

ECE 5340/6340 Lecture 5: Gaussian Elimination

METHODS OF SOLVING MATRIX EQUATIONS:

a) Direct

• Gaussian Elimination <<< We will study

• LU Decomposition

b) Iterative

• SOR: Successive Over-Relaxation <<

• Conjugate Gradient Method

GAUSSIAN ELIMINATION

Example: Solve

 3x1 + 2x2 + 4x3 = 19

 2x1 + 6x2 + 5x3 = 29

 x1 + x2 + x3 = 6

Exact solution: x1 = 1, x2 =2, x3 = 3

1) Write as an augmented matrix: A|b

3 2 4 | 19

2 6 5 | 29

1 1 1 | 6

2) Eliminate all but x1 from first equation:

 (3 2 4 | 19)* -2/3

+(2 6 5 | 29)

 0 14/3 7/3 | 49/3 << New second row

 (3 2 4 | 19)* -1/3

+(1 1 1 | 6)

 0 1/3 -1/3 | -1/3 << New third row

 3 2 4 | 19 << New matrix

0 14/3 7/3 | 49/3

0 1/3 -1/3 | -1/3

3) Eliminate x2 from all but second row:

 (0 14/3 7/3 | 49/3) * (-14/3)/(1/3)

+ (0 1/3 -1/3 | -1/3)

 0 0 -1/2 | -3/2 << New third row

3 2 4 | 19 << New matrix

0 14/3 7/3 | 49/3

0 0 -1/2 | -3/2

4) Solve using Back Substitution starting at bottom:

-1/2 x3 = -3/2 � x3 = 3

14/3 x2 + 7/3 x3 = 49/3 � x2 = 2

3 x1 + 2 x2 + 4 x3 = 19 � x1 = 1

5) Check your solution in original matrix:

| 3 2 4 | |1| = |19|

| 2 6 5 | |2| |29|

| 1 1 1 | |6| | 6 |

WHAT CAN GO WRONG (Besides programming error)

• Pivoting

• Scaling

• Ill-conditioning

NUMERICAL ERROR and Floating point arithmetic:

 Reading (Handout)

Computer represents real numbers by truncated real numbers. This

causes numerical errors, which are generally small. IF, however,

you are working in a range where these errors are significant, then

they can cause problems.

Example: Add 1/3 + 1/3 + 1/3 using 4 bit floating point arithmetic.

(Computers are generally 8- or 16-bit in single precision). Exact

answer: 1

 0.3333 = a

 0.3333 = b

 + 0.3333 = c

 0.9999

Now, suppose you had used this sum as a variable in your

program… IF ((a+b+c) = 1) then_do_something, your program

will malfunction because of the floating point arithmetic.

0.9999 does NOT equal integer 1. It is ZERO!

Computers TRUNCATE. They do not round.

Many numerical errors are CUMULATIVE (they get worse as the

problem is larger, or as an iterative solution is allowed to run

longer.)

PIVOTING:

The pivot element should be the largest MAGNITUDE element in

the row.

Example: Solve (upside down step 2 above)

0 1/3 -1/3 | -1/3

0 14/3 7/3 | 49/3

3 2 4 | 19

TO reduce row 3, you would multiply row 1 by 3/0, which blows

up. Pivoting AT EACH STEP will prevent this. If element is not

zero, but is small, numerical error increases.

PARTIAL PIVOTING algorithm:

Interchange rows until largest magnitude element is the pivot

element.

 3 2 4 | 19 <<< This is OK for step 1.

0 1/3 -1/3 | -1/3

0 14/3 7/3 | 49/3

Now pivot for step 2:

3 2 4 | 19

0 14/3 7/3 | 49/3

0 1/3 -1/3 | -1/3

SCALING:

Recall that a matrix represents a set of vectors. If one of the

vectors is significantly longer than the others, this does not affect

the solution IN THEORY, but it causes numerical errors which

affect the solution in practice.

Example: Solve this with 4-bit floating point arithmeetic:

 x1 + 1012 x2 = 1 + 1012

 x1 - x2 = 0

Answer: x1 = x2 = 1

Reduce:

 x1 + 1012 x2 = 1 + 1012 = 1000000000001

 x1 + 1012 x2 = 1012 << (4 decimal places accurate)

 -(x1 - x2 = 0)

 1012 x2 = 1012 << (4 decimal places accurate)

 � x2 = 1

 Substitute into second equation: x1 = 1

 Substitute into first equation (just as legit): x1 = 0

 This solution is flakey!

How do you tell when a solution is scaled poorly, and what do you

do about it?

 The b vector should all be similar order of magnitude. One

easy way of getting this is to divide each equation through by its bi

value. Then the b vector = 1.

 PIVOTING ALGORITHM

At each step of gaussian elimination, put the largest

element in the column on the diagonal.

DO L = 1,M-1 ! which step of the elimination you

are on

c --- Find pivot element and location --

 pivot = 0 ! initialize pivot element

 ipivot = 0 ! initialize pivot row location

 DO I = L , M ! find pivot element

 IF (| a(I,L) | > pivot) THEN

 pivot = a(I,L) ! store new pivot element

 ipivot = I ! store location of new pivot element

 ENDIF

 ENDDO

c --- Exchange Lth row and pivot row to put pivot element on top ---

 DO J = L , N ! for each non-zero element in the row

 holder = a(L,J) ! hold the value currently in the top row

 a(L,J) = a(ipivot,J) ! move the element in ipivot row to top row

 a(ipivot,J) = holder ! put top row element into ipivot row

 ENDDO

ENDDO

SCALING ALGORITHM (One of many methods)

Before your start elimination, find the magnitude of each vector (row in the array), and

make it a unit vector. This makes all the vectors the same size.

DO I = 1 , M ! for Each row

C – Find length of each vector (matrix row)

DO J = 1 , N

 vector_length = vector_length + a(I ,J)
2

ENDDO

vector_length = sqrt(vector_length)

--Scale each vector to a unit length (=1.0) –

DO J = 1 , N

 a(I , J) = a(I , J) / vector_length

ENDDO

ENDDO

