
ECE 5340/6340: Lecture 4 -- REVIEW OF MATRIX ALGEBRA 

 

Why matrix equations are important in numerical methods: 

 

 
 

SIMULTANEOUS EQUATIONS: are of the form 

 

a11 x1 + a12 x2 + a13 x3 + … + a1n xn = b1 

a21 x1 + a22 x2 + a23 x3 + … + a2n xn = b2 

 

am1x1 + am2 x2 + am3 x3 + … + amn xn = bm 

 

Which can be written as a matrix equation: 
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MATRIX ADDITION:    

 

 

 

 

MATRIX TRANSPOSE: 

 

INNER OR DOT PRODUCT 

 

 

VECTOR DOT PRODUCT 

p = v1•v2 = component of v1 in v2 direction = |v1||v2|cos(α) 

 
(α = angle between vectors) 
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DETERMINANT of a matrix (as it relates to matrix singularity)  

4D: Repeat. 

 

Method: 

1) Find minor matrices by striking row and column. 

2) Multiply by element  

3) Signs alternate +-+-+- … 

 

Determinant:  Defines the “hypervolume” of a matrix. 

 2x2 : area defined by parallelogram of matrix vectors 

 3x3 : volume defined by parallelopiped of matrix vectors 

 

  
 

   

 

• If any two vectors become coincident (2D: parallel / 3D: in the same plane), then the 

area or volume collapses to zero.   

• If you are solving 3 equations in 3 unknowns, you can only solve it if your equations 

(vectors) are independent (not coincident).   

• Thus, if the determinant of the matrix is zero (or near zero), you cannot solve the 

matrix equation.   

• This is called a “singular matrix”.   
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DIAGONAL MATRIX 

  

 

IDENTITY MATRIX 

 

TRIANGULAR MATRIX 

 

 

DETERMINANT OF PRODUCT OF MATRICES: 

 

BANDED MATRIX: 
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SPARSE MATRIX: 

 

 

VECTOR CROSS PRODUCT 
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