(define (food-chain l)
 (food-chain-on l 0))

(cons 3 (cons 5 (cons 8 (food-chain-on empty 8))))
→ →
(cons 3 (cons 5 (cons 8 empty)))

Accumulators

(define (food-chain-on l so-far)
 (cond

[(empty? l) empty]
[else
(cons (+ so-far (first l))

(food-chain-on
(rest l)
(+ so-far (first l))))]))

The so-far argument of food-chain-on code is an
accumulator

The Direction of Information

With structural recusion, information from deeper in
the structure is returned to computation shallower in
the structure

(define (fun-for-loX l)
 (cond

[(empty? l) ...]
[else
... (first l)
... (fun-for-loX (rest l)) ...]))

The Direction of Information

An accumulator sends information the other way —
from shallower in the structure to deeper

(define (acc-for-loX l accum)
 (cond

[(empty? l) ...]
[else
... (first l) ... accum ...
... (acc-for-loX

(rest l)
... accum ... (first l) ...)

...]))

Another Example: Reversing a List

Implement reverse-list which takes a list and
returns a new list with the same items in reverse order

Pretend that reverse isn’t built in

; reverse-list : list-of-X -> list-of-X

(check-expect (reverse-list empty) empty)
(check-expect (reverse-list '(a b c)) '(c b a))

Implementing Reverse

Using the template:

(define (reverse-list l)
 (cond

[(empty? l) empty]
[else
... (first l) ...
... (reverse-list (rest l)) ...]))

Is (reverse-list '(b c)) useful for computing
(reverse-list '(a b c))?

Yes: just add 'a to the end

Implementing Reverse

(define (reverse-list l)
 (cond

[(empty? l) empty]
[else
(snoc (first l)

(reverse-list (rest l)))]))

(define (snoc a l)
 (cond

[(empty? l) (list a)]
[else
(cons (first l)

(snoc a (rest l)))]))

(check-expect (snoc 'a '(c b)) '(c b a))

The Cost of Reversing

How long does (reverse l) take when l has n
items?

(define (reverse-list l)
 (cond

[(empty? l) empty]
[else
(snoc (first l)

(reverse-list (rest l)))]))

This is just like the old food-chain —
it takes time proportional to n2

Reversing More Quickly

(reverse-list '(a b c))

→ →
(snoc 'a (reverse-list '(b c)))

→ →
(snoc 'a '(c b))
...

We could avoid the expensive snoc step if only we
knew to start the result of
(reverse-list '(c b)) with '(a) instead of
empty

Reversing More Quickly

(reverse-list '(a b c))

→ →
(reverse-onto '(b c) '(a))
...

It looks like we’ll just run into the same problem with
'b next time around...

Reversing More Quickly

(reverse-list '(a b c))

→ →
(reverse-onto '(b c) '(a))

→ →
(snoc 'b (reverse-onto '(c) '(a)))
???

But this isn’t right anyway: 'b is supposed to go before
'a

Really we should reverse '(c) onto '(b a)

Reversing More Quickly

(reverse-list '(a b c))

→ →
(reverse-onto '(b c) '(a))

→ →
(reverse-onto '(c) '(b a))
...

And the starting point is that we reverse onto empty...

Reversing More Quickly

(reverse-list '(a b c))

→
(reverse-onto '(a b c) empty)

→ →
(reverse-onto '(b c) '(a))

→ →
(reverse-onto '(c) '(b a))

→ →
(reverse-onto empty '(c b a))

→ →
'(c b a)

The second argument to reverse-onto
accumulates the answer

Accumulator-Style Reverse

;
;
reverse-onto :
 list-of-X list-of-X -> list-of-X

(define (reverse-onto l base)
 (cond

[(empty? l) base]
[else (reverse-onto (rest l)

(cons (first l)
base))]))

(define (reverse-list l)
 (reverse-onto l empty))

Foldl

Remember foldr, which is an abstraction of the
template?

The pure accumulator version is foldl:

; foldl : (X Y -> Y) Y list-of-X -> Y
(define (foldl ACC accum l)
 (cond

[(empty? l) accum]
[else (foldl ACC

(ACC (first l) accum)
(rest l))]))

(define (reverse-list l)
 (foldl cons empty l))

