The Numerical Solution of Some Important
Transmission-Line Problems

HARRY E. GREEN

Abstract—The generalized numerical solution of Laplace’s
equation in two dimensions is dealt with, subject to boundary condi-
tions imposed by conducting surfaces and dielectrics which are per-
mitted a limited amount of inhomogeneity. It is shown how this solu-
tion may be applied in the determination of the properties of TEM-
mode transmission lines including the equivalent circuits of simple
obstacles in these lines. The theory is illustrated with a number of
examples, certain of which do not appear to have been previously
treated theoretically in the literature. While certain of the examples
serve mainly to show the power of the technique, others are given
very detailed treatment with the production of much new design
data.

I. INTRODUCTION
T\\"O IMPORTANT CLASSES of problems in

transmission-line engineering, each requiring the
solution of Laplace’s equation, will be treated.
The aims of the paper are:

1) To outline these problems,

2) To present the mathematical theory for their
numerical analysis,

3) To summarize the numerical analysis procedures
and their use in constructing a computer program

4) To give an extensive collection of important engi-
neering results that have been obtained.

The first class of problem is concerned with the
determination of the characteristic impedance and
propagation constant of TEM-mode transmission lines.
For engineering exploitation an accurate knowledge of
the basic parameters of these lines is necessary. Because
the mode is TEM, having components of neither the
electrical nor the magnetic fields in the direction of
propagation, the determination of these constants re-
quires a study of the fields only over the line cross
section, within which they must obey Laplace's equation
and the imposed boundary conditions.

The second tvpe of problem considers the outcome
when the longitudinal uniformity of a TEM mode line
is interrupted by the insertion of an obstacle. The
regions of inhomogeneous field so generated can often
be represented by equivalent circuits referred to suit-
ably chosen reference planes enclosing the obstacle. In
certain special but important cases, the parameters of
these equivalent circuits can be found by solution of
the Laplace equation within the inhomogeneous region.
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Despite the success of modern analysis there remain
many problems of engineering importance of both types
which either were left unsolved or were treated approxi-
mately and with varying success. This is particularly
true where not only do the boundary conditions imposed
by the conductors have to be taken into account but
also, additional constraints are imposed by the presence
of an inhomogeneous dielectric medium. The numerical
techniques that form the subject of this paper must then
be employed.

II. THEORY
A. Numerical Analysis Theory

It must be made clear from the outset that this work
is concerned exclusively with two-dimensional systems
whose boundaries can be represented as a series of con-
stant coordinate curves in either

1) Cartesian coordinates, or
2) cvlindrical coordinates, with "the restriction of
rotational symmetry

In each case a special kind of inhomogeneity in the di-
electric medium will be permitted. That is, two di-
electrics may be present, one of which is free’space, and
the whole dielectric is considered to be made up by the
juxtaposition of discrete blocks of these dielectrics, i.e.,
the inhomogeneities are stepwise. “Dielectric,” will be
dehned, hereafter, to mean the nonfree space portion.

Cartesian problems require the solution of the
equation
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while in cvlindrical coordinates the following equation
must be solved:
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The numerical solutions of both these equations have
much in common and it will suffice here to develop the
argument for the Cartesian case only. The treatment of
cvlindrical problems is given in Appendix A.

Consider the two-dimensional problem shown in Fig.
1. For the present, some generality may be sacrificed
without essential loss to the outline of the theory by
considering the medium between the conductors to be
homogeneous. Details of the treatment of inhomogene-
ous media appear in Appendix B. Imagine the region

lEEE Tam W\'ﬂ‘@‘ﬁ(og Seot lw‘;(og/



CONDUCTING SURFACES

o~ / TN
L . A
\
) 4
Y
Z
{ \
P
\\ 4 X
N [
N I /
\\ e | S I T
P e =
SQUARE GRID
o]
(-9
Ae 2 o —d
[
c
a -~
Fig. 1. Basic fAnite difference net.

between the conductors to be divided into squares by
2 net of interlaced rows and columns. Although the

;ure shows the conductors falling along these rows and
columns this is not an essential element in the theory.
However, for the purpose of organizing the problem on
a computing machine it is much easier if this is the case;
this restriction has been voluntarily imposed throughout
this work.

Consider a typical point P in the medium between the
conductors. The potential at £ must satisfy (1). For nu-
merical computation, this equation can be reduced by
considering it in terms of the potential at P and its four
immediate neighbors, distant by the mesh width a in
each of the coordinate directions. Then applying Tay-
lor's theorem in the X direction.
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i.e., an approximation has been obtained to the second
derivative, accurate within the order a2, and which can
be arbitrarily refined by decreasing the mesh width.
The same argument may be applied in the ¥ direction.
Combining this with (3), (1) for P reduces to

Va+ Ve +Ve+Vp—4Vp =10 4)

and this may be extended to every other point in the
medium. For nodes on the conducting boundaries by
definition

Vp = Vo (5)

where V, is the boundary potential.

The original problem, therefore, was replaced by one
which gives an approximate representation in terms of
simultaneous linear equations, i.e., a complex analytic
problem was reduced to solving simultaneous equations.

B. The Solution of Large Groups of
Simultaneous Equations

Although the problem undoubtedly has been simpli-
fied it is not all gain since an adequate representation of
the original problem demands a large group of simul-
taneous equations which need special techniques for
solution, i.e., the basic problem now is one of coping
with the large amount of arithmetic involved.

Solution by digital computer has been receiving much
attention during the last ten years and is now the
subject of a large and increasing volume of literature [1].
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Of the many possible processes for the solution of the
simultaneous equations arising in the finite difference
treatment of partial differential equations, the one
which seems best suited to a digital machine is succes-
sive over-relaxation (SOR). This has the advantages of

1) involving only the constant repetition of a small
group of machine orders,

2) allowing the data relating to substantially large
problems to be retained entirely in core, and

3) being terminable when any desired degree of
accuracy has been attained. This is important
since it is fruitless to solve what is, after all, only
an approximation to the actual problem to an
accuracy greater than that of the approximation.

SOR may be defined as the relaxation cycle [2],

Vicony = Vigy — { 2 Vi, — n‘} , (6)
k=1

whereby a gradually improving solution is obtained to
the simultaneous equations written in matrix form as

AV=B

where

ax, Vi b; are elements of the matrices 4, V, B,
respectively,

7 measures the number of iteration cycles,

n is the number of simultaneous equations, and

Q is the accelerating factor.

{he method is convergent if 0 <2 <2, and most rapidly
convergent for some Q, between 1 and 2.

For cfficient computation the crux of the problem is to
determine the optimum accelerating factor Qy. Frankel
[3] showed that this is dependent upon the largest
eigenvalue of a certain matrix derived from .4 and itself
dependent on Q. In general, then, except in the most
trivial cases, it is just as difficult to solve for Q, as to
do the actual problem. and it is generally not possible
to start the computation with a knowledge of this
parameter.

This dithculty was overcome by Carré [4] who de-
vised a method of determining Q, with steadily improv-
ing accuracy as the calculation proceeds.! While obvi-
ously not as fast as optimum SOR, it still saves consider-
able time when compared with other possible methods.
Carré's paper is also important in that in it he gives a
method for estimating an upper bound on the largest
remaining error after any complete iteration cvcle. This
may be used as a terminating criterion.

! In the solution of a few cylindrical coordinate problems, some
difficulty has been experienced by early estimates of accelerating
factor being greater than two. The difficulty was overcome by setting
a ceiling value of 1.935 on this factor. This ear]\ instability soon dis-
appears and a close approximation to the optxmum (o is ulumatel\

‘und. An explanation of this anomalous behavior is given in [5].
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C. Determination of Transmission-Line Constants

The way is open to compute the constants of trans.
mission lines if a nodal potential distribution is known.
Capacity is the first constant sought and for some pur-
poses, e.g., equivalent circuits of discontinuities, this is
also the final result.

To obtain capacity it is prerequisite to determine the
charges on the conductors. These may be found by
Gauss theorem [6], requiring the integration of the
normal component of electric displacement over a
surface enclosing the conductor. Forming this surface
by lines joining nodal points drawn parallel to the co-
ordinate directions, as shown in Fig. 2, at any point P
on this surface

oV
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on

where

D, is thc normal component of displacement,
E, is the normal component of electric intensity, and
n is the normal coordinate.

By the same Taylor expansion as used earlier the deriva-
tive of the potential at P may be expressed numerically
in terms of the known potentials of the nodes 4 and B
on each side of it, with an error in the order of a?, as

1% Ve — Va4
— . ®)
on 2a

It 1s now easy to apply Gauss' theorem. Thus, if the
surface containing the conductor consists of s straight
line segments each containing r nodes, the charge per
unit length normal to the cross-section is given by

0=aX ¥

( ) 9
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where the symbol . is used to indicate that the first
and last terms in the summation are halved. This is seen
to be equivalent to integration by the trapezoidal rule,
known to involve a dominant error in the order a2, and
is therefore consistent with the whole finite difference
process.
From charge capacity it follows that
C =0V (10)
where 17 is the potential difference between the conduc-
tors. Given capacity, characteristic impedance follows
without difficulty, although two cases need to be dis-
tinguished. If the medium within the line is homogeneous,

1
Zy=—

Cv (1)
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where

v=109/v/K, is the phase velocity in the medium

vy = the velocity of light in free space
(2.997925 X 10* m,’s), and

K =the dielectric constant of the medium.

If the medium is inhomogcneous, two steps are neces-
sary: the capacity is determined twice, once with all di-
electrics removed. and then with them present. Since
inductance per unit length is not altered by the intro-
duction of the dielectric (assuming, of course, that it is
nonmagnetic) it follows that

1
20v/CCo

(12)

where

Cy 1s the capacity without dielectrics,
C is the capacity with dielectrics present,

and that the phase velocity in the line is

Co

i Vi (13)

It must be noted that this simple argument is not
flawless. It is not difficult to see that a line having a

Integration to determine charge.

discontinuous medium over its cross section cannot sup-
port a pure TEM wave. However, the error in assuming
that it can, although frequency dependent, is usually
minute, not amounting to more than a fraction of a per
cent at frequencies of several Ge/s. A further discussion
is given in Marcuvitz [7] and Griemsmann [8].

D. Improving the Solution by extrapolation

Southwell [9], considering hand-relaxation methods
seems the first Lo postulate the idea of “advancing to a
finer net” in order to speed computation. In this method,
the computation is commenced on a coarse net using any
assumed starting solution. (The computer program
starts by assuming that all interior nodes are at zero
potential.) The answers thus obtained are used as a
starting point for solution on a more refined net, and so
on. as required. This process may be equally well em-
ployed in a digital machine with the same consequent
saving of time, but more than this simple advantage
results.

Based upon earlier work by Richardson [10], Culver
[11] showed that the solution obtained from increas-
ingly fine nets may be combined to extrapolate a more
accurate solution. Defining the “mesh number” as the
number of net widths abutting some defining dimen-
sions, say the side ST, in Fig. 1, then given solutions C;,
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C,, and C; for the capacity at mesh numbers 7,, #s, and
ny (n1>n2>ns), a better solution is
C = b3Cy — b:C2 + 5iCh (14)
*here
by = m*(n? — na?)/D
by = nat(nst — ms®)/D
by = nst(ng? — 1%/ D

D = n2ng2(ns® — 1) — nng?(ns® — 11%) + ngtnst(ng? — na?),

provided that the approach of these solutions to the limit
is monotonic. To test monotonic convergence one com-
putes the ratio
R = a:.Cs — a,Cy (15)
a3C3
where
ay = 1112(1132 - 1122)

no2(ns? — n1%)

Q
»
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n32(ng® — my?).
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For true monotonic convergence R is unity and in prac-
tice its closeness to unity gives a measure of the “good-
ness” of the extrapolation.

E. Determining the dccuracy of a Numerical Solution

Having found a numerical solution, it is important to

gain some idea of its accuracy. There does not, however,
appear to be any purely theoretical way of doing this.
“he most positive way of making an estimate appears
to be a numerical development of a problem having a
known analytic solution, and one resembling the actual
problem as closely as possible, using in each case a com-
parable number of nodes. Estimates of accuracy made
in this way have suggested rhat with three- to four-
thousand nodal points, errors as low as one part in 104
can be obtained in computing times not exceeding two
to three minutes. As far as characteristic impedance is
concerned this is an order or so better than allowed by
normal constructional and dielectric tolerances.

F. Programming Aspects

It is now profitable to consider a few of the program-
ming aspects. In the work that forms the subject of this
paper it proved possible to solve problems involving up
to 15 000 simultaneous equations using an IBM 7090
machine. Clearly, to use this potential to advantage, it
is vital that individual problems be presented to the
machine in such a way as to require a minimum of
effort from the operator.

Ideally, if given a deck of data cards defining the
geometry of the problem, the machine should be able
to set up its own system of simultaneous equations, to
solve them, to automatically advance to a finer net if so
desired, to extrapolate the individual solutions, and to
yrint out answers in a readily interpreted format. This
problem of program organization proved to be more of

~

a test than the mathematics; however, it is a rare prob-
lem that cannot be completely solved, using no more
than twenty data cards. It is not appropriate to give de-
tails here of how these data cards are written but the
interested reader may consult Green [12].

After processing by the machine, in addition to the
print-out of charge and capacity, the facility for print-
out of the computed nodal potentials is also available
on demand. This is useful when it is necessary to see
whether the problem has been adequately represented
by the finite difference model or where a knowledge of
the field itself is desirable.

III. A SELECTION OF SOLVED PROBLEMS

The program just described was employed in the nu-
merical solution of a large number of transmission-line
problems, leading to the production of much useful
data. Some of these results have been published [13],
[14] but many of considerable importance will be pre-
sented in this section. Initially, attention will be given
to characteristic impedance determination, but later
subsections will discuss the equivalent circuits of a
selection of simple obstacles.

A. Shielded Stripline

Stripline consists basically of an inner conductor
centrally placed between two plates or ground planes
having a width much greater than their spacing. Inaform
frequently used it has an inner conductor consisting of
two thin strips of copper (typically about 0.006 inch
thick) formed to the desired width on each of the two
faces of a supporting dielectric board that spans the
width of the ground planes. In some applications, (such
as directional couplers [15]) a solid rectangular inner
conductor is used whereas in others, a dielectric support
strip with the dielectric not protruding bevond the
edges was substituted. Figure 3 shows these basic
cross sections.

Various attempts have been made to obtain analytic
solutions to this problem. In all cases the assumption
was made that the ground planes are of infinite width
and justified by the fact that the rapid exponential de-
cay sideways of the field allows this idealized model to
simulate practical cases with small error. Although this
is a good approximation it is not necessary in a numeri-
cal solution, and in practical strip-line circuits it is often
desired to close the ends of the cross section with metal
plates.

For the strip configuration no direct analytic solution
that includes the dielectric board has thus far been pub-
lished [16]; two thin and unsupported strips were usu-
ally considered [17]. For the solid inner-bar configura-
tion, Collin’s variational solution [18], rather involved
for numerical computation, or Getsinger's curves [19]
may be used. In this section numerical solutions to these
problems will be given and it will be shown that when
the dielectric board extends beyond the inner conductors
its neglect involves significant errors.
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TABLE 1
N UMERICAL DATA ON SHIELDED STRIP-LINE
= !
! . . s Partial Dielectric .
Surip i Full Dielectric Support [Fig. 3(a)] Support [Fig. 3(b)] Inggll'l%ar
) idth Tefion Rexolite 2200 Air Rexolite 2200 [Fig. 3(c)l
{ Char. Imp.! Vel. Rat. | Char. Imp.| Vel. Rat. Char. Input| Vel. Rat. jChar. Input| Vel. Rat. | Char. Imp.
0.1250 79.03
0.1563 .
0.1875 65.27
0.2188 58.75 0.9506 57.38 0.9285 61.81 1.000
0.2500 54.48 0.9540 53.29 0.9332 57.11 1.000 35.62
0.2813 [ 50.79 0.9569 49.74 0.9372 53.07 1.000 53.12 0.9995
0.3123 I YY) 0.9594 46.43 0.9407 49.58 1.000 48.47
0.3438 oL 0.9617 43.89 0.9348 46.30 1.000
0.3750 | 42.95
Note:
1. All characreristic impedances are expressed in chms.
2. Phase velocity ratio is given with respect to light in free space (2.997925X10® m/s).
The leading dimensions of the cross sections analyzed TABLE 11
numerically are shown in Fig. 3. Various strip widths DATA FOR 50-ORM STRIP-LINE CONSTRUCTION
; -eighth 1 and three-eighths inch have
between one-eighth inch and three-eig . Type of Line Reference | Strip Width| Velocity
been examined, the principal aim being to determine the ) Figure (Inch) Ratio
t i 5 haracteristic im-
width necessary to give 30-ohms characteristic Tefion support Fig. 3a) 0. 289 0.9380
pedance and, in the case of sections containing dielec-  Rexolite 2200 support Fig. 3(a) 0.279 0.9369
_ Thin unsupported strips Fig. 3(a) 0.309 1.0000
trice, to find the corresponding phase velocity. Sym Solid immer bar p! Y e 0-Sos Lo

metry allows treatment of a quarter of the cross section.
Two dielectric constants corresponding to Teflon (2.03)
and Rexolite 2200 (2.65) were used. The results ob-
~ tained are summarized in Table I. Table IT gives data
interpolated for 50-ohm line construction.
To test the accuracy of the results, solutions were
worked out from analvtic formulas for two thin unsup-
‘ted strips, and a solid inner bar. For the first of these
« .eck problems Cohn's [17] formula was used. This is

based on a Schwarz-Christoffel conformal transformation
solution for ground planes of infinite width and involves
an approximation, thought to be accurate to within 0.1
per cent for the test case (w=9/32 inch) chousen, which
removes one vertex from the path of integration. Cohn's
formula gives a characteristic impedance of 53.40 ohms;
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comparison with the corresponding entry in Table I
shows agreement within 0.6 per cent. As an estimate of
error this will be a little pessimistic since the effect of
side walls, neglected in the analytic solution, will be to
slightly decrease the line impedance.

Since the error would probably not be significantly
altered when the dielectric card is present, this same
error would be expected in the computed impedances
with both Teflon and Rexolite 2200. The error in the
velocity ratio should, however, be much smaller as this
involves the quotient of two nearly equal quantities
having approximately the same error. For Rexolite
supported line a precise experimental measurement has
been made of the velocity ratio [14] which_was found
toagree with the computed value to within 0.3 per cent.
The discrepancy can be easily accounted for by toler-
ances, particularly on the dielectric constant, and the
neglect of the finite thickness (about 0.006 inch) of the
strips.

For the solid inner bar, upper and lower bounds on

“e characteristic impedance were computed from Col-
.n’s[18] formulas for a bar width of 5/16 inch, and found

to be 49.632 and 47.266 ohms, respectively. It will be
seen that the numerical solution lies between these
bounds and agrees with their mean within 0.04 per cent,
a good agreement. This case was not checked experimen-
tally.

To perform experimental work on stripline compo-
nents without the need of coaxial-to-stripline transitions
there is much to be said for having a slotted section
available. The probe may be introduced along either of
the axes of symmetry of the line; an apparatus in which
it enters from the side has been described by Cohn [20].
Alternatively a slot may be cut in the center of the
ground planes; this is less demanding mechanically since
the probe is then inserted in a region of the field where
the electric intensity vector has little or no component
transverse to it. If the wall thickness of the ground plane
is adequate, little slot leakage will result, but some com-
pensation to the width of the center strip is obviously
necessary if the characteristic impedance is to be main-
tained constant.

The slotted cross section shown in Fig. 4(a) was
studied with the aid of the computer. Since the line is
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no longer completely closed one of the boundary condi-
tions to be met is that the potential at infinity is zero.
While the application of numerical methods to un-
bounded fields will be considered in greater detail in the
next section, it is satisfactory to say in the present in-
‘stance that this is met with sufficient approximation by
considering the slot to couple into a large conducting
box straddling the slotted ground plane. Assuming
Rexolite 2200 as the dielectric support material a strip
width of 0.286 inch was found necessary to maintain
50 ohms characteristic impedance. This represents an
.ncrease in width of 0.007 inch over that in the absence
of the slot. The corresponding velocity ratio was found
to be 0.9360.

Since the field variation through the slot is clearly of
some interest Fig. 4(b) shows an equipotential diagram
for a slotted section having a 9/32-inch center strip. The
very closely exponential decay of the field along the slot
center line 1s most noticeable, indicating negligible
leakage.

B. Microstrip Transmission Line

In- recent years a new form of TEM-mode trans-
mission line, known as microstrip and shown in cross
section in Fig. 5, has come into use [21]. Although it is_
mechanically very simple, mathematical analysis [22]
is extremely difficult even with simplifying assumptions
and most of the data available has been determined ex-
perimentally. This problem can however be handled
relatively simply by numerical means.

It will be observed from Fig. 5 that this is an un-
bounded problem, i.e., the electric field is not confined
within a finite region between the conductors, so that
one of the boundary conditions which must be incor-
porated is that the potential at infinity is zero. The
method of approximating this is by imagining the prob-
lem to be enclosed in a conducting screen of dimensions
lurge compared with the cross section of the line. It will
be noted, also, that this is a problem involving a mixed
dielectric.

Figure 6 shows plots of characteristic impedance and
velocity ratio for a line with a PTFE dielectric (assumed
relative permittivity 2.05) and where the width of the
top strip remains small compared with that of the
ground plane. An analysis of the effect of the screening
enclosure is given in Green [5] and for characteristic
impedance the results are estimated to be in error
by not more than one ohm in the range covered by
Fig. 5.

C. Steps in Coaxial Line

1) Single Steps in One Conductor Only: One of the
most important applications of the program has been
in the cxamination of the parameters of the equivalent
rircuits of certain simple transmission-line obstacles

:nerated in the construction of bead supports, butt
transitions, filters etc. This work has been confined to
coaxial systems including, as a. limiting case, parallel
plate lines. '

GREEN: NUMERICAL SOLUTION OF TRANSMISSION-LINE PROBLEMS
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One of the most commonly occurring interruptions to
the longitudinal continuity of a coaxial line is the abrupt
step in either the inner or outer conductor of the line
(Fig. 7). It was shown by Whinnery, Jamieson, and
Robbins [23] that this type of obstacle can be repre-
sented by a shunt discontinuity capacity at the plane of
the step, and that this capacity is invariant with fre-
quency if the dimensions of the line cross section remain
small fractions of the wavelength of excitation. In most
coaxial line applications this is the case. An analytic de-
termination of this capacity was attempted with success.

For the parallel plate line a formula was obtained by
conformal transformation [24]. For coaxial lines the
conformal transformation procedure is not applicable
but the problem can be attacked by the mode-matching
method in which the fields on each side of the junction
are expanded in an infinite series of modes matched
across the boundary to preserve continuity, This was
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TABLE III
DiscoNTINUITY CAPACITY IN COAXIAL LINE

Step in Inner Conductor Step in Quter Conductor

) T=1 | T=3 T=6 T=11 | T=ew T=1 T=3 T=6 T=11

0.1 0.10864 0.11072 0.11308 0.11524 0.13633 0.10864 0.11264 0.11248 0.13848
0.2 0.06977 0.07209 0.07434 0.07642 0.09630 0.06977 0.07377 0.08196 0.09503
0.3 0.04779 0.04975 0.05184 0.05379 0.07298 0.04779 0.05108 0.05763 0.06788
0.4 0.03291 0.03456 0.03643 0.03821 0.05643 0.03291 0.03545 0.04054 0.04831
0.5 0.02212 0.02343 0.02504 0.02001 0.04355 0.02212 0.02400 0.02773 0.03333
0.6 0.01408 0.01507 0.01635 0.01765 0.03298 0.01408 0.01537 0.01792 0.02168
0.7 0.00810 0.00877 0.00969 0.01069 0.02399 0.00810 0.00887 0.01064 0.01271
0.8 0.00382 0.00420 0.00475 0.00539 0.01612 0.00382 0.00418 0.00498 0.00610
0.9 0.00110 0.00123 0.00143 0.00170 0.0089S | 0.00110 0.00115 0.00143 0.00178
1.0 : 0.00000 0.00000 0.00000 0.00000 0.00000 @ 0.00000 0.00000 0.00000 0.00000

Note:

Discontinuity capacities are given in pF/cm of circumference.

the approach used by Whinnery and his coworkers in
1944 and although theirs has been virtually the only
data available in that time their paper suffers from two
deficiencies that this new determination removes, viz.,

a) they do not consider diameter ratios beyond 5,
inadequate to meet many needs, and

they published their answers as rather small
difficult-to-read graphs. In scaling these up for
publication in handbooks, often it seems by re-
drafting, considerable reproduction errors have
occurred, causing values taken from various books
to differ by several per cent.

b)

Discontinuity capacity can be computed numerically
vy noting that it is equal to the difference between the

total capacity of a line section including a step, and that
computed by adding the contributions of two single un-
perturbed lines with cross-sectional dimensions and
lengths equal to the actual lines on each side of the
step. In setting up a model on a digital computer the
observed fact that the inhomogencous ficlds do not ex-
tend bevond the step that generates them by more than
a diameter of the outer conductor may be used to limit
the volume over which capacity must be calculated.
The line may therefore be terminated by magnetic con-
ductors one diameter each side of the step yet fully
include its effects.

This problem was run on the machine to give the dis-
continuity capacities per unit circumferential length
shown in Table III. Diameter ratios to 11 are considered.



As-a guide to the accuracy of the data the discontinuity
capacities obtained numerically for the limiting case of
parallel plate lines were compared with the conformal
transformation solutions. The agreement was found to
be very good, the average correspondence being 0.4 per

=nt with an error exceeding one per cent only for the
case where the capacity is smallest.

This method of computation can be attacked as in-
efficient sinc¢e it demands the calculation of the total
capacity to great accuracy to obtain an adequately small
error in the discontinuity capacity (typically only a few
percent of the total). While this is true, the computa-
tion time for the data presented in Table 111 averaged
no more than two minutes per point.

2) Steps in Both Conductors Simultaneously: In some
applications, such as a bead support required to restrain
the inner conductor against axial displacement, it is
necessary to undercut the inner conductor and overcut
the outer conductor at the same reference plane to pro-
duce a doubly opening out discontinuity. A circuit rep-
resentation of this double step by a single shunt capacity
is still legitimate but a problem arises in determining its
magnitude.”Although there is no general case and any
individual problem can be treated either analytically or
numerically, it is obviously desirable to be able to use the
data given in Table I11.

Consider the discontinuity shown in Fig. 8(a). In the
undisturbed field, regions R and S well away from the
step, the lines will be radial, and the potential in the
space between the inner and outer conductors will vary
logarithmically with radius. There will be a certain di-

aeter where the potentials in each of R and S are
equal. In terms of the notation of the figure this may
be determined readily as

[ d b
| log a log — — log ¢ log —
4

(16)

= log~!
d b

log — — log—

¢ a

or in the limiting case where the line has become a pair
of parallel plates [Fig. 8(b)]

be

= 17
PRI (17)

It is assumed that this equipotential surface will con-
tinue through the region of inhomogeneity without sub-
stantial deviation from cylindrical form. The discon-
tinuity thus splits into two series-connected sections,
each of which may be estimated from Table TI1.

This assumption is obviously rigorous in certain limit-
ing cases and its general validity has been examined by
comparing results obtained using it with direct numeri-
cal computations. Table IV shows typical cases. It will
be seen that agreement is within ten per cent.

3) Proximity Effects between Neighboring Disconlinu-

s: Often, to anchor a support bead, for example,

CONTINUOUS EQUIPOTENTIAL
rsunn\cs .

OuTER com:uCTOQ\

R $

T L

d ¢ - - a r b

| —  —  °f

l

— INNER CONDUCTOR

(a)

/- UPPER CONDUCTOR
__________ - b
d _I__ //—i/f—wwsst CONDUCTOR
N I r

CONTINUOUS EQUIPOTENTIAL SURFACE

(b)

Fig. 8. Location of continuous equipotential . surface through
double discontinuity. (a) Double step in coaxial line. (b) Double
step in parallel plate line,

TABLE 1V

COMPARISON OF ACCURATE AND APPROXIMATE METHODS OF
ComrUTING A DoUBLY OPENING-OUT DiscoNTINUITY

DISCONTINUITY CAPACITY (pF)
TYPE OF LINE FieuRs ACCURATE | APPRONMATE
PARALLEL PLATE l e 2123 ol
J_“Fl_' |
CoAXIAL —HT_ 0597 0574
COAXIAL I ©-298 o200
6 e
IR
Note:

1) Dimensions are given in centimeters.
2) For the parallel plate line, capacity is given per centimeter
width normal to the section shown.
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Fig. 9. Proximity factor for double step in parallel plate line.

(a) Notation. (b) Proximity-factor curves.

TABLE V

CoMPARISON OF PROXIMITY FACTOR (P) FOR PARALLEL PLATE LINE
AND A “CORRESPONDING” COAXIAL LINE HAVING STEP RATIOS (a)
OF 0.5 AND VARIOUS PROXIMITY RaTIOS (8)

‘roximity Parallel Coaxial Line (T'=6)
' s ‘
Ratio Plate Line Inner Step Outer Step
0.0 0.000 0.000 0.000
0.2 0.604 0.586 0.587
0.4 0.873 0.858 0.859
0.6 0.969 0.960 0.960
0.8 0.996 0.991 0.991
1.0 1.000 1.000 1.000
Note

See Fig. 9 for notation.

double step discontinuities, such as shown in Fig. 9(a),
are created. If the distance between them is short the
fringing fields generated at the steps interact in such a
wayv as to decrease the effective discontinuity capacity
at each step from the value calculated in isolation. This
may be taken into account by multiplication with a
proximity factor P. :
Using the notation shown in Fig. 9, a reasonably ex-
tensive table of proximity factors has been computed
for neighboring discontinuities in parallel plate line and
these are shown in that figure. The error involved in
applving these to discontinuities in coaxial line—where
the radius of curvature of the conductors is no longer
infinite—has been investigated. “Corresponding” dis-
continuities in parallel plate and coaxial line having a
‘meter ratio of 6 are compared in Table V. It is evi-
aent that there is negligible difference to the proximity
factor whether the step is cut in the inner or outer con-
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Fig. 10. Series gap in coaxial line and equivalent circuit. (a) Series

gap in coaxial line. (b) Equivalent circuit of gap. (c) Circuit for
analysis.

ductors, and that the divergence from the parallel plate
case does not exceed three per cent.

D. Capacitive Gaps in Coaxial Lines

1) General Theory: A gap cut in the center conductor
of a coaxial line in a plane normal to its axis finds com-
mon use in microwave band-pass filter construction
where its essential purpose is to introduce series capaci-
tive coupling. However, between the reference planes
TT’ in Fig. 10(a) its complete representation requires
the 7 capacitive network shown in Fig. 10(b). For de-
sign purposes it is necessary to know both the series and
shunt arms of the equivalent network. For gap and line
cross-sectional dimensions which remain small com-
pared with the wavelength, this may be treated as an
electrostatic problem and may be solved as follows.

Consider the circuit shown in Fig. 10(c) in which a
length of coaxial line is terminated in “half-gap,” i.e., a
gap bisected by the plane AA midway between the
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TABLE VI
SERIES (C1) AND SHUNT (Ca) ARMS OF EQUIVALENT NETWORK FOR GAPS IN CoaxiaL LINE

Diameter Ratio

10:9 4:3 5:3 2:1

2.3:1

G Cy G G [« G

(] [ Cs Ci

0.00823
0.0120
0.0156
0.0221
0.0277
0.0327
0.0369

0.138

0.0046
0.0719
0.0474
0.0340
0.0254
0.0194

0.367
0238
0.173
0.106
0.0718
0.0516
0.0383

0.0354
0.0486
0.0598
0.0767
0.08%0
0.0985
0.106

0.0143
0.0206
0.0265
0.0366
0.0450
0.0520
0.0579

0.0116

0.00610{ 0.109
0.00803! 0.0757

0.00386
0.00566
0.00737
0.0t05
0.0133
0.0157
0.0178

0.00509
0.00746|
0.00972
0.0139
0.0176
0.0208
0.0235

0.0196

0.0111

0.00707
0.00822
0.00606
0.00461
0.00352

0.0578
0.0384
0.0277
0.0217
0.0161

N

ote:
Entries in this table are in pF/cm of outer conductor circumference.

reference planes TT’. Denoting the series and shunt
arms of the equivalent network of the total gap by C;
and Cs, if a perfect short circuiting plane is inserted at
AA then the line section is effectively terminated to
ground through a capacity 2Cy+ C,. If the short circuit-
ing plane is removed to be replaced by a perfect open
circuit (perfect magnetic conductor) then the line is
now terminated to ground through a capacity C,.

To compute these capacities the total capacity of a
length of line terminated alternately as just described is
calculated. To obtain valid answers the length must be
sufficient to ensure that the disturbance to the normally
purely radial electric field in the line has become insig-
nificant; some preliminary numerical calculations of the
potential distribution showed that a length equal to the
line diameter was sufficient to ensure this. In addition,
the capacity of an undisturbed section of line of this
same length is determined from the usual theory.
Simple arithmetic operations then suffice to deduce the
equivalent circuit parameters, an extensive collection of
which is given in Table VI.

2) Comparison of the Numerical Solution with Small
Aperture Theory: Marcuvitz [25], in treating a problem
related to that just given, found an approximate solu-
tion by using the small aperture technique. The geom-
etry of this probiem, consisting of a coaxial cavity closed
at one end with a conducting cover plate from which the
inner conductor is shorter by a gap of width s/2, is
shown in Fig. 11(a). In reference to the plane T, the
inner conductor is shown to be terminated to ground
through a capacitance [Fig. 11(b)]

b—a

wale

C= + 20eXIn (18)

2s

This formula is said to be valid under the restrictions
AD>b—a (19)
sKb—a (20)

and can be seen to consist of two distinct parts, a com-
ponent giving the parallel plate capacity between the
inner conductor and the cover plate and a “fringing”
term.

It will be realized that C is to be compared with the
sum 2Ci+C». Although a direct check is not possible
due to the approximate nature of (18) a useful compari-

|

H—— & ————>

(a)

——-

Zo

(b)

Marcuvitz problem. (a) Cavity with foreshortened

Fig. 11.
inner conductor. (b) Equivalent circuit.

son may be made. For the smallest gap ratio treated,
agreement is within two-and-a-half percent even for the
10:9-diameter-ratio case, which clearly violates in-
equality (20). This and the fact that the shunt com-
ponent must be zero at zero gap may be used to extend
the table to smaller gap widths than those listed.

E. Coaxial Bead Supports with Undercut. Faces

When a dielectric support bead is introduced into a
coaxial line it is necessary to cut into one or both of the
conducting surfaces to preserve continuity of charac-
teristic impedance through the bead. This in itself gen-
erates a further mismatch since, as was pointed out in
Section III-C, the introduction of a step into the con-
ducting surfaces of a coaxial line is electrically equiva-
lent to inserting a shunt capacity at the plane of the
step. Various schemes were developed for the broad-
band compensation of the mismatch and two of the
more effective ones are shown in Fig. 12. These schemes
have been studied empirically in great detail by Kraus
[26] but do not as yet appear to have been investigated
theoretically.

It will be assumed that the beads are sufficiently long
for their end regions to be considered isolated: the prob-
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(e)

Fig. 12. Compensation by contouring bead face. (a) Stepped inner
conductor. (b) Stepped outer conductor. (c) Equivalent circuit.

lem to be treated then is that of compensating the junc-
tion between two semi-infinite lines of equal charac-
teristic impedance. It is assumed that the transition
region may be represented by a'single shunt capacitor
at the plane of the step followed by a very short length
of unmatched transmission line, giving the cquivalent
circuit shown in Fig. 12(c). The object is to_determine
the cutout depth & in the dielectric so that the regions
between the reference planes 44 and BB will have a
zero frequency image impedance equal to that of the
adjoining transmission lines.

By terminating the lines with magnetic planes spaced
about a diameter on each side of the reference planes

e problem is readily handled numerically. The ma-
chine calculates the total capacity of the line and by
deduction of the capacities of the terminal lines (as-
sumed unperturbed) gives the net capacity C of the

1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES
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junction region (transmission line component plus dis-
continuity component) between A4 and BB. The zero-
frequency image impedance of the junction network is,

therefore,
. ya
Zio = ,‘/ -
C

where L=(6/27) In b/c is the inductance of the line be-
tween 44 and BB.

By computing Z,, for several values of § it is easy to
interpolate the depth which gives impedance con-
tinuity.” Table VII summarizes the conditions for
match in a-50-ohm line where the dielectric is Teflon
(K.=2.05) and Fig. 13 shows curves of junction per-
formance against frequency.

(21)

F. Butt Junctions in Coaxial Lines

A common requirement in coaxial systems is a low
VSWR connection between a line of one size and another
of the same characteristic impedance. This requirement
may arise, for example, iu the connection of test equip-
ment brought out to type “N” sockets to large rigid
coaxial cable runs.

Although a taper transition may be used this is
usually bulky and is relatively difficult to machine. A
possible alternative is the offset butt joint shown in
Fig. 14. The design requirement is to make the offset
between the steps in the inner and outer conductors
give sufficient inductance to compensate the excess
capacity of the inhomogeneous field region.

By electrostatic means it is not possible to compute
the individual discontinuity capacities occurring at each
end of the junction region, but it is relatively easy to
determine the total capacity of the junction. This is
sufficient for design even though it is not now, as was
the case with the bead support problem, possible to com-
pute the behavior of the transition with frequency.

The butt transition has been studied experimentally
by Kraus [27] who produced a series of excellent design
curves for lines of 50, 60, and 75 ohms in which the
dielectric medium in the transition region is air. In view
of this and the large number of possible combinations
of standard lines and common dielectric materials, it
has not been thought practical to attempt to provide
generalized data. The program may however be used to
advantage in individual problems, an example of which
will be given.

It was desired to construct a matched butt transition
in a 50-ohm line undergoing a 2:1 step in diameter, the
transition region to be filled throughout with Fluon
dielectric (K.=2.0). Leading dimensions are- shown in
Fig. 14. Offsets increasing in steps of 0.0075 inch from
0.015 inch to 0.060 inch were tried and the image im-
pedance of the transition computed in each case. By
interpolation it was found that an offset of 0.045 inch
preserves continuity of impedance. This transition was
constructed experimentally by Pyle [28] who obtained
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TABLE V11

DieLECTRIC BEAD COMPENSATED BY UNDERCUTTING OF BEAD
FAcE

Stepped conductor Undercut (8) (Inch)

0.036
0.056

Inner
Outer

Note:
This data applies for a 50-ohm line with a maximum outer con-

ductor diameter of one inch and a bead material of dielectric
constant 2.03.
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Fig. 13. Performance of beads compensated by facing-out of di-
electric.
Note:
1) Maximum outer conductor diameter= 1.000 inch.
2) Dielectric is Teflon (K,=2.05).

FLUON (K, = 2:00)
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07 Rl
77

ek

+045*

Fig. 14. Offset but junction in coaxial lines of equal
characteristic impedance.

an optimum match also at an offset of 0.045 inch; the
agreement between theory and practice is, therefore,
excellent.

It is of interest to note that without the-dielectric
filling the problem would have been equivalent to de-
signing a matched transition in a 71-ohm line. Al-
though Kraus [27] experimentally derived curves do
not include one for this impedance it is within the range
of his work, allowing a value to be interpolated. This

-es an offset of 0.046 inch. This is typical of the excel-
...t agreement that was obtained in a number of cases
between Kraus' work and the numerically computed
answers.

. 120" ©+390°
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IV. CONCLUSIONS

A technique for the solution by finite differences of
two dimensional boundary value problems involving
Laplace’s equation was outlined and its application
shown in the development of a program for the numer-
ical analysis of these problems on a digital machine.
Considerable stress was placéd on generality in devis-
ing the computer program, making it possible to solve
an extensive range of large problems with a minimum
of effort and at great speed. Its use has been illustrated
in the solution of a number of important transmission
line problems, some leading to the production of con-
siderable design data which is included in this report.

Because of its generality the program becomes an im-
portant laboratory tool which can be used as an aid in
solving particular design problems as they arise. An
increased precision is therefore possible in the design of
transmission . line components which should eliminate
the need for much empirical development.

APPENDIX A

DEVELOPMENT OF Basic THEORY IN A
CYLINDRICAL CUOKRDINATE SYSTEM

An outline will be given here of the development of a
finite difference equation which represents Laplace's
equation, written in cylindrical coordinates, for a gen-
eral interior-node subject to the restriction of rotational
symmetry. It will be assumed that the medium between
the conducting surfaces is homogeneous and that these
conducting surfaces can be drawn in by joining lines of
nodes parallel to the coordinate axes, i.e., the same as-
sumptions as those used to derive (4). i

Consider the point P shown in Fig. 15, a node in a
net of mesh width a. Due to balance about the axis only
half the problem need be treated. The convention is,
therefore, adopted throughout this development that
the first row in the net lies along the axis of symmetry.
Let P lie in the Nth row (and for the present assume
N>1), i.e, on aradius r=(N—1)a. The potential at P
must satisfy the equation

v 1 8V

a9
ar? r Oor

- = 2
+ dz? 0 (22)
which, unlike its Cartesian equivalent, involves deriva-
tives of the first order.

Nonetheless, a Taylor expansion closely similar to
that used in the main text serves to derive ar;proxima-
tions to these derivatives in terms of the potential dif-
ferences between P and its four immediate neighbors.
Thus

Vit Ve+ (A —a/2r)Ve+(1+a/2)Vp—4Ve= 0 (23)

is an approximation to the Laplace equation at P with

a dominant error
oV 2.0%V
+= = |

a?[a‘V_’_ (24)
T 12l 8zt et ¢ o



690
D
p }
ROW N - = 0
a
i | cl i i ’
| | - a ke |
| i | | {
1 i i i 1
! | 1 | |
ROW 4 ! '
ROW 3 :
ROW 2
ROW | . &
r
b
¥
Fig. 15. Cylindrical coordinate system. Mesh

representation for no variation with ¢.

i.e., in the order a?, as before. Equation (23) may be
further simplified by substituting for the radius in
terms of the position of P in the net, thus

2N = 3) . (2N - 1)

’ Vp—4Vp=0. (25
o=y Tav-n " @)

Vit Vit

Special interest attaches to nodal points in row 1. As
the radius is then zero and since, due to symmetry, all
odd-order derivatives must be zero, the middle term of
equation (22) assumes an indeterminate (06/0) form in
this case. Consequently, dificulty may be eliminated by
reverting to the Cartesian forim of the Laplace equa-
tion, for which purpose a w axis is introduced to form
the third of an orthogonal set with the r and z axes
(Fig. 16). The point P must then satisfy

R L -

ar? 2 ow?

= 0. (26)
This is not, of course, peculiar to the axis of sym-
metry; any point in the space between the conductors
must satisfy (26). It has not been generally applied,
since, on all but the axis of symmetry, it leads to a
three-dimensional net. In this one particular case, by
symmetry
Ve=1Vp=Vg=7Vy
and therefore expanded in finite difference form (26)
leads to the two-dimensional form

Wa+Ve+4Vp — 6Vp = 0. (27)

The calculation of charge from the potential distribu-
.on is based upon similar principles to the Cartesian
case but the numerical procedures are materially al-
tered. There is no difference in finding the normal com-
ponent of displacement through the surface of integra-
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Fig. 16. Cylindrical coordinate system point on centerline.

tion, i.e., (8) remains valid, but the method of integra-
tion over the surface is different. Two kinds of surfaces
need to be distinguished; these are surfaces of constant
r, or cylinders about the axis of symmetry; and surfaces
of constant z, or plane annular surfaces normal to the
axis of symmetry. A given surface of integration will, in
general, be generated by the interconnection of s sub-
surfaces, some of each kind.

For a cylindrical surface in the ith row containing r
nodes

Q' = 2x(i — 1)a% i'(i‘/—) . (28)

Pl dr

For an annular surface in the jth column spanning be-
tween the kth and mth rows

m—k+1 aV
Q' = ra’e Z’@+P+6—%C—>. (29)
Puml 0z P
The total charge is therefore
0=20. (30)
ApPENDIX B

SPECIAL FINITE-DIFFERENCE EQUATIONS

Both in the main text and in Appendix A, only finite-
difference representation of ordinary interior nodes has
been considered (with the one exception of points along
the axis in a cylindrical system). Most nodes will fall
into this category but to take account of-all possible
boundary conditions there are 28 other possible condi-
tions which may arise.

Having read in details of conductor boundaries and
the disposition of dielectrics the machine is made to
scan the net, node by node, to identify whether they
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are ordinary interior points or one of the exceptional
cases. If found to be the latter, the node number is re-
corded in an “oddity table” (generated automatically
bv the machine) together with a further identification
aus - . According to the convention indicated in
Table VI1I, these criteria indicate in what way the node
is exceptional.

When the equations of the potentials are being solved
the machine first determines whether that node was
included in the oddity table. If it was not, the point is
relaxed according to the standard equation for an ordi-

nary interior node; if the node was included, the ma-
chine is directed to a special equation appropriate to the
kind of oddity. The finite difference equations for each
of the 28 types of oddity are listed in Table VIII for
both Cartesian and cylindrical systems. Since each of
these equations may be derived by application of
Taylor's theorem, individual proofs will not be given.
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TABLE VIII
SpeciaL FINITE DIFFERENCE EQUATIORS

ooy N DESCRIPTION “FIGURE | CARTESIAN EQUATION CYLINDRICAL EQUATION
o
t ‘OQD\NAQY INTERIOR PONT A‘—ir‘a SEE TEXT, EQUATION(4) sks APPENDIX 1, EQUATION (30)
l c
| °
2 ORDINARY POINT BOTTOM EDGE ‘—I"—f Va+Vp +2Vp- 4Vp =0 SEE APPENDIX 1, EQUATION (32)
3 1 TOP - EDEE . I: S | SIMPLE PERMUTATION OF (2) Vp+Vpt2Vc ~4Vp * O
to
4 LEFT- HAND EDGE pl—s | SWANPLE PERMUTATION OF (2) A(N-I)VB¢(2N-3)VC~(2N-|)VD -s(m-.)\?,-o
<
D
5 RIGHT-HAND EDSE L-{Z SIMPLE PERMUTATION OF (2) SWPLE PERMUTATION OF (4)
L.
[ CORNER POINT| BOT TOM LEFT-HAND SIDE 3 Vg*Vp-2Vp * O Va+2Vp~3Vp *0
YB
9 ACHT-HAND SIDE| AP SMDLE DERMUTATION OF (6) | SIMPLE PERMUTATION OF ()
e TOR LEFT-HAND SIDE T—-‘ SIMDLE PERMUTATION OF (@) | Vp+Vec-2Vp=©O
<
RIGHT HAND SIDE A———lP SWMPLE PERMUTATION OF (6) | SIMPLE PERMJTATION OF (8)
c .
o
‘o DIELECTRIC aow \NELECTRIC TOTOP 1 1+ ke )Vas(irke)Vp + 2 Ve + 2Ke Vp (ZN(KCH)—(KEGB)} Vot {2N(Ke +1)- (Ke * )}V
INTERFACE | INTERFACE D E 8 |-4(+ne)Vp*O + 2(2N-3) Ve 42 Ke@N-)Vp~ 4[2N(Ke+1)- (KerDIVP
o «
DIELECTRIC . E 3 {2N(e)-BKer )} Var 2N (Ke 1) ~(3Ke 4D} Vi 7 2Ke@N3)%
MP! A F
i 1|To BOTTOM L SIMPLE PERMUTATION OF (10) +2(2N-13Vo - 4{2N(~<,~|)-(3ngn)}v‘p-o
1 .
4 o
COLUMN . | DIELECTRIC TO - AKe(N=1)Va+ 4 (N-1)VgHeN-DKkes Ner@nN- ke +1) Vo
P2 INTERFACE | LEFT- HAND SIDE! A—i"‘i SIMDLE PERMUTATION OF (19) 2 B(N-1){Ke*1) Vp *O
-]
DIELECTRIC TO .
= TATION OF = T
13 RGBT HAND SIDE r+1 SIMDLE PERMUTA (10)| smBPLE PERMUTATION OF (2)
<
a4 ANGLE ,; 2V, e (e *) Vg 2% > Ker DVD AN~V {2N(Ke+1)- (Ke+3)} Vpr2@N-3) Ve
oececTaic | ACVTE FIRST QUADRANTY 2 [ rakedve o N-) (ke Vo 2(2N(Ke +3)-(Ke 7)]Vp * O
s SECOND QUADRANT :—-{'——- SMOLE PEAMUTATION OF (14) | SIMDLE PERMUTATION oF (i4)
f (2N(a+ - (K et D} Ve 4N-1) Vo N-DkertNo2e-D Vo
e THIRD QUADRANT . |SwoLE eERMUTATION oF (ORI [2N(K e +3)-BKe * 5)} Vp=0
17 FOUTH QUADRANT ‘—E‘—; SMDLE DERMUTATION OF (14) | SIMPLE PERMUTATION OF (18)
2 2 g Var (Ke+t) Vg + 2 KeVet (KetDVo! a(v-Dae {enGeas)- (ke+ ) Nar2N-esEn-Dikosl) Vo
18 OBTUSE FIRST QUADRANT | & l -2(3Kes!) Vp* © -4 (N-)(3Ke*!) Vp* O
E] F:cow QUADRANT ?"}"- SUMDLE PERMUTATION OF (18) | SMPLE PERMUTATION OF ()
f 2N (Kes)-(Ke+3)] Var 40N-1D)Vp+ (2N-3)Kerl) Ver
2 T DOANT o] A OF { B <
1) HIRD QUA _-«?—-. SIMDLE PERMUTATION @e) h2(2N-1) Vo - 4 (Ke+3)(N-1) Vo= O
21 FOURTH QUADRANT A.-—i--s, SIMPLE DPERMUTATION OF (i8) | SMPLE PERMUTATION or (20)
<
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Table VIII (contin'd)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

ODDITY N | DESCRIPTION i FIGURE | CARTESIAN EQUATION CYLINDRICAL EQUATION
22 DESSRS o | PRocn.  |vem s s ‘—L Ke Vi+ Vg +(e +1)Vo+2(KatDVp * O | e Var vyt 2(Ket)Vo ~3(Ka+1) Vo * ©
23 g&.ﬁg:ﬁ'ocsg :—EE—? SIMPLE PERMUTATION OF(Z2) SIMPLE PERMUTATION OF (22)
DELECTRIC TO | & s (2N-3)Ke Vas (2N-3) vg +(2n-3) (ke ) Ve
24 TOP EDGE SIMPLE DERM UTATION OF(22) 22N~ 3) (ke +1) Vp 0

LEFT-HAND 5|Dq

DIELECTRC TO
RIKG-T-HAND SIDE

4

SIMDLE DERMUITATION OF (27) SIMDLE

PERMUTATION OF (24)

LEFT - HAND [DIELECTRIC TO

T

SIMPLE PERMUTATION OF 22)

{2N(Ke r1)~(ke +3) JVar (2N-3) vC + (2N 1) Ka Vg

26 EDGE TOP -2 {2N(Ket1J- (Ket* D}V -0
DIELECTRIC TO 8 2N( (ke D} Vet (@N-3)Ke Ver@n-)Vp
27 e Tom SIMPLE DERMUTATION OF 22) : tzru(xv 3 N Ny ve-& e+ 2

RIGHT-HAND |[DIELECTRIC TO

28 EDGE ToP

DIELECTRIC TO
29 BOTTOM

L

SIMPLE PERMUTATION OF (22)

SIMPLE PERMUTATION OF (22) SIMPLE PERMUTATION OF (@)

SIMBLE PERMUTATION OF (27)

the development of the program. For reasons of speed,
some of the more frequently repeated subroutines were
coded in FAP; these were written in their entirety by
B. P. McDowall. He also contributed many useful ideas
throughout the remainder of the work and it is in no
small measure due to his efforts that the project was
brought to successful conclusion.

The author also wishes to thank C. T. Carson for
making it possible to undertake this work and the Chief
Scientist of the Department of Supply for permission to
publish it.

RCFERENCES

{1} D. W. Martin and G. . Tee, “Iterative methods for linear equa-
tions with a symmetric positive definite matrix,” Computer J.,
vol. 4. pp. 242-254, October 1961.

2] G. A. Korn and T. M. Korn, Mathematical Handbook for Scien-
tists and Engineers, 1st ed. New York: McGraw-Hill, 1961,
sect. 3.2, ch. 20, p. 637.

[3] 8. P. Franckel, “Convergence rates of iterative treatments of
paruial differential equations,” M.T.4.C,, vol. 4, pp. 64-75, 1950.

4] B. A. Carré, “The determination of the optimum accelerating
factor for successive over relaxation,” Computer J., vol. 4, pp.
73-78, 1961.

15} H. E. Green, “An extension of the results obtained by the appli-
cation of the numerical solution of Laplace's equation to trans-
mission line problems,” \Weapons Research Establishment,
Salisbury, South Australia., Tech. Note PAD 98, December
1964.

{6] H. J. Reich, et al., Microwave Theory and Techmques, Ist ed.
New York: Van Nostrand 1953, sect. 1.3, ch.

[7] N. Marcuvitz, Woveguide Handbook, no. 10, Mass ]nst Tech.
Rad. Lab. Ser.. 1st ed. New York: McGraw-HxlI_'l%l sect. 4,
ch. 8, p. 396.

[8] J. W. E. Griesmsmann, “Handbook of data on cable connectors
for microwave use,” U. S. Dept. of Navy, Bur. of Ships, Doc.
Navships 900, 136A, sect. 2, ch. 2, pp. 23-28.

[91 R. V. Southwell, Relaxation Methods in Theoretical Physics, 1st

- ed. Oxford, England: Clarendon, 1946.

[10] 11‘91Fl Richardson, Phtl. Trans. Roy. Soc. (London), pt. A, p. 307,

11] R. C. Culver, ¢
trical network analogue solutions,”
pp. 376-378, December 1952,

H. E. Green, “The numerical calculation of the characteristic

“The use of extrapolanon techniques with elec-
Brut. J. Appl. Phys., vol. 3,

112]

impedance, propagation constant and the equxvalent circuits
of obstacles in TEM mode transmission lines,” Weapons, Re-
search Establishment, Salisbury, South Australia, Rept. PAD

14, uly 1964.
{13] H. E. Green, “The characteristic impedance of square coaxial
lme IEEE Trans. on Microwave Theory and Techniques

(Correspondeuce), vol. MTT-11, pp. 554-555, November 1963.
H. E. Green and ]J. R. Pyle, “The characteristic impedance and
velocity ratio of dielectric-supported stripline,” JEEE Trans.
on Mucrowave Theory and Techniques (Correspondence), vol.
MTT-13, pp. 135~137, January 1963.

E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-transmission-
line filters and directional couplers,” IRE Trans. on Microwave
Theory and chhniqucs, vol. MTT-4, pp. 75-81, April 1956.

K. Foster, “The characteristic impedance and phase velocity of
hxgh Q triplate line,” J. Brit. IRE, vol. 8, pp. 715-723, December

[14]

(15]

[16

=

[17] S B Cohn, “Charactenstlc impedances of broadside-coupled
strip transmission lines,” Trans. on Microwave Theory and
Techniques, vol. MTT—8, pp. 633-637, November 1960.

R. E. Collin, Field Theory of Guided Waves, 1st ed. New York:

McGraw-Hill, 1956, sect. 5, ch. 4, pp. 155-164.

W. J. Getsinger, “Coupled rectangular bars between parallel

plates,” IEEE Trans. on Microwave Theory and Technigues,

vol. MTT-10, pp. 65-72, January 1962.

[20] S. B. Cohn, “Problems in strip transmission lines,” IRE Trans.
on Microwave Theory and Technigues, vol. MTT-3, pp. 119-126,
March 1955.

[21] D. D. Grieg and H. F. Engelmann, “Microstrip—A new trans-
mission line technique for the kilomegacycle range,” Proc. IRE,
vol. 40, pp. 1644-1650, December 1952.

[22]) K. G. Biack and T. J. Higgins, “Rxgorous detn’rmmatlon of the
parameters of microstrip transmission lines,” TRE Trans. on
Microwave Theory and Technigues, vol. MTT—3 pp. 93-113,
March 1953.

[23] J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, “Coaxial-
Line Discontinuities,” Proc. IRE, vol. 32, pp. 695-709, Novem-

"ber 1944.

[24] M. Walker, Conjugate Functions for Engineers, 1st ed. London:
Oxford U.P., 1933, pp. 53-65.

[25] N. Marcuvitz, Waveguide Handbook, 1st ed. New York: McGraw-
Hill, 1951, sect. 5, ch. 4, p. 178.

[26] A. Kraus “Mess kurven des Reflexions-Koeffizienten Kompen-
sierter Inhomogemtaten bei Koaxialen Lextungen und die daraus
ermittelte optimale Dimensionierung,” Rhode. and Schwarc
Mittetlungen (Germany), No. 14, 1960.

Mess kurven des Reflexions-Koeffizienten Kompensierter
Inhomogenitaten bei Koaxialen Leitungen und die daraus
ermittelte optimale Dimensionierung,” Rhode and Schwars
Mittedlungen, (Germany), No. 8, 1956.

[28] ]. R. Pyle, private communication.

(18]
(19]

(271



