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1 NUMERICAL COMPUTATIONS

1.1 INTRODUCTION

In this text we are concerned with numerical methods used to solve the most common
mathematical problems that arise in the physical, biological, and social sciences, and
many other disciplincs. The problem is stated in mathematical terms by using various
assumptions. The next step is to solve the stated mathematical problem. Unfortunately,
many practical problems do not have an analytical solution; consequently, we look for
an approximation or numerical solution. Also, an analytical solution may not be conven-
ient for numerical evaluation. Therefore, we look for methods that give an approximate
solution to our formulated problem. Because these methods work with numbers and
produce numbers, they are called numerical methods. Numerical analysis provides a
means of proposing and analyzing numerical methods for the study and solution of
mathematically stated problems. To facilitate computation, numerical methods are
programmed for execution on a computer. A poorly written computer program can
spoil a good numerical method both with inaccurate answers and by using excessive
computer time for computation. Therefore, it is very important to take into account
the programming aspects of a numerical method. A computer output must also be
analyzed for its correctness.

A complete and unambiguous set of directions to solve a mathematical problem
to the desired accuracy in a finite number of steps is called an algorithm. Thus a
numerical method can be considered an algorithm.

We imagine a program library containing subroutines, written by experts, for every
conceivable situation. In fact, there exists a large number of computer packages like
IMSL (international mathematical and statistical library), NAG (numerical algorithm
group), and more through which many subroutines are available on mainframe com-
puters. Also, IMSL and NAG have special subsets of their full libraries for microcom-
puters. For microcomputers. MATHCAD, MATLAB, and MATHEMATICA also pro-
vide programs. Other packages are being developed continually. While it is easy to
call these subroutines, there are many pitfalls in numerical computation. One should
be able to recognize symptoms of numerical ill health and diagnose a problem. It is
important to have a clear understanding of the numerical methods used by these sub-
routines.

In the next section, we develop some fundamental notions about digital computers
since they are the principal means for our calculations.
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1.2 NUMBER REPRESENTATION

As is well known, our usual number system is the decimal system. The number 796.85
is expressed as

79685 =7 X 10° + 9 X 10' + 6 X 10° + 8 X 107" + 5 X 1072

‘The number 10 i1s the base of the decimal system.

Electrical impulses are either on or off and computers read pulses sent by their
electrical components. If ‘‘off’’ state represents 0 and ‘‘on’’ state represents 1, then
computers can use a system that needs only 0 and 1 as digits to represent a real number.
This system is called the binary system and has base 2. Consider

(1001.101), = 1 X 22 + 0 X 22+ 0 X 2' + 1 X 2°
. +1X2'"+0X2%24+1x273

1 1

=84+0+0+1+=+0+=
0+0 > 0 2
1 177

_9+§+§__8

Further, consider

(1101011111), I X2+ 1 X22+0X27+1X224+0X%x2°
FI X2+ 1T X2+1X22+1X2141x20

512 +256+0+64+0+16+8+4+2+1=2863

In order to represent 863, we need 10 binary digits. This is a major drawback of the
binary system. The octal or hexadecimal number system (with base system 8) presents
a compromise between the binary and decimal system when we discuss how numbers
are stored in the computer. IBM 3033 uses the base 16 and the numbers 10, 11, 12,
13, 14, and 15 are usually denoted by A, B, C, D, E, and F, respectively. Most computers
have an integer mode to represent integers and a floating-point mode to represent real
numbers within given limits. The floating-point representation is closely connected to
scientific notation. Letting .v be any real number, x can be represented in floating-point
form as

X = (’slgn .l’)(.dldg . e d,d,+| . ’)B X BF (1.2.1)

where the characters d, are digits in the base  system. In other words, 0 < 4, <
B — 1fori =12 ... withd, # 0 and e an integer. The number (.d,d, ...
dd,., ...)is called the mantissa and e is called the exponent or characteristic of x.
Usually e is restricted by

~-N=e=M (1.2.2)

for some large positive integers V and M. If during the calculations some computed
quantity has an exponent n > M then usually the result is meaningless and is called
overflow. If an exponent n < — N, then usually the result is returned as zero without
any warning message by many computers and is called underflow. Similarly an infinite
representation of a mantissa cannot be used and so the mantissa of x has to be terminated
at ¢ digits. Let us denote this terminated number by fl(x). This termination is done in
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two ways. The first way is to delete the digits d,., d,, ... to get the following
chopped representation:

filx) = (sign x)(.d\d, ... d)s X B* (1.2.3)

The second way is to add /2 to d,,, and then chop off the resulting digits 9.,
8,42, . .. to get the rounded representation

f1(x) = (signx)(.8,3; . ..8,) X B° (1.2.4)

where 8, may or may not be d; and e, may or may not be e.

The number 13/6 has an infinite decimal representation given by 13/6 = 2.166666. . . =
0.2166666 ... X 10" Letting t = 5, the chopping representation of 13/6 is

ﬂ<1—6§> = 0.21666 X 10' = 2.1666

For the rounding representation, add 5 to the sixth digit, 6 + 5, and then chop off the
digits after the fifth digit. Thus

ﬂ<-1—6§-> = 0.21667 X 10' = 2.1667 aEmw

The error that results from replacing a number by either its chopped representation
or rounded representation is called round-off error.

In Table 1.2.1 the floating-point characteristics are given for commonly used digital
computers (Atkinson 1989) for single precision.

Table 1.2.1
Computer B t N M : B
CDC 6600 & Cyber Series 170 2 48 975 1070 7.11 X 107"
Cray-1 2 48 16384 8191 7.11 X 107%
Hewlett Packard HP-45. 11C, 15C 10 10 98 100 1.00 x 107°
IBM 2033 16 6 64 63 9.54 x 1077
DEC VAX 117780 2 24 128 127 1.19 X 1077
PDP-11 2 24 128 127 1.19 X 1077
Prime ¥50 2 23 128 127 2.38 X 1077

The question of rounding or chopping in Table 1.2.1 often depends on the installation
or the compiler.

Let us denote the set of all numbers represented by Equation (1.2.3) or Equation
(1.2.4) and zero by

F=FrB LN M)

The real numbers, program instructions, integers, alphabetic symbols, and so on,
are stored in words in digital computers. These words have a fixed number of digits.
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The number of digits (bits) in a word is called the word length. For scientific calculations
a long length is desirable; a short length, on the other hand, is significantly less
expensive and perhaps more useful for business calculations and data processing. Word
lengths range from 12 bits to 60 bits. In some computers a longer word is broken into
smaller pieces called bytes (each consisting of 8 bits) for ease in handling.

Consider a hypothetical computer that uses 32 bits in a word. Of the 32 bits, the
first bit is used to hold the sign of the number, O for + and 1 for —. The remaining
31 bits hold a binary number Oto 1111111111 1111111111 1111111111 1. This applies
only to integers. For a floating-point number, the first bit holds the sign, the next 7
bits hold the exponent (including one for the sign of the exponent), and the last 24
bits hold the mantissa.

Sign —p~{ EXPONENT l?

Consider for example
1 1111001 1111111110 1111111111 1111

The first bit indicates that the number is negative. The next bit indicates that the
exponent is negative. The next 6 bits, 111001, are equivalent to

I X2+ I X224+ 1X2+0X224+0X2'+1X2°=32+16+8 +1
= 57

The last 24 bits indicate that the mantissa is

2T

oy Y

~ 1 — (0.596046) X 1077
= (0.999999 to seven places

The closest 7 digit decimal number is —0.6938893 X 10~"" for —(1 — (1)*) X 2%,
Thus the machine number is used to represent any real number in the interval
(—0.69388935 X 107", —0.69388925 X 107").

Since we are representing real numbers with approximate real numbers, our interest
is to find the maximum error involved. Let x* be an approximation of x in the decimal
system for the following cases:

‘ 1 1 1
1xz"+1x2-2+~-+1x2-2‘*=§<1+—+-- )

N | =

n x = 2.1666 2) x = 0.0004 €)) x = 10000.0001
x* = 2.1667 x* = 0.0003 x* = 10000.0000
lx — x*| = 0.0001 lx — x*| = 0.0001 lx — x*¥| = 0.0001

In all cases, the absolute error |x — x*| is 107*. In case (1) x* is a good approximation
for x, while in case (2) x is so small that |x — x*| represents a significant change. In
case (3) x* seems to be an excellent approximation. Thus it is clear that the ratio of
|x — x*| to |x| is important.
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Let x* be an approximation to x. The relative error in x* is given by

x — x*

provided x # 0

In case (1) the relative error |[(x — x*)/x| = |(2.1666 — 2.1667)/2.1666| = 0.00005;
in case (2) the relative error |[(x — x*)/x| = |(0.0004 — 0.0003)/0.0004| = 0.25; and
in case (3) the relative error |(x — x*)/x| = |(10000.0001 — 10000)/10000.0001| =
1078, |
In case (2) the relative error indicates that x* is a poor approximation to x.
Eum

Since we do not know the true real number in a practical situation, we do not
know what the error is. We will be happy with some bounds on the error. Let us find
the relative error when we chop or round a given real number x in our decimal system.
Let x be represented by

x = (sign x)(d\dy...ddy,...) X 10° (1.2.5)
We approximate x by simply chopping off the digits d,.\, d,.2 ..., to get the
chopped representation

fi(v) = x* = (sign x)}(.d\d; ...d,) X 10° (1.2.6)

Thus the relative chopping error in x* is given by

B S XX _ (()(). . .d,+]d,+_).. .)
(dd....dd., ...)
(dds .. ) X 107

(didsr... dd...)

X

Since 1 =< d, < 9, the minimum value of the denominator is 0.1 and .d,.,d,.> . ..
< 1, the relative chopping error i~
lv—ar 107

i ) < = b=t 2.
v 0l 10 (1.2.7)

For rounding. if d,., < S.then d,..d.. ... = 1. Therefore,

X = M _tddy ) X107 1
A : (.(1-(/:... d,d,+]...) 2

If 5 =d., <10, then
flix) = a* = (signy) X (.8,8,...9,) X 10«

where ¢, = eore + 1. If ¢, = e, then the relative rounding error in x* is given by

X - x* _ |.d|d: .. .d,d,+] Ce "‘.6[62. . 6,’

(dd,...dd. ...)
‘ 0.00...05 1
==

- = 1=t
(0.1) 2 10

RY
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If e,=e+1, it can be proved that the relative rounding error in x* is also given by

X — x*
X

s%1mﬂ (1.2.8)

It can be proved for the base system [ that the relative chopping error (Exercise 9) is

x — x¥
b

=B' (1.2.9)

and the relative rounding error is

X — x*
X

S%B“' (1.2.10)

In Table 1.2.1 the maximum relative chopping error in fl(x) is given by the quantity
B'~‘. Equations (1.2.9) and (1.2.10) depend only on the floating-point number system
and the value of 1. Therefore, they are independent of the size of the number. We may
increase 7 to reduce round-off error. For instance, use of doublc precision instead of
single precision reduces round-off error. The value of ¢ is said to be the number of
significant digits of a computer.

The smallest positive floating-point number €, when added to the floating-point
number 1.0 to produce a floating-point number different than 1.00, is known as the
machine epsilon.

Let x = 13/6. For + = 5 and B = 10, the chopping representation of 13/6 is
fi(13/6) = 0.21666 X 10'. From Equation (1.2.7)

13/6 — f1(13/6) <10
13/6 -
) 13/6 — f1(13/6) ,
l =03 x 10"
while 136 ‘ 0.3 |

Fort =5, the rounding representation of 13/6 is fi(13/6) = 0.21667 x 10" From
Equation (1.2.8)

13/6 — f1(13/6) 5110_4
13/6 2
while ’B/é ;3;]6(13/6) = 0.15 x 10°* EER

('S

FWL'OATING-POINT ARITHMETIC

In order to understand the kind of arithmetic done by computers, let us analyze computer
arithmetic on a five-digit hypothetical machine that is similar to the actual arithmetic
carried out by several common computers.
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Let x = 0.24689 X 10°and y = 0.13579 X 102 These numbers are loaded in
arithmetic registers. The arithmetic registers are capable of shifting numbers right and
left in order to align the decimal point or to adjust the exponents during arithmetic
operations. The length of an arithmetic register relative to a word length is an important
characteristic of a computer. If the single precision number has ¢ digits for its mantissa,
then the arithmetic register should contain ¢t + p digits where p is comparable to 1.
This decision involves not just mathematical but economical factors. A register is
called a single length register if p = 0, and a double length register if p = r. Several
computer manufacturers use p = 1 because of economic considerations. This single
extra digit is called a guard digit. The guard digit makes a noticeable effect on the
accuracy of computed results. We will assume that our hypothetical machine has a
double length register and uses chopping. In order to determine what values will
be produced by a particular machine, one has to study the manuals supplied by a
manufacturer. '

Let us add x and y on our machine. The exponent of the smaller number is to be
adjusted so that the exponents of both numbers are the same. Thus

x = 0.24689 00000 X 10°
y = 0.01357 90000 X 10°

These numbers are added in the accumulator and we get
x + y = 0.26046 90000 X 10°

Since this number is to be stored, it is converted to the following five-digit ﬂoatiﬁg-
point number. Hence
fiix + y) = 0.26046 X 10°

The result 0.26046 X 10° is stored as a computer word. Since the exact sum =
0.260469 X 10°, the relative error |(x + y — fl(x + y))/(x + )| = 0.345530 X

107, Let us subtract y from x. In the accumulator

x — v = 0.23331 10000 X 10°
fi(x — v) = 0.23331 X 10°

The result 0.23331 X 10" is stored.
Multiplication is simple because the exponents do not have to be aligned. Since

xy = 10" X 10° X 0.24689 X 0.13579
= 0.335251931 x 10*

and fi(xy) = 0.33525 X 10, the relative error |(xy — fi(xy))/(xy)| = 0.57598 X 1077,

Division is not allowed when v = 0. If the mantissa of the numerator is greater
than the mantissa of the denominator, we shift the mantissa of the numerator one place
to the right. Thus

X _ o x 0:24689
¥ 0.13579
2
= 100 x Q0246890000 _ 010195000 % 10°

0.1357900000

therefore fi(x/y) = 0.18181 X 10° and the relative error [((x/y) — AQx/y))/(x/y)| =
0.41250 X 107°,
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Normally fi(x) # x. Using Equations (1.2.9) and (1.2.10),

x— i)
— =

where —B'™" < € < 0 if chopped and —3B'~' < € < 18!~ if rounded. Equation (1.3.1)
can be expressed in a more useful form:

filx) = x(1 + €) 1.3.2)

Denote machine addition, subtraction, multiplication, and division by the symbols
@, ©, ®, and @ respectively. For any floating-point numbers x and y, we have from
Equation (1.3.2)

1.3.1)

fix +y)=x@y= (x+ 1+ ¢)
flx -y =x0Oy=0-y1+¢)
flty) = x®@y = oy (1 + &)

and

ﬂi‘)= =20+ 13.3
(y xQy y( €) (1.3.3)

where €, €,, €;, and €, may be different. It can be seen from Equations (1.3.2) and
(1.3.3) that

lx+(+ND=x@P)=x@( + 2)(1 + &)
=@+ [(y + (1 + €)1 + &)
=x(l + &)+ (y + 2)(1 + &)1 + €)

CRYPDz=x+1+e&)P:z
[(x + y)X1 + &) + 2)(1 + €)
(x + y)1 + €)1 + ¢) + z2(1 + €)

flix + y) + 2)

Hence, often

XDPN* Dy P:

In other words, the associative law breaks down. Similarly (Exercise 11) the distributive
law often fails:

IRV *+xR®ND®2)

Ilustrate that the associative law breaks down. Let x = 0.52867 X 104,y = 0.3§234 X
10°, and z = 0.25678 X 10'. Find x @ (V@Dand x Dy @z

Since y and z are first added, the exponent of z is adjusted so that the exponents
of y and z are the same. Hence

¥ = 0.38234 00000 X 10?
z = 0.02567 80000 X 107
z = 0.40801 80000 X 10?

and

=D

I~
<
+
ta
i

y @z = 040801 X 10?
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Now to add (y @ z) to x, the exponents of (y @ z) and x are adjusted. Therefore,

x = 0.52867 00000 X 10
y @ z = 0.00408 01000 X 10°
X+ (y@z) = 0.5327501000 x 10°*

and
| x®(y®z) = 053275 x 10¢ 1.3.4)
One can verify that
x @y = 0.53249 00000 X 10*
and
x@y @z =0.53274 x 10¢ (1.3.5)
Comparing Equations (1.3.4) and (1.3.5), x @ ¢ @D 2) * ¢ D y) @ z. g

One must not implicitly assume the validity of the associative law. Although the
associative law for addition is not valid in floating-point arithmetic, it is comforting
to know that the commutative law x @ y = y @ x still holds and should be valuable
in our programming.

Another important source of error is the subtraction of a number from a nearly
equal number. Consider x = V457 =~ 0.2137755 X 10°and y = V/456 ~ 0.2135415 X
10°. Subtract y from x on the five-digit machine. First x and y would be stored as
fi(x) = 0.21377 X 10° and fi(y) = 0.21354 X 10 Since our hypothetical machine
has double length register,

fi(x) = 0.21377 00000 X 10?
fl(y) = 0.21354 00000 X 102
fl(x) — fl(y) = 0.00023 00000 X 10?

and
(Al — fi(y) = i © f(y) = 0.23000 X 10°! = 0.02300

The last three zeros at the end of the mantissa are of no use. Since the exact value
of x — y = 0.000234 x 1(* = 0.0234, we have the relative error

x = v = fl(fl(x) — fl(y))
X =y

= 0.17170 X 107! (1.3.6)

This relative error is quite large when compared to the relative errors of fi(x) and f1(y).
How can a more accurate result be obtained? Sometimes the problem can be reformu-
lated to avoid the subtraction. In this example,

— (V457 — \V/456)(V456 + \V/457)
V457 — V456 =
V457 + V456

1
= ~ 1 (f1x) + f(y)
V457 + V456 © Y
= 1.(D (0.42731 X 10%) = 0.23402 X 10~' = 0.023402

The relative error 0.72643 X 107° is very small compared to Equation (1.3.6).
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PEmEEEmmmma EXERCISES .

1.

2.

11.
12.

13.

14.

15.

Express the following base B numbers in floating-point form.

(a) (123.456),0 (b) (27.653)s (c) (10101.1101), (d) (AB.168)6
Express the following base 3 numbers in decimal form.

(a) (10.001101), (b) (0.775)s (c) (1.89ABC)y (d) (67.015),

Write the clements of the set F(2, 3, 1, 2). Convert the elements in the decimal
system and then represent the numbers as points on a straight line.

Convert (0.1),, to binary form. Are ten steps of length (0.1),, in binary form the
same as one step of length 1.0? (Hint: -,13 = % + % + % + % ceel)

Let fl(x) be given by chopping. Prove that (a) fi(—x) = —fi(x) and (b) fi(B"x) =
B'fl(x) by assuming that underflow or overflow does not occur.

If the following approximations are used, find the absolute error and relative
erTor.

(@)} ~0.14  (b)3~0.1428

How many significant digits are there if (a) 852.045 is approximated by 852.01, (b)
0.000452 is approximated by 0.00041, and (c) 1.2345 is approximated by 1.234?
Find the absolute error and the relative error for Exercise 7.

Prove Equations (1.2.9) and (1.2.10).

Let x = 0.5678 X 10',y = 0.3456 X 10% and z = 0.1234 X 10°. Perform the
following operations on a hypothetical machine that uses four-digit floating-point
arithmetic, double precision accumulator, and chops the resulting number to four
digits before any subsequent operation is performed.

@x@y OGYPx ©QEEAYDz DxOOD2)
©xRHYD) OHERYD G2

Prove that x ® (y @ 2) # (x ® y) @ (x & z) in some cases.

Consider a machine that uses four-digit floating-point arithmetic. Let x =
In 2.10 = 0.74194. and y = In 2.11 = 0.74669. Compute fi(x) © fi(y) and
determine its relative error.

Indicate how the following formulas should be written to avoid the loss of
significant digits due to subtraction:

@lnx —Iny (b) et — x — 1 if x is close to O ()1 — cosxifxis

close to 0 (d)e'™
—b + Vb = 4a b — Vb — dac

(&) €if b > 0 and if b <0

2a 2a
Consult your computer manuals and indicate whether your computer has a single
length register, a double length register, a register with a guard digit, or none of
the above. Write a brief description of the addition operation.
Find out the base and number of digits in the mantissa of your computer. What

is the largest number and the smallest number represented by your computer?

R C OMPUTER EXERCISE N

C.1.

Write a program to find the machine epsilon of your computer.
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1.4 NUMERICAL COMPUTING

In order to solve a problem on a digital computer, we perform the following steps:
Step 1 Construct a mathematical model for a given problem by using a variety
of simplifying assumptions. As a consequence of these assumptions, the resulting
mathematical model has inherent limitations. Be aware that a numerical solution of a
mathematical model cannot improve the accuracy of a mathematical model except by
coincidence. Since we cannot judge a priori the error due to either the mathematical
model or the numerical method, we need to find as accurate a numerical solution of
a mathematical model as possible. This mathematical model is a set of formulas,
inequalities, equations and so on.

Step 2 Decide what mathematical or numerical method to use to solve a mathematical
problem. Our concern is to find the best numerical method for solving a given mathemat-
ical problem. How should a numerical method be evaluated? Two important properties
come to mind—accuracy and efficiency. The amount of computer time used in the
execution of a particular method can be used to measure the efficiency. The time it
takes to complete floating-point arithmetic is usually much longer than the time it takes
to store, test, perform integer arithmetic, fetch, and so on. Also, there are comparatively
few nonarithmetic steps in most numerical algorithms, so a reasonable estimate of the
required time can be obtained by counting the number of required additions, subtrac-
tions, multiplications, and divisions. Because addition and subtraction take approxi-
mately the same amount of time on nearly all computers, these two operations will be
counted together. Division time is longer than multiplication time for one operation.
We can use an expression

E=pA +gM+ rD (1.4.1)

where p, g, and r are the total number of floating-point additions, multiplications, and
divisions respectively in a given algorithm and A, M, and D are the amounts of time
it takes a computer to perform one addition, one multiplication, and one division
respectively. If many algorithms with equal accuracy are available, then the algorithm
with the smallest value of E is preferred.

The computation times in seconds for 1000 repetitions of common arithmetic
operations on an IBM PC are given in Table 1.4.1. The installation of a mathematical
coprocessor on an IBM PC or a compatible machine increases the speed of floating-
point arithmetic considerably. For comparison, the computation times with and without
the mathematical coprocessor Intel 8087 using Turbo Pascal on an IBM PC (Lastman
and Sinha 1988) are given in Table 1.4.1.

Table 1.4.1

Time without Time with

Operation Intel 8087 Intel 8087
Addition 0.28 0.17
Subtraction 0.28 0.17
Mutltiplication 1.04 0.17

Division 1.71 0.22
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The closeness of a computed answer to the exact answer is the accuracy of the

computed answer. By their very nature, in most cases numerical methods do not give
exact answers. There are many sources that contribute to the inaccuracy of the answers
produced by a numerical method.

1.

2.

Input error: Data from measurements of practical problems contain errors that
affect the accuracy of calculations based.on the data.

Round-off error: A computer has a fixed word length and therefore most numbers,
including those obtained by arithmetic operations, cannot be expressed exactly.
Each number is represented by its nearest machine number. This type of error is
called round-off error and is a characteristic of.the computer or the computer
language. The subtraction of two nearly equal numbers can be avoided by reformu-
lating the problem. Thus the resulting vast increase in round-off error can be
avoided. The generated round-off error contaminates subsequent calculations and
the error propagation becomes an important source of error.

Propagated error: In order to see how errors accumulate in a complicated algo-
rithm, consider the sum of two positive numbers x; and x,. The first step is to
convert these numbers into floating-puint numbers by chopping or rounding. Errors
are thus introduced. Denoting the converted numbers with an overbar and using
Equation (1.3.2), we get

X =1flx) =x(l +€) and X, = fl(xy) = (1 + ) (14.2)

where |¢| =< w fori = 1 and 2.
When we add these two numbers, we actually compute X, @ %, (recall @
denotes machine addition). The actual error is given by

(K +x)—E@E%) =[x +x)—G+X)]+ [+ — GO
= —X)+ -]+ [ +X) - *x@%)]
(14.3)

The term in the first brackets on the right-hand side of Equation (1.4.3) is the error
propagated because of the initial conversion to floating-point numbers. Conse-
quently, this error is called the propagated error. The term in the second brackets
on the right-hand side of Equation (1.4.3) is the error generated because of the
machine’s arithmetic by rounding or chopping. It is called the round-off error.
Using Equation (1.3.3), we have

YTOL =0 +5)1 + e€) (14.4)
where |e;| =< w. Using Equations (1.4.2) and (1.4.4) in Equation (1.4.3), we get
Ix, +x) = (X D) = |—€x, — 1) + |—&F + T (1.4.5)

Further, using Equation (1.4.2), the last term of Equation (1.4.5) simplifies and is
given by

€}(.T‘ + .?2) = €3(X[ +€lx, + X7 + €2X2)
= &(x; + x) + e&(ex + €uxy)

Using this and |¢| =< . fori = 1,2, and 3 in Equation (1.4.5), we get
6+ x) = G @) < @p + pd + x) (1.4.6)
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Since |e] = p, we replaced |e| by p in Equation (1.4.5). Thus Equation (1.4.6)
gives the error bound for the worst case that may be encountered. When large
numbers of operations are involved, the bounds may be several times larger than
the actual error involved and therefore are too pessimistic. Often, the round-off
errors tend to cancel each other, but, under the right circumstances, the round-off
errors can grow like a rolling snowball. This phenomenon is referred to as instability
and will be trecated later.

Add x, = 0.36789 nad x, = 2.5678 using four-digit floating-point arithmetic with
chopping. ‘

Our machine transforms these numbers as x;, = 0.3678 X 10° and x, = 0.2567 X
10'. For adding, we have

X, = 0.0367 8000 x 10' and Xx, = 0.2567 0000 X 10!
Then
X, + x; = 0.2934 8000 X 10" andso X P X, = 0.2934 X 10

Since the exact sum x, + x, = 2.93569, the exact absolute error lx, + x, = (x (—D}:)| =
0.00169. The propagated error is [x; + x; — (X + X)| = |[(x; — )|+ - X =
2.93569 — 2.93480] = 0.00089, and the round-off error is [¥, + X, — (¥, ® %,)| =
12.9348 — 2.934| = 0.0008.

Since we are chopping, w = B'~" = 107* = 0.001. Hence, from Equation (1.4.6)

‘(-"i +x0) - @O =2p + phx + x) = 0.00587

Thus
l(x, + x) — (& @) = 0.00169 < 0.00587

is true but not very accurate. EEE

4. Truncation error: This error occurs when we truncate the process after a certain
number of steps because. for an exact result, an infinite sequence of steps or too
many steps was required. For example, Maclaurin’s series for e* is given by

2 n

T LT (14.7)
2! n!

Equation (1.4.7) can be written as the iteration
r=ro+s fori= 1,2,
i
with
ro =1 (1.4.8)

This formulation becomes more accurate as we use more and more iterations.
However, because of computational resources, a decision must be made to stop
the iterative process. Truncation error is the error introduced when we truncate
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the process after a certain finite number of steps on a hypothetical perfect computer
that had no round-off errors (all digits were retained). Since we do not have a
perfect computer, more iterations mean more arithmetic operations, and more
arithmetic operations mean more round-off errors and more propagated errors. In
many cases, reducing truncation error means increasing round-off error.

Let us find ¢'? using Equation (1.4.8). Since we cannot go on for ever, we
stop somewhere. For simplicity, let us stop at i = 3. Then

_ LAYy 11y 1 (1Y
n=EntIg) T T a\z) T2
_ 11 +L<l)2+l(l>3
* T 1\2) T 21\2 31\2

We approximate e'” by ri. Thus

1 (1 1(1}Y 1{1} 79
12 ~ = —_f=1 4 —|- el = —
ef=n=1+47 <2) 2! (2) *3 (2) 48

An infinite sequence of steps is required for the exact result. By stopping at i =
3 we introduce a truncation error given by (Theorem A.8)

- (LY L,
2) 4!
where £ is between 0 and 1/2.
Since £ is not known, we estimate the maximum value of e¢ on the closed
interval [0, 1/2]. Thus

i
= 0.00429

lor] < =

244
The actual truncation error = e'* — (79/48) = 0.00289 < 0.00429.

Step 3 After selecting a numerical method, we must carry out the programming of
our numerical method. It is expected that the student is familiar with the rudiments of
programming. The programming language could be Basic, Fortran, Pascal, C, or any
other language.

A program written for a particular set of numbers must be rewritten for another
set of numbers. In most cases, few additional statements are required to write a program
to handle a general case. It will be worth the extra effort. Write out the mathematical
algorithm in complete detail and write the code in a style that is easy to read and
understand. Check your code thoroughly for omissions and errors before heading for
a terminal. Do not rush. It pays to trace through the code with pencil and paper on a
typical and simple example.

Always print the input data and initially print intermediate results to understand
the program’s operations. It helps to have labels for the output. Write a long program
in steps by writing and testing a series of subroutines and function subprograms.

Use comments so that another person can understand what the code does. Insert
blank comment lines in orderto improve the readability of the code. For each subroutine,
explain through comments the parameters used.
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Step 4 The chance of a human being making an arithmetic error is very high, while
the chance of a machine making an arithmetic error is very low. The main concemn is
programming error. Fortunately, some programming errors are repeated many times
during the execution of a program and therefore the existence of those errors are
identified by absurd numerical output. For a complex and lengthy computer program,
it becomes difficult to detect and correct small but important logical programming
errors. This makes dcbugging a very important component of the computer program-
ming process and sometimes it makes a crucial difference in the numerical results.
Therefore, it is extremely important to test a computer program for known results,
since a poorly written computer program can spoil an excellent method both by provid-
ing inaccurate results and by using excessive computer time.

In this text we will discuss numerical methods and analyze them. It is assumed
that the reader will write computer programs for these methods.

NN E X ERC IS ES N

1. Prove that [x,x; — X, ® %] =< |qx)3p + 3u2 + W) where x, and x, are real
numbers and

B'™"  if chopped
=<1
K 5 B'~" if rounded

2. Letx, = 0.12345 X 10°and x, = 0.23456 X 10! Use four-digit chopped floating-
point arithmetic to find X, &) X.. Find the absolute propagated and round-off errors.
Compare the exact error with the upper error bound given in Exercise 1.

3. Addx =0.12345 X 10°and.x; = 0.23456 X 10' using four-digit chopped floating-
point arithmetic. Find the absolute propagated and round-off errors. Compare the
exact error with the upper error bound given by Equation (1.4.6).

4. Prove that

(0 + x2) + 3) + 0) = (@) @F) DX < udx + 4 + 3x + 2x)
+ @6, + 6v + 3x;y + x) + Wdx, + dxp + x5) + A+ xp)

where x,, .vs, X3, and x, are positive real numbers and
B'""  if chopped

=41
B = 1-B"" ifrounded

2

The first term on the right-hand side of the inequality contributes significantly. In
that term x, is multiplied by 4 while x, is multiplied by 2. This and other terms
on the right-hand side of the inequality suggest that the best strategy for addition
is to add from the smallest to the largest.

S. Add x; = 0.36789, x; = 2.5678, x; = 0.12345, and x, = 0.034567 using four-
digit chopped floating-point arithmetic. Rearrange these numbers from the smallest
to the largest and then add them using four-digit chopped floating-point arithmetic.
Compare these sums with the exact sum.
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