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Moment Methods in Electromagnetics for
Undergraduates

LEONARD L. TSAl, MCMBER, IEEE, AND CHARLES E. SMITH, MEMBER, IEEE

Abstroct—Moment methods have recently emerged as one of the most
important tools for the solution of electromagnetic fields problems.
This approach is conceptually simple and easily usable by the practicing
engincer. However, the formal presentation of moment method is
founded in the theory of linear vector spaces which makes it beyond
the scope of most undergraduate electrical engineering cumricula. This
paper documents the expericnce in undesgraduate teaching of moment

“hods in electromagnetics through the solution of integral equations
a “point matching™ or collocation spproach at the University of
sissippi. The main purpose of the paper is to provide a guide for
waching moment methods for the educator who is involved with under-
paduate fickds courses, particularly, the non-ficld theorist. Static and
time-harmoaic examples are prescnted with enough detail for incourss
use.

I. INTRODUCTION

N re-ent years a considerable amount of interest has been

de 4 by the electromagnetic eommunity to the applica-
tion of the moment method {1} for solution of boundary
value problems. The principal reason for the attraction to
this numerical matrix approach is the tremendous versatility
it offers in the treatment of structures of arbitrary configura-
tions. Thus, problems which were hitherto untractable by
classical approaches, such as the scparation of variables
method, are now routinely handled, as evidenced by the
stcady stream of papers using moment methods which now
appear regularly in the literature. Besides its fiexibility, the
moment method has the advantage that it is conceptually
simple and from an applications viewpoint is devoid of compli-
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cated mathematics: thus, this approach is readily usable by

a large group of the electrical engineering community. It is
therefore not difficult to envision the moment method be-
coming even more popular and, in the future, constituting one
of the most important tools for analysis of electromagnetic
problems.

At its inception, the moment method was developed pri-
marily for the researcher [1]. As a consequence, explanations
of its foundations were based on concepts from the theory of
linear vector spaces, with the result that it is beyond the scope
of most undergraduate curricula. Because of its numerous
advantages which have led to its rapid adoption by applica-
tions engineers in the field, the need to incorporate the
moment method in undergraduate courses is gradually
becoming evident. In fact, one recent undergraduate electro-
magnetics textbook [2] devotes two chapters to the treatmen.
of electrostatics problems by matrix methods. While the
advanced researcher finds the formal development of moment
method through linear vector space theory straightforward,
most undergraduate and beginning graduate students at
present educational levels find the transition awkward.
Specifically, no pedagogical algorithm exists to help the under-
graduate student to relate the procedures of the moment
method to either his intuition or former training.

In this paper, a technique for presenting the moment method
in clementary tenns is developed. The vehicle ecmployed is the
elcctrostatics problem of determining the charge distribution
on a thin wire held at a constant potential. The only pre-
requisites necessary are elementary physics and calculus con-
cepts. The development will be seen to evolve from familiar
basic circuit ideas and integral calculus interpretations. The
experiences of the Electrical Engineering Faculty at the
University of Mississippi with this teaching experiment will
be reported. Other sample problems are also supplied.

0018-9359/78/0200-0014500.75 © 1978 IEEE



TSAI AND SMITH: MOMENT METHODS

Il. THE STATIC CHARGE DISTRIBUTION ON A
THIN WIRE AT A CONSTANT POTENTIAL

The ideas of the moment method will be introduced at an
elementary level in this section through the example problem
of determining the charge distribution on a constant poten-
tial wire. Usually, s beginning undergraduate electromagnetic
field course starts by establishing electrostatics concepts. The
notions of charge distributions, p(7'), giving rise to potentials,
& (7). from which fields may be determined should alrcady
be familiar. Thus, the potential due to an electrostatic line

source is
F'
| 0,

4’!60 Ene R
s|ource

o) =— n

where €, is the permitivity of free space, !’ is the distance
measured along the line source, F = (x, y, z) denotes the

observation coordinates, and 7' = (x', »’, z') denotes the source -

coordinates with the distance from (x,y.2) to (', ¥, 2")
given by

Re=lp-Fl=((x-x"V+(y-yP +@-2P)V?
using conventional geometric descriptions. Typical uses of
this relationship are, for example, determining potentials and
then fields due to an infinitely long line charge or to acircular
Joop on which the charge distribution is constant. The
inquisitive student, however, may question the usefulness of
these idealized problems. Specifically, how in practice does
one establish a constant charge distribution? If a battery is
connected to a wire does the resulting charge assume a
constant distribution? The question may thus be posed of

does one actually determine what the char e charge distribution

isinapr ractical probr'm Hence, the stage is set for the intro-
duction of moment methods, through which a myriad of
problems may be solved.

Consider a finite length, straight, conducting thin wire of
radius, g, situated in free space to which a constant potential
of one volt is applied [3] as illustrated in Fig. 1. Because
the wire is conducting, charges are free 1o move, eventually
redistributing themselves in some final manner. If we know
the charge distribution, then Eq. 1 may be used to compute
the potential everywhere. However, it is precisely this charge
distribution which is the unknown to be solved for in this
problem. Let us therefore seek an alternative interpretation
to Eq. 1 in which1Re right-hand side for this problem is
unknown and the left-hand side, @, is known. Since the
potential everywhere is governed by Eq. 1, let the observa-
tion point now fall on the wire where Eq. 1 remains valid.
Here the applied potential, which is known, constrains ®
(7 on wire) to be exactly one voit, and Eq. 1 reduces to an
integral equation of the form,

1 J’"” o) L.
nay .
dreo Sy -yl
for-L2<y<L[2 whete F=y3 F = y'y,dl"=~dy’,and

R =1y - y'l. Toeiterate, whatever the form of the unknown
charge distribution p(y*), it must satisfy Eq. 3, or, equiva-
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Fig. 1. Finite length wize held at a constant potential.

lently, it must cause the potential observed everywhere on

the wite to be exactly one volt. Eq. 3 thus constitutes an

integral equation on which can be solved to determine p'G_Ton
~the wire. _

" Let us next seek a numerical solution to this problem.
Since Eq. 3 applies for observation points everywhere along
the wire, it can be specialized to a fixed point y, on the
wire with the result

1 J‘“’ LICARpY
4neo ~L]2 lyk '}"l
Because y, is constant, the integrand is a function of ¥’ only.
The problem is now the determination of this functional
dependence. Before proceeding further let us recall a famil-
jar concept from integral calculus. The integral of a function,
J(y). may be regarded as the sum of the aréas under rect-
angular steips, each having a height equal to the mean of
[(») over the smp_(_tb;_ess:nce of num:ncalmn:g_;gnon)

Specificall,

L2

y 1)y =f(y)Ay' + f(y2)Ay" + f(¥3)A)'
-Lj2

Q)

t- 4 f(y)Ay t -+ f(yN)AY

®)

Equation $ applies, of course, when f( »') is a known function
but of equal importance it applies even when f(»') is an
unknown, if we interpret integrals as merely the area undera
curve. Hence, from this interpretation of the potential
integral, Eq. 4 may be recast based on Eq. 5 into the form

dmes = Py [21-) [ 7Y +
Tk -yl k=il Iy -yl
A A
Pn - PN — (6)
Ik = yal lye -yl

The wire has been divided up into N segments all of length A
as illustrated in Fig. 2. Over each segment, we can now
regard the linear charge density as an unknown constant, p,.
The idea is that once these unknown constants, p,,’s, are
determined then the charge distribution over the wire will
be specified.

Up to this point, only one equation in terms of N unknown
constants has been Obtaincd for the onc arbmary observation
point, y,, (or match point). It is evident that if a solution for
these NV constants is to follow, then /V lincarly independent
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Fig. 2. Division of the wire into segments with individually constant

chasge distributions (obsesvation or match points can be tepresented
by locations on the y-axis).

equations are required. Because Eq. 6 must hold at all points
on the wire we obtain N equations in terms of N unknowns
by simply choosing, for convenience, N observation points
on the wire as depicted in Fig. 2. The match points y, are
now simply placed in the center of the original A's into
which the source has been divided (primed coordinates).
Applying then Eq. 6 at thesc N match or observation point
locations successively, one obtains a set of N equations as

41[‘08 p|A‘ + p:A‘ .'.-.--.'.._p_N.Af
o=yl In -yl =Nl
A
"4m€, = p'A. + p’A, +--'+ﬂ-—.—
ly: =0l lys -yl ly2 -yl
A A A
4ney = a L ; +—va-
Py =0l e -yl lye = ynl
A A A
WMEg = Py - Pa ; —L @)
lyw =»il lyw = yal lyn - ynl

Eq. 7 then constitutes the /V linear equations which are 1o be
solved for the N unknown constants p,.

he %}Qﬂ of this system of equations with circuit con-
ccpts is O >vidus and we may write it more succinctly in
matrix notation as

lmal[pa] = [Va) ®

where the Ipma terms ate A/l ym = yal, the V,'s are 4neq, and
s, the unknown charge densities. It can now be concluded
that once the matrix equation is solved by any of the several
xtandaﬁcmquauon solution schemes on a digi-
tal computer, the desired charge distribution p(»") will be
known in discrete form, p,;'s.
To recapitulate, the solution of the integral equation in
Eq. 3 fur the charge distribution on a wire at a constant
potential has been accomplished first by dividing the wire
into constant charge segments and then by successively
enforcing Eq. 3 at the centers of these segments. However,
the fact that we chose for convenience match points at the
centers of the source segments docs present a problem. The
astute student will observe that, when the match point coin-
ci  with the source summation index in any one equation
~ i ie., match point equals source point (yx ®ya) Or
denominator, [yy - ¥l = 0, it renders a singular ma-
trix element. For N finute and large, the form of Eq. 6

T

Surtece

Fig. 3. Geomctry for computation of self term.

yields the potential from a collection of N weighted point
charges where 0, = Ap,, and it is therefore not surprising
that we encounter a singularity when the dxagonal term or

self term is sought because we hav

the continuous wire as a collection of point charges
and are seeking the potential at the Jocation
charges.

Evidently, 2 more elaborate treatment is needed for the
dxagona.l'terms or the potential contribution due to a selgment
of charge itself (the previous treatment has been found to be
sufficiently accurate for mutual or non-diagonal terms in
most problems) [3].

The wire geometry originally depicted for the electrostatic
problem in Fig. | shows a finite radiusa. The fact that the
wire is highly conducting means that a uniform potential
exists throughout the wire, which in reality results in a
surface charge density, p,. over the wire surface. This obser-
vation can now be used to compute the self or diagonal terms
of the coefficient matrix through a more accurate approxima-
tion. With the aid of Fig. 3, the self term may be interpreted
as the potential at the center of a uniform tube of an approx-
imate surface charge density p,. Hence,

_s.
one of these

i A2 psadd dy” dy’
& (Tube center) = f J-A/z Ja +y?
42m ©)
where p; = 2nap,. Thus, the desired diagonal term (when
m=n)is
a = 2In(8/a). (10)

If ane recalls that for n1 # 1. lme = A/l Ym = ¥al. he sees
that the final matrix equation’ representing this problem
becomes

VEach coefficient can be interpreted as the normalized potential at
s match point due to a charge source on the ntP segment. Hence, the
basic sub-problem in this type numerical approach can be defined in
terms of the distance mcasured in reference to a coordinate system
focalized on the n'™ source which greatly facilitates the computation
of matrix cocfficients.
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The matrix equation for this problem has becn solved using 104
s matrix inversion program, and the results for a sample case
where the wire length is 1 meter and the radius is | milli-
meter are presented in Fig. 4 for twenty wire segments (i.c.,
s 20 X 20 matrix). Ascan be seen, the charge distribution
on the constant potential wire is hardly constant, and it

" ~XTbits the charactenstic singularity at the ends of the wire.
This finding together now with some qualitative explanations
from the repelling charge viewpoint can hopefully reward the
student for his diligence in undertaking the study of this
problem. With some guidance, the program logic needed is
well within the ability of the typical undergraduate having

8 9

P + coulombs x 10

L
—/

a basic knowledge of computer programming. 84
III. RESuLTS 00
Our formal experience with undergraduates solving the © o o4 o8 8 »
static wire moment method problem has been over a period Length, meters.
of § years in a beginning undergraduate fields course and a Fig. 4. Line charge density, oz, on a wire of radius 1 mm and length
problems oriented laboratory course. The student's prepara- 1 meter ata 1 volt potential (20 unknowns).

tion and background are roughly that found in the statics por-
tion of Hayt's electromagnetic fields text [4]. For the most
part, the students have been second semester juniors in 3
4.year academic program in electrical engineering. On the
average, the response has been quite good with at least 80% of
the class being successful in obtaining the correct solution.
This was true regardless of how the problem was assigned, i.e.,
required, optional, and for extra credit (with all methods
having been tried). Perhaps this is another instance of the
“Hawthome Uncertainty Principle™ as applied to engineering Fig. 5. Finite length bent-wire held at a constant potential of 1 volt.
education [S], where if the students know they are being
given some new instruction material on an experimental basis,
that fact in itself provides motivation for them to cooperate.
Several students have elected to continue on to more
sophisticated problems in a later senior design course, involv-
ing significanly more complex geometries. Some of these

stated in Eq. 1; however, the distance between source point
and field point, R, does not reduce to an expression as simple
as |y - y'l in going from wire segment 1 to wire segment 2.
In this case, the distance between source and uield point is

type problems are covered in the following examples. R=((y-y )V +@-2V)"? (12)

Wire-Type Examples :::;::ss. the potential integral for the bent-wirc problem
There are numerous electrostatic problems of the wire type

which can be solved with relative ease once the basic approach . 1 L, o(1,) L, o))

has been mastered. One such extension of the straight-wire ¢() = aneo LJ, di, + — i @13)

problem of the previous section is the bent-wire problem 0

shown in Fig. 5. The mathematical formulation of this where these are line integrals and /, and /; are measured along

problem is the same as that of the straight wire problem as the corresponding wire segment from the left-most end. If
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one regards these integrals as subareas of rectangular strips as

sup” “ted in Fig. 5, then for the m™ match point on either
gment Eq. 13 becomes

M f dl, NsM j dl,
—_—¢ —_—
2 b ) gt 3 o) 2

n=y a, nepMe) Ay

& ——
1 4xeg

(14

where there are Af equal-width rectangular strips on scgment
1 and N equal width strips on segment 2. Here, 11 represents
the n*® source on either segment 1 or 2 with the related strip
width. A..

The next step in the reduction of Eq. 14 to a system of
linear equations is the evaluation of each of the integrals
present in this equation for each match point. With this more
complex geometry, it has becn observed that one cannot use

“here the simple approximation employed for the integral in
the straight wire problem, and, to maintain numerical
accuracy, the integrals must be evaluated carefully. The basic
sub-problem that is encountered in the integration is presented
in Fig. 6. This intcgration is related to the potential at the
m'™ match point duc to a finite-length source of length A, and
its general form? is

S I B (Y as)
mn a Rmn -A /2 (Um - 1')2 .',2'2")1/1
wt' * reduces to

2In(Afe);m=n(i.e., self terms)

drn + (d5,)} +z’m)”’]
= dium * @rn)® *20)2

m and n on different segments (16)

Ill ”n

In [dmaldma)im and n on same segment
for

R, = distance between m'™ match point and a point on
n* source,

din =ly + A2, a0ddn =l - A2

where I, is related to the true distance between the m* field
point and the center of the n'™ source point.

From Eq. 16, we have [/,,,] of Eq. 8 for the Af + N by
M + N matrix equation representing this bent-wire problem
having Af + N unknown line charge densities. The matrix
equation can be solved by standard matrix solution techniques
to obtain the p,'s for the bent.wire case.

With a | meter wire of radius of 1 millimeter bent in the
middle such that the angle @ is 90 degrees, then from the solu-
tion of the above problem, we find that the charge will
distribute itsclf along the wires as shown in Fig. 7 for V= 1
vol* Ine observes that the charge density decreases over the

.ngth of the bent wire as compared to the straight-wire
is would be expected. This solution treats the actual

2 Numcrical integration can be used, but computation time will be
increascd.

& 4 ‘L. l-’
T a® metch peoint
{/r
$ i '

Fig. 6. Geometry for basic sub-problem for bent wire.
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Fig. 7. Line charge density, o7, versus length on a 1-meter wire bent .
in the middle with @ = 90° for v = 1 volt (20 unknowns). Wire
tadius = | mm.
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Fig. 8. Other wirc-typc problems solved in undcrgraduate courses at
the University of Mississippi.

junction problem at the bend of two wires only in a global

sense; however, for large length-to-diameter ratios the results
are quite good.

Several problems which have also been solved as part of the
requirements of undergraduate courses are presented in Fig. 8.
Note that if the structures of Fig. 8 are above an infinite

ground plane, image theory and the methods discussed here
can be used to obtain solutions.

Two-Dimensional Example

The two-dimensional elcctrostatic boundary-value problem
is of interest in many applications. For example, transmission
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line characteristics can be determined from “static” solutions

¢ ~ommon TEM line configurations. For certain geometries,

any of these problems have been solved analytically using

(face equivalent models. However, numerical techniques can
be used to extend to our knowledge to lines of arbitrary
shapes found in many practical applications. To introduce the
student to numerical solutions for such problems, one can
consider the general two-dimensional TEM problem for
contour (linc) sources in a plane. In such cases, the scalar
potential can be found from a potential integral similar to
Eq.1las

o(y.2)= - J pc(y'.2") In(R)dec. an

2560 contour” ¢

In this equation, p, is the total charge density, R is distance
between a general field point and source point as defined in
Eq. 12, and ¢ is measured along the contour in the plane.

A specific example of this type problem is the two-dimen-
sional, infinitely-thin strip problem shown in Fig. 9. If one
again regards the integral for this problem as rectangular sub-
areas in a numerical sense, then Eq. 17 becomes

T f
é(r.2)= 5 = Z‘x Pn 2, In (R)dc

+ Ni’_” Pn f In (R)dc

meAf+] Ac’

(18)

~here it is assumed that A subareas exist on contour ¢y, N
subareas exist on contour €3, and the pn's are the unknown
amplitudes of the subareas. As before, Eq. 18 represents

N + M unknowns, and a set of NV + M lincar equations can be
Lobtained by considering N + M equally-spaced match points
on each strip or contour. Again, the scalar potential ¢ on
cach stnp isEsumed 10 be known. This set of equations
will be of the same form as Eq. 8, where the individual
coefficient terms derived from Eq. 18 will be of the form

lnn = J- ln(Rmn)dy’- (19)
ba

Here, R nq is the distance from a point on the n'® source to
the m™ field point, (Eq. 12),and 4, is the n'® subarea width
as shown in Fig. 9c. Eq. 19 is integrable for the coefficient
terms, I q. for the infinitely-thin strip problem even for the
self-term (i.e.,m = n). For simplicity subarcas of width A are
assumed in the basic subproblem of Fig. 9¢. If the results of
the integration of Eq. 19 for the Iy, terms are used along with
the assumption that the potential on strip 1 is 1 volt and the
potential on strip 2 is - 1 volt, then a matrix equation of the
form of Eq. 8 can be obtained in terms of the unknown charge
densities, po's. and the V,'s terms of 2meq.

This problem has been assigned to undergraduate students in
junior and senior level courses, and the results of a computer
solution of this system of equations using a matrix inversion
routine, SIMQ?, is shown in Fig. 10 for a number of segments

351MQ is 2 simultancous linear equation solution routine from the
1BM Scentific Subroutine Package.
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Fig. 9. Two-dimensional strip problem.
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Fig. 10. Charge density versus distance for two strips withW/H=5
(Zo = 50 1 from Wheeler's Curves (7]).

per strip of N = M = 3 through 59. If one considers this as a
strip transmission line, then the characteristic inpedance can
be determincd from the computed charge densities as (6]

Zo= (#ofo)m 1C, (20)
where the capacitance per unit length, G, is
0. M
C=Ei=3 pablVs. @1
Vd nsl

In these equations, Q. is the total charge per unit length on
one of the strips, Vg is the potential difference between the
strips, and po and €, relate to the characteristics of {ree space.
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Fig. 11. Two-dimensional N-wire problem (See Reference [6] for
solution).
For this example, a width-to-hcight ratio of 5 was sclccted
for a Z, of approximately 50 ohms based on Wheeler's
impedance curves for a relative dielectric constant of 1 {7].
The Zo's of this line have been computed numerically for
several numbers of segments on cach strip to show the trend in
convergence which are tabulated in Fig. 10 (sce insert).
There are many other important two-dimensional configura-
tions that can be trcated with the approach outlined. One
important case is the N-wirc problem of Fig. 11 which has
becn analyzed by Clements, Paul, and Adams in their study of
dielectric-coated circular wires [8]. () ANTENNA SEOmETAY

Time-Harmonic Example

For the average student, it is difficult to learn several new Q
concepts simultancously. Therefore, the approach to moment L Ve v i term shere
methods for undergraduates has been limited to (1) the
interpretation of an integral as a sum of a finite number of
subareas as presented in basic calculus courses and (2) the _‘ﬁau‘ 8 term snese
concepts of linear systems of equations which have already
been :ncount:’xc\d\: in eléctriccircuits courses_ With this m
approach, the student is simply asked to solve new problems Comporhio B <8y torims

. . A4 e
with a digital computer based on previously attained

knowledge.
When the student acquires advanced knowledge, more of the [8) CURRENT DISTRIBUTION

concepts of moment methods can be introduced as part of a Fig. 12. Thin cylindrical center-fed dipole antenna with radius ¢ and
course without detracting from the normal presentation of length \/2.
course material. Thus, as the student obtains a better under. :
standing of the representation and application of functions In Fig. 12b, a very simple composite or sum of the two term
with series expansions from the study of Fourier series in series for the current of Eq. 22 is presented to show that the

~ signal analysis, one can easily introduce the concept of approximate current does indeed “add up to™ or resemble the
expansion functions or basis functions to obtain moment basic shape of the current distribution measured by Mack on a
method-type solutions for field problems [1]. half-wave dipole antenna [10]. Hence, for the analysis of this

The extension of the integral representation approach used  problem the approximate series representation for the current
previously to the idea of pulse expansion functions with point  of Eq. 22is substituted into the Hallén integral equation,
matching is obvious [1], and this approach has been used with

. Als
success after onc or two problems have been solved with the
integral approach. The use of entire domain expansion func- ,[
tions can casily be related to the Fouricr scrics representation
of functions. a concept that is well-known to students. + V/[2sin kol2]) (23)

In senior-level fields and design courses. we have undertaken
the numcrical solution of a Hallén integral equation for the
current distribution on a thin, center-fcd, half-wave length
dipole antenna as shown in Fig. 12. In this analysis, a
truncated scries expansion proposed by Neff, Siller, and Till-
man (9] consisting of functions defincd over the total length
of the antenna of the form,

I,(2')K(a,2,2') dz’ = - j(4n/n)(C, cos koz
Ale

where 1 is the impedance of the free space, V is the potential
of the delta function excitation, ko is the free-space propaga-
tion constant and /,(z') is the unknown current distribution.
In this case, the approximate kernal of the integral equation
is assumed to be

_exp {~jko[(z - 2')* +4%]'/ }

K@z [-2') +a*)' @

(2= 3 B sin (unf 1 - 121), @2

&, where a is the radius, z is an observation or field point, and

2’ is a source point. The Hallén formulation, which has been
is used where H = N4, investigated extensively in the literature, is normally derived
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in a simplified form in the class prescntation as a boundary

duc problem. Now, if Eq. 22, which represents the current
qistribution, is substituted into Eq. 23, one cquation in terms
,f three unknowns is obtained, i.c.

A/a
i B, [ ﬁ"(?ﬂ(’\l‘*' lz'l))K(a.:.Z')d:'

n=l AJ4 A

—— TwoJorm Thoory
oo~ desswed Duts (Mach)

jan 214
+£:;C. cosk°z=-l

sink.,l.jl (25)

where B,, B;, and C; arc the unknowns. Threc equations in
terms of the three unknowns can be obtained as before by
evaluating Eq. 25 at three poims in 2, i.c., point matching. Fig. 13. Current on the upper halt ;-1 3 ln.m' ;\ ave dipole antenna for
These points are normally equally spaced to obtain indepen- ald=1.022 % 10

dent equations, such asz = 0, /8, A/4. A matrix equation of

there V= 1 volt: Subscquent solution of Lq. 28 gives the
the form of Eq. 8 can now be generated from the / w : q q.-5¢
co: g fu:mom 8 mn values of B, = (0.00940354.- 0.00357370) and B =

(0.00045342,-0.00203125) as the complex coefficients of
the scries expansion. A plot of the current distribution as a
function of z computed from the serics representation of
Eq. 22 with the computed values of B, and B: is presented
in Fig. 13 along with Mack’s measured data [10]. These

AJe - results are quite accurate when compared with actual measure-
J- sin (‘ )K(a,z,,,.z')d:';

. 1‘(:).-ulwan'n

4
i-n—"c-')s KoZm (26)

and

—(N4-lzmD) ments of current distribution which further emphasizes the
A educational benefits to the student of solving a “'real-world™
n=1,2 (27) ﬁcld§ problem from a mathematical mon.:lcl.
) This approach, as well as pulse-expansion and point
/here m is the m™ match point. Here, n is the n*® term of the matching, has been extended by senior students to solve time
series expansion for the current which is a source of specified  harmonic problems of general arrays of parallel wire antennas,

A/

distribution over the entire length of the antenna. In this wire antennas with electrically-small top loading, and other !
context, the index, 1 signifies the **harmonic” of the sinu-. problems related to wire antenna structures with parallel
soidal expansion function used in the approximation. Evalua-  currents. These type problems are much morc complex than
tion of the coefficients of the linear system of equation any of the previous problems, and, therefore, undergraduate
describing this problem are now complex numbers for the students normally are assigned such advanced problems only
time-harmonic problem rather than real numbers as in static as a project in a two semester hour design course.
problems which complicates the programmine somewhat. .

It 15 well 10 note that the evaluation of the integral in Eq. 27 IV. ConcLusions
can inwoduce errors in the solution if it is not treated care- The thesis of this paper on tcaching the undergraduate
fully. However, standard integration routines for complex student numerical techniques for the anulysis of electromag-
functions have been used to obtain these coefficients with netic problems is bascd on the simple and direct procedure for
very good results if an appropriate number of integration solving integral equations [6] which is commonly known as

points are used. The integrand is a very “peaked” function as  point matching or collocation [12]. In fact, this solution
a result of the “delta function nature” of the kernal funcion  procedure is not formulated in terms of moment methods.

when 2" =z, for a small radius, and it is easy to introduce Huwever, the proposcd treatment of such problems is a special

large errors in computing this integral if a major contribution  case of the method of moments. It readily follows that the

of the integrand is omitted because of poor selection of the telated functional equations can be reduced to matrix equa-

number and placement of integration points [11]. tions similar to those derived in the previous sections of this
The simple 3 X 3 matrix equation, which can be generated paper through the formal application of moment methods.

from the evaluation of Eqs. 25, 26, and 27 for this problem, The emphasis in the presentation of the “point matching”

is readily solved for B,, B;, and C; using matrix solution approach is on obtaining a solution for a “'real-world™ ficlds

routines for complex numbers. For the half-wavelength problem of practical gecometry based upon the student’s

antenna with radiusa/A = 7.022 X 1073, the related matnix existing mathematical background rather than on the unified
‘uation becomes (note form; (real, tmaginary)) theory of the solution of ficlds problems by moment methods.

(6.88297898,-1.85131747) (2.80690163,-1.76841739) (0.0,0.03333333)} [#, 0.0,0.00000000
(4.89364523,-1.67814235) (5.95102084,-1.60983890) (0 0 0.02357023)1 (B, = 10.0,-0.0117851! (28)
(0.66511328 -1.21834007) (1.12957917.- 1.18771271) (0.1, ).00000000)] | C, 0.0,-0.016600067
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If solutions are obtaincd from such problems as outlined in the
results scction, they should serve to motivate the student to
searn more about the rather “abstract” arca of field theory
while providing the soon-to-be graduate engineer with a_
:ﬂ”«‘“‘ tool for the solution of practical problems,

Student response to this departure from the traditional
presentation of analysis of ficlds problems has been excellent
as described earlier. We are continuing to evaluate the impact
of this technology on our educational program and its effect
on our practicing graduates. This has led to the compilation
of the examples that have been used in the classroom to 1)
document the results of an educational experiment on
teaching numerical methods in electromagnetics to under-
graduate§ and to (2) provide the educator involved in fields
courses a simplified approach (or guide) to teaching moment
methods to undergraduate students.

In conclusion, it should be added that the integration of this
new instruction technique in any program should be tempered
by a comment made carlier by Schelkunoff on teaching
electromagnetics where he indicated that ““we should intro-
duce new physical and mathematical concepts gradually, as the
occasion demands, and start using new mathematical tech-
niques when it becomes obvious that they are really needed”

(13).
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