
 

ECE 5340/6340 Lecture 5:   Gaussian Elimination 

 

 

METHODS OF SOLVING MATRIX EQUATIONS:  

a)  Direct 

• Gaussian Elimination  <<< We will study 

• LU Decomposition 

b)  Iterative 

• SOR:  Successive Over-Relaxation <<  

• Conjugate Gradient Method 

 

GAUSSIAN ELIMINATION  

 

Example:  Solve 

 

  3x1 + 2x2  + 4x3  = 19 

  2x1 + 6x2  + 5x3  = 29 

  x1 + x2  + x3   = 6 

 

Exact solution: x1 = 1,  x2 =2,  x3 = 3 

 

1) Write as an augmented matrix:   A|b 

 

3 2 4 | 19 

2 6 5 | 29 

1 1 1 | 6 

 

 

 

2)  Eliminate all but x1 from first equation: 

 

  (3  2  4     |   19  )* -2/3 

+(2  6  5     |   29  ) 



   0  14/3  7/3  |  49/3  << New second row 

 

  (3  2  4     |   19  )* -1/3 

+(1  1  1     |   6   ) 

     0 1/3 -1/3 |  -1/3  << New third row 

 

  3  2  4     |   19     << New matrix 

0  14/3  7/3  |  49/3 

0 1/3 -1/3 |  -1/3 

 

3) Eliminate x2 from all but second row: 

    (0  14/3  7/3  |  49/3) * (-14/3)/(1/3) 

+ (0 1/3 -1/3 |  -1/3) 

    0    0     -1/2  |         -3/2   << New third row 

 

3  2  4     |   19     << New matrix 

0  14/3  7/3  |  49/3 

0     0     -1/2  |         -3/2 

 

4) Solve using Back Substitution starting at bottom: 

 

-1/2 x3 = -3/2  � x3 = 3 

 

14/3 x2 + 7/3 x3 = 49/3 � x2 = 2 

 

3 x1 + 2 x2 + 4 x3 = 19 � x1 = 1 

 

 

 

 

5)  Check your solution in original matrix: 

 

| 3 2 4 |  |1| = |19| 

| 2 6 5 |  |2|    |29| 



| 1 1 1 |  |6|    | 6 | 

 

WHAT CAN GO WRONG (Besides programming error) 

• Pivoting 

• Scaling 

• Ill-conditioning 

 

NUMERICAL ERROR and Floating point arithmetic: 

 Reading (Handout) 

 

Computer represents real numbers by truncated real numbers.  This 

causes numerical errors, which are generally small.  IF, however, 

you are working in a range where these errors are significant, then 

they can cause problems. 

 

Example:  Add 1/3 + 1/3 + 1/3 using 4 bit floating point arithmetic.  

(Computers are generally 8- or 16-bit in single precision).  Exact 

answer:  1 

 

 0.3333  = a 

 0.3333  = b 

      + 0.3333 = c 

         0.9999     

Now, suppose you had used this sum as a variable in your 

program… IF ( (a+b+c) = 1) then_do_something, your program 

will malfunction because of the floating point arithmetic. 

0.9999 does NOT equal integer 1.  It is ZERO! 

 

Computers TRUNCATE.  They do not round.   

 

Many numerical errors are CUMULATIVE (they get worse as the 

problem is larger, or as an iterative solution is allowed to run 

longer.) 

 



PIVOTING: 

 

  

The pivot element should be the largest MAGNITUDE element in 

the row. 

 

Example:  Solve (upside down step 2 above) 

 

0 1/3 -1/3 |  -1/3 

0  14/3  7/3  |  49/3 

3  2  4     |   19   

 

TO reduce row 3, you would multiply row 1 by 3/0, which blows 

up.   Pivoting AT EACH STEP will prevent this.  If element is not 

zero, but is small, numerical error increases. 

 

PARTIAL PIVOTING algorithm: 

Interchange rows until largest magnitude element is the pivot 

element. 

  

  3  2  4     |   19      <<< This is OK for step 1. 

0 1/3 -1/3 |  -1/3 

0  14/3  7/3  |  49/3 

 

Now pivot for step 2: 

 

3  2  4     |   19       

0  14/3  7/3  |  49/3 



0 1/3 -1/3 |  -1/3 



 

SCALING:   

 

Recall that a matrix represents a set of vectors.  If one of the 

vectors is significantly longer than the others, this does not affect 

the solution IN THEORY, but it causes numerical errors which 

affect the solution in practice. 

 

Example:  Solve this with 4-bit floating point arithmeetic: 

 

 x1 +  1012 x2 = 1 + 1012 

 x1 - x2 =  0 

 

Answer: x1 = x2 =  1 

Reduce:  

 x1 +  1012 x2 = 1 + 1012 = 1000000000001  

  

   x1 +  1012 x2 = 1012  << (4 decimal places accurate) 

 -(x1 -           x2 =  0) 

                    1012 x2 = 1012  << (4 decimal places accurate) 

 

   � x2 = 1 

 Substitute into second equation: x1 = 1 

 Substitute into first equation (just as legit): x1 = 0 

 

 This solution is flakey! 

 

How do you tell when a solution is scaled poorly, and what do you 

do about it? 

 

 The b vector should all be similar order of magnitude.  One 

easy way of getting this is to divide each equation through by its bi 

value.  Then the b vector = 1. 

 



  

 
 PIVOTING ALGORITHM 

 

At each step of gaussian elimination, put the largest 

element in the column on the diagonal. 

 

 

DO  L = 1,M-1      ! which step of the elimination you 

are on 

 

c --- Find pivot element and location -- 

 pivot = 0      ! initialize pivot element  

 ipivot = 0     ! initialize pivot row location 

 DO I = L , M     ! find pivot element 

  IF ( | a(I,L) | > pivot) THEN        

   pivot = a(I,L)  ! store new pivot element 

   ipivot = I  ! store location of new pivot element 

  ENDIF 

 ENDDO 

 

c --- Exchange Lth row and pivot row to put pivot element on top --- 

 DO J = L , N       ! for each non-zero element in the row 

  holder = a(L,J)   ! hold the value currently in the top row 

  a(L,J) = a(ipivot,J)  ! move the element in ipivot row to top row 

  a(ipivot,J) = holder  ! put top row element into ipivot row 

 ENDDO 

 

ENDDO 

 

 

SCALING ALGORITHM (One of many methods) 

 

Before your start elimination, find the magnitude of each vector (row in the array), and 

make it a unit vector.  This makes all the vectors the same size. 

 

DO I = 1 , M      ! for Each row 

 

C – Find length of each vector (matrix row) 

DO J = 1 , N 

 vector_length = vector_length +  a(I ,J ) 
2
  

ENDDO 

vector_length = sqrt(vector_length) 

 

--Scale each vector  to a unit length (=1.0) – 



DO J = 1 , N 

 a(I , J ) = a(I , J) / vector_length 

ENDDO 

 

ENDDO 

 

 

 

 

 

 

 


