CS 1410 — Computer Science |
Section 20

Fall 2010

Instructor: Matthew Flatt

Course Details

* Everything is in the course web page:

http://www.eng.utah.edu/~cs1410-20/

* The starting book is online:

How to Design Programs, Second Edition

Felleisen, Findler, Flatt, Krishnamurthi
http://www.ccs.neu.edu/home/matthias/HtDP2e/index.html

* Assignments use DrRacket:

http://racket-lang.org/

Things You Need to Do

* Read the course syllabus

* Subscribe to ¢s1410-20@1list.eng.utah.edu

© See the course web page for instructions

* Go to lab on Thursday

* Complete HW 0
© On the course schedule page

© Maybe mostly in lab

Getting Started:

Arithmetic, Algebra, and Computing

Arithmetic is Computing

* Fixed, pre-defined rules for primitive operators:
2+3=5
4x2=8
cos(0) = |

Arithmetic is Computing

* Fixed, pre-defined rules for primitive operators:
2+3—25
4x2—8

cos(0) — |

Arithmetic is Computing

* Fixed, pre-defined rules for primitive operators:
2+3—25
4x2—8

cos(0) — |

* Rules for combining other rules:

O Evaluate sub-expressions first

4% (2+3) = 4x5— 20

Arithmetic is Computing

* Fixed, pre-defined rules for primitive operators:
2+3—25
4x2—8

cos(0) — |

* Rules for combining other rules:
O Evaluate sub-expressions first
4x2+3)>4x5-120
© Precedence determines subexpressions:

4+2x3—24+6—10

Algebra as Computing

o Definition:
f(x) = cos(x) + 2
© Expression:

f(0) = cos(0) +2 = | +2 = 3

Algebra as Computing

o Definition:
f(x) = cos(x) + 2
© Expression:

f(0) = cos(0) +2 = | +2 = 3

First step uses the substitution rule for functions

10

Racket Expression Notation

* Put all operators at the front
* Start every operation with an open parenthesis
* Put a close parenthesis after the last argument

* Never add extra parentheses

Old New
| +2 (+ 1 2)
4+ %3 (+ 4 (* 2 3))

cos(0) + | (+ (cos 0) 1)

11

Racket Definition Notation

* Use define instead of =
* Put define at the front, and group with parentheses

* Move open parenthesis from after function name to before

old New
f(x) = cos(x) + 2 (define (f x) (+ (cos x) 2))

12

Racket Definition Notation

Use define instead of =
Put define at the front, and group with parentheses

Move open parenthesis from after function name to before

old New
f(x) = cos(x) + 2 (define (f x) (+ (cos x) 2))

Move open parenthesis in function calls

Oid New
f(0) (£ 0)
f(2+3) (f (+ 2 3))

13

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(£ 0)

14

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)
— (+ (cos 0) 2)

15

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)
— (+ (cos 0) 2)
- (+ 1 2)

16

Evaluation is the Same as Before

(define (f x) (+ (cos x) 2))

(f 0)

— (+ (cos 0) 2)
- (+ 1 2)

— 3

17

Booleans

Numbers are not the only kind of value:

Oid New
| <2 — true (< 1 2) = true
| >2 — true (> 1 2) » false
| >2 — true (> 1 2) = false

2 > 2 — true (>= 1 2) = true

18

Oild
true and false

true or false

| <2and2 >3
| <Oand | = |
| =0

Booleans

New
(and true false)

(or true false)

(and (< 1 2) (> 2 3))
(or (<= 1 0) (=1 1))

(not (= 1 0))

19

Strings

(string=? "apple" "apple") — true

(string=? "apple"” "banana") — false

(string-append "up” "on") = "upon”

(String—append llall llbll llcll) _’ llabcll

(string-length "hippopotamus"”) — 12

20

Images

(image=? L@J Lw‘)

— true

(overlay l@‘ 0) — @

(image-width 0)

(circle 10 "solid"

(overlay
(circle 10 "solid"

— 88

llredll) _’.

llredll)

(rectangle 30 40 "solid" "blue")) —'.

21

Functions on Images

(define (roll img)
(beside img
(rotate 90 img)
(rotate 180 img)
(rotate 270 img)))

- U, - UDAG

22

Defining Constants

Use define and name without parentheses around
name to define a constant:

(define upside-down-u

(rotate 180 @))

23

Defining Constants

Use define and name without parentheses around
name to define a constant:

(define upside-down-u

(rotate 180 lL_@_)J))

Use the name without parentheses:

(beside upside-down-u
upside-down-u) —

nn

24

(maybe-wanted

(maybe-wanted

Conditionals

WANTED

25

Conditionals in Algebra

General format of conditionals in algebra:

answer question
{ answer question
Example:
X if x>0
abs(x) = { -X otherwise
abs(10) = 10

abs(-7) =7

26

Conditionals in Racket

(cond
[question answer]

[question answer])

* Any number of cond “lines”

* Each line has one question expression and one answer
expression

27

Conditionals in Racket

(cond
[question answer]

[question answer])

* Any number of cond “lines”

* Each line has one question expression and one answer
expression

(define (absolute x)
(cond
[(> x 0) x]
[else (- x)]))

(absolute 10) — 10

(absolute -7) @ 7

28

Conditionals

(define (maybe-wanted who wanted-who)
(cond
[(lmage=? who wanted-who)
(above (text "WANTED" 32 "black") who)]
[else
who]))

29

Conditionals

(define (maybe-wanted who wanted-who)
(cond
[(lmage=? who wanted-who)
(above (text "WANTED" 32 "black") who)]
[else
who]))

WANTED

(maybe-wanted

30

Conditionals

(define (maybe-wanted who wanted-who)
(cond
[(lmage=? who wanted-who)
(above (text "WANTED" 32 "black") who)]
[else
who]))

(maybe-wanted

31

