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GAUSS QUADRATURE FORMULA: AN IMPLEMENTATION

--=- Program for computing Complex Integrals using Gauss -
--- method (with 5 points). -
--- Developed by Dr.Gianluca Lazzi, 1985 -—-

program Integral

implicit none

We use Gaussian integration with 'm'=9 points: -—=
--- Abscissas are stored in the vector 'x'; -
~-- Coefficients are stored in the vector 'h’'. -—-

integer m
parameter (m=3)
real*8 h{m),x(m)

--- Remind that abscissas are symmetric respect x=0 and -~
--- are defined for the range -l<x<l. -——-
--- If you want to improve the quadrature formula, you -=-
--- must increase the number ot points m. -—
--- You can find abscissas and weighting factors in the -—-
--- book : Abramowitz - Stegun, “Handbook of -
--- Mathematical Functions~”. -—-

data h(l),h(2),h(3),h(4)/0.0812743883,0.1806481606.0.2606106964,
. 0.3123470770/

data h(S),h(G),h(7),h(8),h(9)/0.3302393550,0.3123470770,
.0.2606106964,0.1806481606,0.0812743883/

data x(l),x{2),x(3),x(4)/—0.9681602395,—0.8360311073,
(—0.6133714327,-0.3242534234/

data x{(5),.x{6) . x(7},x(8}),x{(9)/0.,0.3242534234,0.6133714327,
,0.8360311073,0.9681602395/

--- 'estrl' and ‘estr2'ars, respectively, left and right -——
—-——- extreme of the integral. ---
-—- 'prec’' is the relative requested precision : -—-
-——— handle this value carefully. The result is very ---
-——- accurate from the rirst step; so, sometimes, it is -—-
-—-- impossible to obtain the requested precision because -———
--- this is computed by the relative difference ———
- between previous and actual value of the integral. —_—
--- The program will stop if a maximum number of -—-
- intervals is reached. In this case you probably -——-
-—— obtain the highest accuracy. -——
--- 'monei’ is the function that compute the integral. ---
--- ‘integrand' is the integrand function: it may be -
-—- complex. ---
--- 'result’ will contain the result of the integration. -——

real*8 estrl,estr2,prec
parameter (estrl=-10 ,Lestr2-10 ,prec=1.E-§}

complex*16 monoi, integrand, result



external integrand

c
C --- Begin of Main Program ---
C
result=monoi {integrand, h, x, estrl, estr2,m, prec)
write{6,*) ‘'Result=', result
stop
end
C
C ~--- Routine for computing monodimensiocnal complex integrals
C
C ~--- ‘itg' is the integrand.
C --- ‘'int' is the actual value of the integral.
C =--- 'itg' is the value of the integral at the previous step.
Cc -- 'n’' is the number of intervals in which is sub-divided
c -- the interval estr2-estrl.
€ ~-- 'support' is the abscissa for the integrand.
complex”16 function monoi{itg,h,x,estrl,estr2,m, prec)
complex*16 itg,int, itp, support
integer m,n, conl, con2
real*8 h(m).x(m),prec.estrl, estr?
external itg
C
int=(0.,0.)
itp=(0.,0.)
itp=(0.,0.)
C --- Start with 16 intervals (9 points for each one) ... -
n=16
C --- and now start the cycle | -—-
10 do 20,conl=1,n
do 20,con2=1l,m
Support=({(estrZ-estrl)/(2."n)) " (x{con2)+2.*conl-1)+estrl)
int=int+h(con2) *itg(support)
20 continue
int=int*((estr2-estrl}/{(2.*n})
write(6,*) 'Number of intervals:',n
C --- If the relative precision is not reached, or this is ---
< - the first step, aand the number of intervals is not ---
C --- greater than 65536 (our precision limit}, we ———
C --- increase the number of intervals and restart the -—-
C --- cycle. -——

if ({({abs{int-itp}).gt.(prec*abs{int))).or.(n.eq.16)}.

.and. {n.le.65536)) then

itp=~int
n=n*2
int=(0.,0.)
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goto 10
end if
monoi=int
return
end

--- Definition of Integrand
--- Note that the integrand may be a complex function
-—- of complex variable!

complex*16 function integrand(x)
complex*16 x

integrand=x

return

end



GAUSSIAN QUADRATURE FORMULA: RESULTS

To test the proposed routine, results for several integrals are
presented in the following.

Integral Exact Value Program Result
10

jxax 0 8.59E-15

-10

szdx 666.666666 666.666666

-10

10

jx3a!x 0 4.97E-14

10

jx“dx 40000 39999.999909

~10

Furthermore, good results are obtained also for integrals with infinite
extremes. Obviously, in this case we must choice appropriate finite
extremes by a previous analytical study of the integrand. For

example:
sin(ij
1 +10000 2

- J' —)—dx, for which we obtain, by the
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program, the result 0.99998.

For the integral

]t sin(g—) A
— J — LMy =,

T

we obtain by the program the following results:



¢dx = -1.845E-5 - j1 28E-15:

edx = -1.36E-6 - j1.04E-14

e dx=2.27E-7 - j 2.568E-15.

Observe that the last types of integrals are Fourier-type integrals. So,
for example, it is possible to evaluate Fourier-transforms and inverse
Fourier-transforms.



