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1 Introduction

Although exact analytical solutions to integrals are always desirable, such luxuries are rarely
available when dealing with the real-world systems. Consequently, numerical integration has
become an indispensable tool when evaluating complex designs, and it is far more common for
engineers to obtain solutions numerically rather than through exact mathematical expressions.
This can be especially common when processing random physical data that does not follow any
sort of continuous, deterministic function. It is therefore important to gain an appreciation for
the scope of numerical integration and its power to solve problems in engineering.

A typical text on numerical integration will easily contain hundreds of pages of information
on various integration algorithms, but there are generally three major trade-offs to consider
when choosing a particular one. The first, and most important, is obviously the accuracy of
the numerical approximation. However, no integration scheme is so inaccurate that it cannot
be compensated for by dividing the integration into smaller and smaller segments. Thus, the
second metric to consider is the computational time required to achieve a given accuracy. This
is usually measured in terms of the required function evaluations, or fevals, that the computer
needs to perform while implementing the algorithm. Many advanced schemes exist to provide
very high degrees of accuracy with few fevals, but can often require far more time just to write
the code than to simply grind out on more primitive version. The complexity of the algorithm
is therefore the third major trade-off to consider, and the “correct” choice will always depend
on the nature of the application.

2 Riemann Sums

By definition, the integral of some function f(x) between the limits a and b may be thought of
as the area A between the curve and the x-axis. This configuration is shown in figure 1, and is
written mathematically as

A =

∫ b

a

f(x)dx . (1)

By the fundamental theorem of calculus, we know that continuous functions have an exact
analytical solution. Using F (x) to denote the antiderivative of f(x), this is given by∫ b

a

f(x)dx = F (b)− F (a) . (2)

In practice, it is not uncommon for F (x) to be very difficult (if not impossible) to obtain,
and we are frequently forced to settle for a numerical approximation instead. The simplest
way to obtain such an approximation is through the use of a Riemann Sum, which may be
defined in several different ways. For example, the simplest Riemann Sum is the right-point
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Figure 1: The integral of f(x) from a to b, represented as the area under the curve.

rule, as depicted in figure 2(a), in which the area is approximated by dividing the region into n
little rectangles and then adding up their combined areas. The width ∆x of each rectangle is
then simply given by

∆x =
b− a
n

. (3)

The height of each rectangle is found by evaluating the function at the points xi along the
domain between a and b, where xi is defined as

xi = a+ i∆x . (4)

The total area A is therefore approximated by

A ≈
n∑

i=1

f(xi)∆x . (5)

It is important to note that part of the definition of a definite integral is the condition that
a Riemann sum must approach the true value of A as n→∞:

lim
n→∞

n∑
i=1

f(xi)∆x =

∫ b

a

f(x)dx = A . (6)

The importance of this condition is that it assures us any arbitrary degree of accuracy by
simply adding up the appropriate number of rectangles. Note, however, that we could have just
as easily satisfied this requirement by using the left-point rule, as depicted in figure 2(b). In
this case, the xi points are simply evaluated as

xi = a+ (i− 1)∆x , (7)

and A is again approximated by adding up the appropriate number of rectangles.

3 Error Bounds

When considering a potential rule for numerical integration, it is helpful to establish some sort
of metric to represent the effectiveness of the rule. This is usually accomplished by taking the
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(a) Right-point rule. (b) Left-point rule.

(c) Midpoint rule. (d) Trapezoidal rule.

Figure 2: Various methods for calculating a numerical integral.
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Figure 3: Left-point approximation using n = 1 rectangle.

difference between the integration rule and the true, analytical result. Letting A′ denote the
numerical approximation to the true area A, the numerical error of integration is given by

ε = A− A′ . (8)

Naturally, it is not possible to evaluate ε without knowledge of A itself (and if we knew A,
there would be no need to perform the numerical integral). We can, however, establish a sort
of upper limit that determines the effectiveness of the numerical integration technique. To see
how, remember that the exact area A is given from equation (2) as

A = F (b)− F (a) . (9)

If we now take the number F (b) and express it as a Taylor series expansion around a, we find

F (b) = F (a) + F ′(a)(b− a) +
1

2!
F ′′(a)(b− a)2 +

1

3!
F (3)(a)(b− a)3 + · · · . (10)

Next, we note that the function F ′(a) is simply f(a), and that ∆x = (b − a). Subtracting
F (a) therefore gives

A = F (b)− F (a) = f(a)∆x+
1

2!
f ′(a)∆x2 +

1

3!
f (2)(a)∆x3 + · · · . (11)

So as this expression shows, the area A under a curve can be represented as its own Taylor
series expansion.

Now consider the left-point rule evaluated with n = 1 rectangles, as shown in figure 3.
Clearly, this scenario represents the absolute worst-case accuracy for approximating the area
of the curve under f . The error for n = 1 therefore represents the error bound of the left-
point rule, because the error can only improve as more rectangles are added. Thus, if we take
∆x = (b− a) and xi = a, the approximate area is found to be

A′ = f(a)∆x . (12)

Comparison with equation (11) shows that this is simply the first term in the Taylor series
expansion for A. For this reason, the left-point rule is referred to as a zeroth order approxi-
mation to the area, because it represents the zeroth-order derivative term.
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If we now compute the error term, the result is

ε = −
(

1

2!
f ′(a)∆x2 +

1

3!
f (2)(a)∆x3 + · · ·

)
. (13)

For very small values of ∆x, the f ′ term will tend to dominate the error. It is therefore common
to drop all but the lowest order error term and express the error bound as simply

ε ≈ −1

2
f ′(a)∆x2 . (14)

The importance of equation (14) is that it tells us the relative severity of error we can expect
by approximating the area of a curve with a single rectangle over a very small value of ∆x.
In particular, it shows how smaller values of ∆x will have less error, and how functions with
a small derivative are better approximated. For this reason, constant-valued functions such as
f(x) = c are perfectly evaluated by the left-point rule because their derivatives are identically
zero.

To calculate the error-bound of the right-point rule, we begin with the Taylor series expan-
sion of F (a) around the point b:

F (a) = F (b) + F ′(b)(a− b) +
1

2!
F ′′(b)(a− b)2 +

1

3!
F (3)(b)(a− b)3 − · · · . (15)

Solving for A in the same manner as before then leads to

A = f(b)∆x− 1

2!
f ′(b)∆x2 +

1

3!
f (2)(b)∆x3 − · · · . (16)

Again, we immediately recognize the first term in the series as the right-point rule, thus prov-
ing it is likewise a zeroth-order approximation to the area. It is also important to note the
alternating signs in the series expansion, which will be important later. The total error is then
found to be

ε =
1

2!
f ′(a)∆x2 − 1

3!
f (2)(a)∆x3 + · · · , (17)

with alternating signs out to infinity. For small values of ∆x, this approximates into

ε ≈ 1

2
f ′(b)∆x2 , (18)

which is the same the left-point rule, but with a positive sign in front. The significance of the
sign is that functions with positive slope will give positive error (ie, overestimated) when using
the right-point rule, and negative error (underestimated) when using the left-point rule.

4 Midpoint Rule

In practice, a far more useful integration technique is the midpoint rule, as shown in figure
2(c). The rule works the same as before, but simply replaces the xi terms with

xi = a+
i∆x

2
. (19)

The benefit to this method becomes apparent after computing the error bound, which is readily
found by considering the n = 1 case in figure 4. The approximate area A′ is first divided into
two regions around the point c = b+a

2
such that

A′ = A1 + A2 . (20)
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Figure 4: Midpoint approximation using n = 1 rectangle. The point c is defined by b+a
2 .

The area defined by A1 represents a right-point rule at the point c, while the area A2 represents
a left-point rule defined at the same point. Both of these give the same value of area, which is
simply

A1 = A2 = f(c)
∆x

2
. (21)

The total error in A′ is then found by simply adding the individual errors from A1 and A2.
Adding equations 13 and 17 with a width of ∆x/2 therefore gives

ε = −2

(
1

3!
f (2)(c)

∆x3

8
+

1

5!
f (4)(c)

∆x5

32
+ ...

)
. (22)

For small values of ∆x, this simplifies into

ε ≈ − 1

24
f (2)(c)∆x3 . (23)

As this expression shows, the midpoint rule is a first order approximation for A because
the error bound is dependent on the second derivative of f . This means linear functions such
as f(x) = mx + b are perfectly evaluated by the midpoint rule. As a result, the midpoint
rule provides an extra order of accuracy by simply redefining the position of each xi. For this
reason, the midpoint rule is nearly always preferable to either the left- and right-point rules.

5 Trapezoidal Rule

Another useful rule is the trapezoidal rule, which is depicted in figure 2(d). Under this rule,
A′ is evaluated by dividing the area into little trapezoids and then adding up their corresponding
areas. From this definition, it is straightforward to show that

A′ = ∆x

[
f(a)

2
+
f(b)

2
+

n−1∑
i=1

f(xi)∆x

]
, (24)

where xi = a + i∆x. The approximate error bound for the trapezoidal rule is derived in a
simlar manner as the others, but we shall skip ahead to the end result:

ε ≈ − 1

12
f (2)(c)∆x3 . (25)
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Interestingly, the trapesoidal rule is a first-order approximation just like the midpoint rule.
In fact, based on the scale factor in front, the midpoint rule is even slightly more accurate.
This might make one wonder why we should even bother with the added complexity of the
trapezoidal rule when the midpoint rule is just as good. The answer to this lies beyond the
mere error bounds of the approximation. For example, one common routine for numerically
evaluating an integral is to iteratively double the precision until a specified error bound is
reached. The trapezoidal rule is ideal for this because half the points are already evaluated,
and the computer need only perform a new set of function evaluations in between the original
xi’s. Such an algorithm would not be as efficient with the midpoint rule because it would have
to reevaluate the function at every new xi along the domain. So depending on the application,
the trapezoidal rule can still hold merit over the midpoint rule.

6 Higher Order Rules

The field of numerical integration is very rich, and great efforts have been made to achieve the
highest possible accuracy with each numerical computation. For example, the simplest second-
order approximation is called Simpson’s Rule and works by connecting the xi points with
second-order polynomials. However, there is no need to stop here, and integration rules have
been developed to order four, five, and beyond. The trade-off with such rules is usually with the
complexity of the algorithm, and eventually one must decide where it is worthwhile to simply
perform more fevals rather than try to squeeze the most out of each computation.

Singularities present an interesting problem when using Riemann sums, and a special form of
numerical integration called Gaussian quadrature must be employed in order to reasonably
approximate an area. Discontinuities are also a major concern, and must be carefully considered
as well. However, such topics are best left for a course in numerical methods.

7 2D Integration

Integration in two dimensions works very much the same as in one dimension, only now it
represents the volume V between some function f(x, y) and a bounded region R in the x-y
plane:

V =

∫∫
R

f(x, y)dydx . (26)

For introductory purposes, it helps to limit R to the simple rectangular area depicted in figure 5.
We shall therefore define R as the region bounded by a ≤ x ≤ b and c ≤ y ≤ d, leaving the
generalized case for an advanced course. The volume is then expressed in the double integral

V =

∫ b

a

∫ d

c

f(x, y)dydx . (27)

Just as there exists a wide variety of techniques for evaluating integrals in one dimension,
there is an equally wide variety for two dimensions and beyond. We shall therefore limit the
discussion to an introduction of the two simplest methods, which are the 2D midpoint rule and
the 2D trapezoidal rule.

7.1 2D Midpoint Rule

The 2D Midpoint rule begins by dividing the regionR into a set of little rectangular subdomains,
each with length ∆x and width ∆y. As illustrated in figure 6, the x-dimension is divided
into n subdomains while the y-dimension is divided into m, with the center point of each
rectangle given by (xi, yj). The volume of the box at this subdomain is then simply given
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Figure 5: 2D region R defined by a ≤ x ≤ b and c ≤ y ≤ d.

by f(xi, yj)∆x∆y, and the total volume V is approximated by adding up all the little box
elements:

V ′ =
n∑

i=1

m∑
j=1

f(xi, yj)∆x∆y , (28)

where

xi = a+
i∆x

2
and yj = c+

j∆y

2
. (29)

7.2 2D Trapezoidal Rule

The division of R by the 2D trapezoidal rule is shown in figure 7, where the feval points are
given by

xi = a+ i∆x and yj = c+ j∆y , (30)

with i = 0, 1, ... , n and j = 0, 1, ... ,m . In other words, the vertices represent the four corner
of each subdomain. The volume of each 3D trapezoidal element is found by simply taking the
average of the height at all four vertices and treating this as the equivalent “height” of a box.
Each sub-volume may then be written as

Vij =
1

4
∆x∆y [f(xi−1, yj−1) + f(xi, yj−1) + f(xi−1, yj) + f(xi, yj)] . (31)

Extending this single volume out to the entire region R therefore gives

V ′ =
∆x∆y

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)]

+
1

2
∆x∆y

[
n−1∑
i=1

f(xi, c) +
n−1∑
i=1

f(xi, d) +
m−1∑
j=1

f(a, yj) +
m−1∑
j=1

f(b, yj)

]

+ ∆x∆y
n−1∑
i=1

m−1∑
j=1

f(xi, yj) . (32)
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Figure 6: Subdomains for the 2D midpoint rule and their corresponding feval points.

Figure 7: Subdomains for the 2D trapezoidal rule and their corresponding feval points.
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Although this algorithm may appear complicated, it is really nothing more than an expres-
sion of how many averages each vertex contributes to. Namely, the four corners only contribute
to one subdomain each, while the outer edges contribute to two subdomains, and the inner
points all contribute to four subdomains. This expression also demonstrates the difference in
complexity between various integration methods. From a purely computational perspective,
both the 2D midpoint rule and trapezoidal rule require the same number of fevals to complete.
Yet from an implementation perspective, the 2D trapezoidal rule requires much more thought
and attention to physically program and debug the code. But just as the 1D case, scaling is
much easier to do with the trapezoidal rule than it is with the midpoint rule. Which method
one chooses to employ will therefore depend on the nature of the application.
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