Big Fish

A function that gets the big fish (> 5 Ibs):

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(cond
[(> (first 1) 5)
(cons (first 1) (big (rest 1)))]
[else (big (rest 1))]1)1))

(check-expect (big empty) empty)
(chexk-expect (big '(7 4 9)) '(7 9))

Big Fish

Better with local:

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define big-rest (big (rest 1)))]
(cond
[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

Suppose we also need to find huge fish...

2-

3

Huge Fish

Huge fish (> 10 Ibs):

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

How do you suppose | made this slide?

Cut and Paste!

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(cond
[(> (first 1) 5)
(cons (first 1) (big (rest 1)))]
[else (big (rest 1))]1)1))

cut and paste

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(cond
[(> (first 1) 10)
(cons (first 1) (huge (rest 1)))]
[else (huge (rest 1))1)]1))

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) empdpy]

[(cons? 1)

(cond &
[(> (first 1) 5)

(cons (first 1) (big (rest 1)))]
[else (big (rest 1))]1)1))

cut and paste

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(cond
[(> (first 1) 10)
(cons (first 1) (huge (rest 1)))]
[else (huge (rest 1))1)]1))

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) empgr]

[(cons? 1)

(cond K
[(> (first 1) 5)

(cons (first 1) (big (rest 1)))]
[else (big (rest 1))1)1))

cut and paste

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) e
[(cons? 1)

mK
[(> (first 1) 10)

(cond
(cons (first 1) (huge (rest 1)))]
[else (huge (rest 1))]1)1))

After cut-and-paste, improvement is twice as hard

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) empty]
[(cons? 1)

(local [(define big-rest (big (rest 1)))]

(cond
[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

cut and paste

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

10

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) empty

[(cons? 1)

(local [(define @gst (big (rest 1)))]
(cond

[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

cut and paste

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define h-rest (huge (rest 1)))]
(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

11

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) empty

[(cons? 1)

(local [(define @gst (big (rest 1)))]
(cond

[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

cut and paste

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond

[(empty? 1) empty]
[(cons? 1) -
(local [(define# 5t (huge (rest 1)))]

(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

After cut-and-paste, bugs multiply

12

The Trouble With Cut and Paste

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond

[(empty? 1) empty

[(cons? 1)

(local [(define @gst (big (rest 1)))]
(cond

[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

:ut qefﬁﬁ}te

Q’Z’c’@
>

o

; huge : list-of-nums -> list-of-nums
(define (huge 1)
(cond

[(empty? 1) emptyi _
[(cons? 1) -
(local [(define_ st (huge (rest 1)))]

(cond
[(> (first 1) 10)
(cons (first 1) h-rest)]
[else h-rest]))]))

After cut-and-paste, bugs multiply

13

How to Avoid Cut-and-Paste

Start with the original function...

; big : list-of-nums -> list-of-nums
(define (big 1)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define big-rest (big (rest 1)))]
(cond
[(> (first 1) 5)
(cons (first 1) big-rest)]
[else big-rest]))]))

14

How to Avoid Cut-and-Paste

... and add arguments for parts that should change

; bigger : list-of-nums num -> list-of-nums
(define (bigger 1 n)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define r (bigger (rest 1) n))]
(cond
[(> (first 1) n)
(cons (first 1) r)]
[else r]))]))

(define (big 1) (bigger 1 5))
(define (huge 1) (bigger 1 10))

15-16

Small Fish

Now we want the small fish:

» smaller : list-of-nums num -> llé}—Of nums
(define (smaller 1 n) 55'

(cond 0o
[(empty? 1) empty] éQ
[(cons? 1)
(local [(define r‘éﬁﬁgiler (rest 1) n))]
(cond

[(< (first S' n)
(cons st 1) r)]
[elsq S:1‘)5)]))

(define‘xghall 1) (smaller 1 5))

17-19

Sized Fish

+ sized : list-of-nums num ... -> list-of-nums
(define (sized 1 n COMP)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define r
(sized (rest 1) n COMP))]
(cond
[(COMP (first 1) n)
(cons (first 1) r)]

[else r]))]))

(define (bigger 1 n) (sized 1 n >))
(define (smaller 1 n) (sized 1 n <))

Does this work? What is the contract for sized!

20-21

Functions as Values

The definition

(define (bigger 1 n) (sized 1 n >))

works because functions are values

e 10 is a num
* falseisabool

*<isa (num num -> bool)

So the contract for sized is

list-of-nums num (num num -> bool)

7
; => list-of-nums

22-25

Sized Fish

sized : list-of-nums num (num num -> bool)
-> list-of-nums
define (sized 1 n COMP)
(cond
[(empty? 1) empty]
[(cons? 1)

(local [(define r
(sized (rest 1) n COMP))]

S~ Ne W

(cond
[(COMP (first 1) n)
(cons (first 1) r)]

[else r]))]))

(define (tiny 1) (sized 1 2 <))
(define (medium 1) (sized 1 5 =))

26

Sized Fish

; sized : list-of-nums num (num num -> bool)
s => list-of-nums
(define (sized 1 n COMP)
(cond
[(empty? 1) empty]
[(cons? 1)
(local [(define r
(sized (rest 1) n COMP))]
(cond
[(COMP (first 1) n)
(cons (first 1) r)]

[else r]))]))

How about all fish between 3 and 7 |bs!?

27

Mediumish Fish

s btw-3-and-7 : num num -> bool
(define (btw-3-and-7 a ignored-zero)
(and (>= a 3)
(<= aT7)))

(define (mediumish 1) (sized 1 0 btw-3-and-7))

* Programmer-defined functions are values, too

* Note that the contract of btw-3-and-7 matches
the kind expected by sized

But the ignored 0 suggests a simplification of sized...

28-30

A Generic Number Filter

filter-nums : (num -> bool) list-of-num
-> list-of-num
(define (filter-nums PRED 1)
(cond
[(empty? 1) empty]
[(cons? 1)

(local [(define r
(filter-nums PRED (rest 1)))]

we W

(cond
[(PRED (first 1))
(cons (first 1) r)]

[else r]))]))

(define (btw-3&7 n) (and (>= n 3) (<= n 7)))
(define (mediumish 1) (filter-nums btw-3&7 1))

31-32

Big and Huge Fish, Again

(define (more-than-5 n)
(> n 5))

(define (big 1)
(filter-nums more-than-5 1))

(define (more-than-10 n)
(> n 10))
(define (huge 1)
(filter-nums more-than-10 1))

The more-than-5 and more-than-10 functions
are really only useful to big and huge

We could make them local to clarify...

33-34

Big and Huge Fish, Improved

(define (big 1)
(local [(define (more-than-5 n)
(> n 5))]
(filter-nums more-than-5 1)))

(define (huge 1)
(local [(define (more-than-10 n)
(> n 10))]
(filter-nums more-than-10 1)))

Cut and paste alert!

You don’t think | typed that twice, do you!?

35-36

Big and Huge Fish, Generalized

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(>nm))]
(filter-nums more-than-m 1)))

(define (big 1) (bigger-than 1 5))
(define (huge 1) (bigger-than 1 10))

37

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(>nm))]
(filter-nums more-than-m 1)))
(define (big 1) (bigger-than 1 5))
(big (7 4 9))
(huge '(7 4 9))

—)

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(>nm))]
(filter-nums more-than-m 1)))

igigger—than (7 4 9) 5)
(huge '(7 4 9))

38-39

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(>nm))]
(filter-nums more-than-m 1)))

igigger—than (7 4 9) 5)
(huge '(7 4 9))

_’
2i;cal [(define (more-than-m n)
(> n 5))]

(filter-nums more-than-m '(7 4 9)))
(huge '(7 4 9))

40-41

Big Example

ii;cal [(define (more-than-m n)
(> n 35))]
(filter-nums more-than-m '(7 4 9)))
(huge '(7 4 9))

_’
(define (more-than-m42 n)
(> n 5))

(filter-nums more-than-m42 '(7 4 9))
(huge '(7 4 9))

42-43

Big Example

(define (more-than-m42 n)

(> n 5))
(filter-nums more-than-m42 '(7 4 9))
(huge '(7 4 9))

_>

iééfine (more-than-m42 n)
(> n 5))

(7 9)

(huge '(7 4 9))

after many steps

44-45

Big Example

(define (more-than-m42 n)
(> n 5))

'(7°9)

(huge '(7 4 9))

—

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(> nm)]
(filter-nums more-than-m 1)))

(define (more-than-m42 n)
(> n 5))

(7 9)

(bigger-than '(7 4 9) 10)

46-47

Big Example

(define (bigger-than 1 m)
(local [(define (more-than-m n)
(>nm))]
(filter-nums more-than-m 1)))

(define (more-than-m42 n)
(> n 5))

(7 9)

(bigger-than '(7 4 9) 10)

—

(define (more-than-m42 n)

(> n 5))
(7 9)
(local [(define (more-than-m n)
(> n 10))]

(filter-nums more-than-m '(7 4 9)))

48-49

Big Example

(define (more-than-m42 n)
(> n 5))
'(7°9)
(local [(define (more-than-m n)
(> n 10))]
(filter-nums more-than-m '(7 4 9)))

-

(define (more-than-m42 n)
(> n 5))
(7 9)
(define (more-than-m79 n)
(> n 10))
(filter-nums more-than-m79 '(7 4 9))

Etc.

50-51

Abstraction

* Avoiding cut and paste is abstraction

* No real programming task succeeds without it

You will lose points after HW 6 for cut-and-paste code

52

