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Implementation of Transparent
Sources in FDTD Simulations

John B. Schneider,Member, IEEE,Christopher L. Wagner, and Omar M. Ramahi

Abstract—Sources can be embedded in a finite-difference time-
domain (FDTD) grid in any one of several ways. Depending on
the particular implementation, the embedded source corresponds
physically to a hard field source (applied field), a transparent
current source (impressed current), a finite-impedance voltage
source, or some other physical excitation. While the implemen-
tation of any of these sources is a straightforward procedure in
FDTD simulations, ensuring an accurate correspondence between
the physical source and its numerical implementation is challeng-
ing. In this work, we describe the implementation of a new field
source, referred to as a transparent field source, that couples the
same fields into the FDTD grid as a hard field source. Unlike
the hard field source, however, the transparent source does not
scatter energy, i.e., the usual FDTD update equation applies to
the source node. The implementation is described both in terms
of a single node and in terms of an array of nodes. The latter is
discussed in the context of parallel-plate waveguide excitation.

Index Terms—FDTD methods.

I. INTRODUCTION

ENERGY can be coupled into a finite-difference time-
domain (FDTD) grid by external or internal sources.

When a source is external to the FDTD grid, the energy
radiated by that source, i.e., the incident field, is coupled
into the grid usually by means of a total-field/scattered-
field formulation or a scattered-field approach. In the total-
field/scattered-field formulation [1] the grid is divided into a
total-field region and a scattered-field region and the incident
field is introduced over the boundary between the two. In the
scattered-field formulation [1], [2], the scattered field radiates
directly from any material that differs from the background
medium.

For many simulations, however, the source of energy must
be embedded within the grid. For example, excitation of
resonators or antennas requires that the source be positioned
within the FDTD grid. A popular source implementation is
known as a “hard” source (e.g., [1, Sec. 6.4]) which is
implemented by specifying the field at a given node with
a temporal driving function. Since the update equation does
not apply to this source node and its value is fixed solely
by the driving function, it scatters any energy incident upon
it. In certain applications, scattering from the source node
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is a spurious artifact of the source implementation which
degrades the quality of the simulation. One approach to
eliminating source scattering requires the use of a pulsed
driving function that goes to zero after a finite duration. Once
the driving function is zero, the value of the source node
is set by the update equation. For this approach to succeed,
the duration of the driving function must be shorter than the
time it takes for energy to travel from the source node to
any material discontinuity and back again. However, in many
circumstances this requirement is overly restrictive. In this
paper the implementation of a source that radiates the same
energy as a hard source, but that does not scatter energy, is
presented. We call such a source a transparent field source.

A node in an FDTD grid that has the same material proper-
ties as its neighbors and that is governed by the standard FDTD
update equation does not,per se, scatter energy. Therefore, it
appears that one may simply implement a transparent field
source by setting the value of the source node equal to the
sum of the value returned by the update equation and the value
of the driving function. Unfortunately, although this approach
yields a node that does not act as a scatterer (and in that
sense is transparent), the energy that it couples into the grid
may bear little resemblance to that of a hard field node. A
source implemented in this way is, in fact, an injected current
and we label such a source a current source. In applications
where one measures the energy coupled into the grid and then
normalizes by that measured value (as is done when obtaining

parameters), the distinction between a field source and a
current source is inconsequential. Thus, in applications where
one merely wishes to characterize the spectral properties of
a given device and where one properly normalizes by the
measured signals, a current source may provide sufficient
excitation to characterize the system under test. Nevertheless,
one should be aware that the source of energy corresponds
physically to a current source rather than a field source. (In
[3] and [4] such an additive source was described but the
source was mistakenly identified as a field source. However,
additive and hard source were correctly identified in [5].)

The transparent field sources described here have their
greatest utility when one needs to specify the field (either
electric or magnetic) that excites a structure. For example,
consider a problem in which one must determine the radiation
from a horn antenna that is excited via a waveguide feed.
Further assume that, in the absence of any discontinuities,
the field in the feeding waveguide is given. Thus, the field
incident on the “throat” of the horn is fixed. The simplest
way to model such a problem is to “hard-wire” the known
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field at the horn throat. Unfortunately, such a model does not
accurately reflect the true physical system because the hard-
wired field source, which is perfectly reflecting, masks the
effects the feeding waveguide has on the radiation. Another
approach to modeling this problem is to include a section
of the feeding waveguide in the model and again employ
a hard field source to excite the waveguide. However, this
can be computationally costly since one must ensure that the
source is causally or spatially isolated from any reflections
that occur at the horn. An alternative approach is provided by
the transparent field source. The field can be specified right
at the termination of the waveguide, i.e., at the horn throat.
To one side of the source would be the horn and to the other
would be a small section of the feeding waveguide which is
then terminated with an absorbing boundary condition. This
approach ensures the model will include the loading of the
feed while not significantly increasing the cost.

The transparent field sources presented here should also
prove useful in applications involving nonlinear materials. For
linear systems, one has the option of using almost any exci-
tation to measure a system transfer function. Then, from the
system transfer function one can obtain the system response
to other excitations that may be of interest. On the other hand,
for most nonlinear systems one typically does not have this
option and must use the excitation of interest to determine the
system response. The fact that the transparent field sources
described here permit one to introduce, in the time domain,
a given excitation into a computational domain (without any
concern for how the source nodes “load” the system) makes
them ideal for such nonlinear applications.

As shown in this paper, it is possible to record a grid
impulse response at the source node and then construct a
transparent source that couples into the grid the same field
as a hard field source. The impulse response is measured at
the source node and is fundamentally different from the time-
domain Green’s function (which is, of course, itself an impulse
response, but one for which the source and observation points
are not collocated). In one dimension, the impulse response
is of finite duration when using the Courant limit. In two and
three dimensions, and in one dimension for Courant numbers
other than the limit, the impulse response is infinite in duration.

Perhaps the simplest way to implement a transparent field
source, and the one used in this study, is first to run an
auxiliary simulation that records the impulse response of the
grid. This simulation must use the number of dimensions and
the Courant number that pertain in the problem of interest, but
symmetry can be exploited to reduce the size of the auxiliary
simulation. The transparent field source is then realized, in
part, by convolving the impulse response with the driving
function. Once found, the impulse response can be used for
subsequent simulations that have similar geometries. To realize
a transparent fieldscreen (i.e., a multi-element source that
couples the same energy into the grid as a hard multi-element
source, but which does not scatter), impulse responses must be
recorded over the set of nodes that are members of the screen.

In Section II implementation of a single-node transparent
field source in one dimension is described. In Section III
implementation in two and three dimensions is described.

Transparent field screens are described in Section IV. The
transparent field screen is presented in the context of a parallel
plate waveguide. The analytic solution for the field in the
guide is presented for hard-source excitation. Numerical results
obtained using FDTD simulations with either a hard field
screen, a transparent field screen, or a transparent current
screen are compared to the analytic solution.

II. ONE-DIMENSIONAL TRANSPARENT FIELD SOURCE

Although a transparent source in one dimension is of little
practical use, it is simpler first to consider implementation
in one dimension. We assume propagation in thedirection
and polarization of the electric field so that the governing
differential equations are

(1)

(2)

If a source current density were present, it would be
subtracted from the right side of (1) (and scaled by). These
equations lead to the standard update equations for the FDTD
method in one dimension:

(3)

(4)

where is the Courant number, is the
impedance, and and are the spatial and temporal step
sizes, respectively. For brevity, the spatial offset between the

and nodes is suppressed in the arguments of the discrete
forms, thus is equivalent to

. The maximum value of the Courant numberyields
the minimum amount of numerical dispersion and the longest
simulation duration for a given number of time steps, but the
Courant limit cannot be used throughout the computational
domain for simulations of inhomogeneous regions.

Consider a one-dimensional (1-D) computational domain in
which the source is an electric field node at. A hard source
is realized by setting the source node equal to a given driving
function . The electric field at the source node
is then , but all other nodes are governed by
the update equations (3) and (4). Assuming that the driving
function is zero prior to , Fig. 1 shows the values of
and in the vicinity of the source for the first two time steps.
At the Courant limit, a 1-D FDTD simulation of propagation
in a homogeneous medium is equivalent to a series of shift
operations. Hence, the electric field at nodeand time step

is given by

(5)

Since a hard source only depends on the driving function and
is independent of other propagating fields, it is effectively
perfectly reflecting. Therefore, if a space is inhomogeneous
and a reflected field propagates back to the source, the source
will, in turn, reflect that field.
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Fig. 1. Values ofEz andHy in a 1-D grid when the nodeEz(isrc) is implemented as a hard source. The values assume the Courant numbers is unity.
Node location is given along the top and the time step is indicated along the left. A blank indicates the field is zero.

Fig. 2. Values ofEz and Hy in a 1-D grid when the nodeEz(isrc) is given by the sum of the usual update equation and the driving functionfn.
The values assume the Courant numbers is unity.

With the goal of creating a transparent field source, let us
implement the source as the sum of the driving function and
the update equation that pertains at that node. The value of
the source node is then given by

(6)

(This implementation is essentially that which was described
in [3] and [4].) Fig. 2 shows the values of and in
the vicinity of the source for the first two time steps for this
source implementation. Significantly, the field throughout the
grid cannot be obtained simply by a shifted (or delayed) value
of the driving function. Instead, the field at an arbitrary node
is given by

(7)

In contrast to the hard source, any field that is reflected back
to the source node will pass through it. In this sense the
source node is “transparent.” However, the field that is coupled
into the grid by the source node will not resemble that of
the hard source since the source physically corresponds to a
current source [as is evident by retaining the current density
term in (1)]. To demonstrate this distinction, consider the case

(the Kronecker delta function) for which is
unity and all other values of are zero. In this case the field
that propagates away from the source node is a series of ones
with alternating signs. Since, at the Courant limit, the field
propagates without error, this result is directly attributable to
the source implementation and is not indicative of any error
inherent in the FDTD simulation.

Inspection of Fig. 2 shows that the field coupled into the
grid can be made identical to that of the hard source with
the addition of a delayed sample of the driving function. This
delayed term, which is added to the update equation and the
undelayed driving function as given by (6), cancels the “echo”
of the previous source term (i.e., ) caused by using the
update equation at the source node. Thus, a truly transparent
field source that couples the same field into the grid as the
hard source can be achieved using

(8)

This source implementation produces the fields shown in Fig.
1, but the source node does not scatter (or reflect) any field
incident upon it.

One-dimensional FDTD simulations performed using
Courant numbers other than the limit do not permit such
a simple implementation of a transparent field source. At the
Courant limit, the term that is echoed by the update equation
back onto the source node depends only on the value of
the driving function at the previous time step. When the
Courant number is less than unity, the FDTD algorithm is not
equivalent to a set of simple shift operations nor can it provide
an exact solution because of inherent numerical dispersion.

To facilitate the construction of transparent field sources that
will work for any Courant number, we define a grid impulse
response. First, consider a grid in which the source node is
implemented as a hard source and the driving function is a
Kronecker delta function. We define the grid impulse response
as the values that are obtained using the update equation at the
source node. (The update equation is calculated at the source
node and the returned value is recorded as part of the impulse
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response. However, the value of the source node is not set to
this value—as dictated by the hard Kronecker delta function,
the source node is initially one and zero thereafter.) Thus,
the impulse response is calculated from the previous value
of the source node and its surrounding magnetic field nodes,
but the impulse response does not couple back to the source
node because the node is “hard” and its value is fixed by the
Kronecker delta function. Therefore, the source node is given
by while the impulse response is

(9)

One can obtain the impulse response analytically—it is simply
a polynomial whose order increases with each time step—but
it quickly becomes unwieldy. For example, the first few terms
of are

Note that when , the impulse response is
, but for Courant numbers less than unity, the

impulse response is infinite in duration. Fortunately, it is not
necessary, nor even desirable, to obtain the polynomial form
of the impulse response. Instead, the impulse response can
be obtained numerically via an FDTD simulation using a
homogeneous grid that has the same material properties as
those found at the source node in the problem of interest.
In this simulation, a hard source is driven impulsively and
the impulse response is recorded using (9). Symmetry can be
exploited, since the magnetic field is the
negative of , so that only half the 1-D space need
be simulated. The impulse response can then be found using

(10)

where for .
The impulse response can be used to give the field that

will echo back to the source node if the source node is equal
to the sum of the update equation and the driving function
as given by (6). Assuming such a source and that the first
nonzero value of the driving function is , the source
node at the next time step is ; at the next
it is ; and so on. Clearly, if a
transparent source is to couple the same field into the grid
as a hard source, the source node must, in the absence of any
reflected field, take on the same values as those of a hard
source, i.e., the source node must take on the values of the
driving function and the echoed values must all be canceled
so that , , , etc. The cancellation is
realized by subtracting from the source node at the first
update, subtracting at the next update, subtracting

at the next, and so on. Said another way,

to implement a transparent field source, one must subtract the
convolution of the impulse response and the driving function
from the source node. Specifically, a transparent field source
for an arbitrary Courant number is obtained using

(11)

In one dimension, the impulse response for a magnetic
field node is the same as for an electric field node. In three
dimensions the impulse response is different than in one
dimension, but the impulse response is independent of the
field component (i.e., all six field components have the same
impulse response). In two dimensions, however, the impulse
responses is polarization dependent. Field components in the
plane (e.g., and in a TM problem or and in
a TE problem) have the same impulse response, and out-of-
plane components (e.g., in a TM problem and in a TE
problem) have the same response, but the in-plane and out-of-
plane responses differ. Nevertheless, in all dimensions and for
all components, the transparent field source implementation,
which is described in the next section, is basically the same.

III. T RANSPARENT FIELD SOURCES

IN TWO AND THREE DIMENSIONS

A more general form of (11) that also holds in two and
three dimensions is

-D update equation

(12)

where is any one of the six field components, is the
number of dimensions, is the source location, “ -D
update equation” is the update equation appropriate for the
node in the given number of dimensions, and is the grid
impulse response. With a change in dimension, the update
equation changes and the values of the impulse response
change, but the underlying approach does not change. The
definition of the impulse response also remains unchanged: A
hard source is driven impulsively and the impulse response is
obtained using the update equation at the source node.

In three dimensions, the impulse response approaches zero
and the rate at which it approaches zero depends on the
Courant number. The closer the Courant number is to the limit,
the more rapidly the impulse response approaches zero (here
the rate of fall-off is discussed relative to the number of time
steps, not absolute time). Thus, after a sufficient number of
time steps the impulse response can be approximated by zero
and the convolution with the source function in (12) does not
necessarily have to be done over the entire previous history
of the source function. Instead, it only needs to be done over
the number of time steps the impulse response is treated as
nonzero.
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Unlike in one and three dimensions, the impulse response in
two dimensions does not quickly converge to zero, rather it de-
cays very slowly. This type of response can be problematic for
simulations requiring a large number of time steps. There are
ways, however, to work around this. For example, the decay
rate is so slow that the convolution of the driving function and
the impulse response eventually can be approximated by zero
for a finite-duration driving function with no dc component.
(The convolution of a constant with a signal that has no dc
component is zero. The impulse response decay is slow enough
that for signals of sufficiently short duration, the convolution
may be well approximated by zero.)

Finally, to demonstrate the different behavior of hard and
transparent field sources, consider a two-dimensional (2-D)
TM problem with a single-node field source near a perfect
electric conductor (PEC) plane as shown in Fig. 3(a). The
source driving function is a Ricker wavelet (details of this
wavelet are discussed in the Appendix). The spatial step is
such that there are 32 points per wavelength at the peak
frequency of the wavelet and the temporal step is set so that
the Courant number is the limit. Fig. 3(b) and (c) shows the
electric field in the vicinity of a hard and transparent field
source, respectively, after 220 time steps. In these grayscale
field maps, black corresponds to zero and the brightness of
a pixel is indicative of the absolute value of the electric
field found at the corresponding node. The hard source, Fig.
3(b), while radiating the same primary field as the transparent
source, scatters the reflected field as evidenced by the nonblack
region between the reflected wave and the PEC surface. For
the transparent source, Fig. 3(c), the primary wave is identical
to that of the hard source but the source does not interfere
with the field reflected by the PEC surface.

Unlike in two dimension, in three dimensions for a single-
node source close to a PEC plane the results obtained by
implementing the source as either hard or transparent are not
strikingly different. This is due to the more rapid decrease in
the field as one moves away from the source and the smaller
scattering cross section of the hard source. However, when the
source consists of several nodes, the different implementations
can yield profoundly different results. The implementation of
a transparent multinode source is discussed in the next section.

Finally, note that many individual transparent field sources
can be used within a single simulation (this type of super-
position is distinct from the application discussed in the next
section). Each source introduces energy into the grid without
scattering it. This could prove useful in the excitation of
resonant structures or in applications where one is interested in
mimicking the behavior of a “classic” phased-array with non-
interfering elements (the total radiated field is the superposition
of the individual radiated fields).

IV. EXCITATION OF A PARALLEL -PLATE WAVEGUIDE

The individual transparent field sources considered thus far
couple energy into the grid in the same way as would a
hard field source in an unbounded medium. In this section
we consider the construction of a multiple-element transparent
source (or “screen”) that couples energy into a bound structure

(a)

(b)

(c)

Fig. 3. Electric field about anEz source node in the vicinity of a PEC
surface after 220 time steps: (a) sketch of problem geometry, (b) hard source,
and (c) transparent source.

in the same way as would a hard field screen. The general
principal used to construct individual transparent field sources
still holds for this case. However, impulse responses are now
measured for each node in the screen when the entire screen
is excited impulsively; thus, each source node has its own
(unique) impulse response.

Two-dimensional parallel-plate waveguides have been used
in many FDTD applications and have been especially prevalent
in the evaluation of absorbing boundary conditions (ABC’s)
(e.g., [6] and [7]). Thus, the use of transparent screens is
demonstrated for such waveguides. We first provide the an-
alytic solution for the field at an arbitrary point in the guide
when the source is a hard screen. The solution is presented in
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terms of nondimensional parameters so that it can easily be
scaled to any waveguide and any excitation.

Note that the transparent source screen can be brought
arbitrarily close to a waveguide discontinuity. Any energy
reflected back to the screen will pass through it. Therefore
the computational domain (i.e., the waveguide) must extend
to either side of the transparent source screen. Also, unlike
in a total-field/scattered-field formulation, fields will radiate
to either side of the screen. Thus, a practical problem might
involve a transparent screen placed very close to a waveguide
discontinuity (such as an iris, a flared horn, a bend, or a
dielectric load). On the other side of the screen, an ABC would
be used to absorb the field initially radiated by the screen
and to absorb any field that is subsequently scattered by the
discontinuity and propagated back through the screen.

Although the transparent screen is presented specifically
for 2-D parallel-plate waveguides, the application to three-
dimensional (3-D) waveguides of any cross section follows a
similar development. Furthermore, it is possible to implement
a transparent screen over any aperture so that the aperture ra-
diates as if the fields were “hard-wired.” It is merely necessary
to first determine the impulse responses for the source-screen
nodes.

A. Analytic Solution for a Hard Screen

Consider a parallel-plate waveguide of thickness as
shown in the inset in Fig. 4. We restrict consideration to the
TE mode and assume is specified over the cross section
of the guide at . (In the context of a waveguide, TE
implies the electric field is transverse to the guide axis so
that the nonzero fields are , , and . In the previous
discussion, TE implied the electric field was transverse to the
out-of-plane direction.) To facilitate application to guides of
any dimension, a solution for the field at an arbitrary point is
sought that is expressed in nondimensional units. Assume that

at is given by

(13)

where the “driving function” can be chosen arbitrarily.
The sinusoidal variation in ensures fields only propagate in
the TE mode. The driving function used in the subsequent
analysis is a Ricker wavelet which is described in detail in the
Appendix. (An alternate implementation of a source screen
can be found in [8] and [9] where an impedance is used to
control the introduction of a given mode and the attenuation
of undesired modes.)

Assume, for the moment, that the field over the waveguide
cross section at is harmonic with phasor representation

(14)

where time dependence is understood. The phasor
at an arbitrary point is

(15)

Fig. 4. Field at an observation point nearly midway between the plates and
one-half of a cutoff wavelength in front of the source screen. The cutoff
wavelength�C is equal to the wavelength at the peak frequency of the pulse
�R. The analytic solution (for a field source) was obtained using a 2048-point
DFT. The sampling in the FDTD simulation was such that there were 40 cells
per wavelength at the peak frequency of the Ricker wavelet. The source is
implemented either as a transparent field screen, a hard field screen, or a
transparent current screen. The results for the transparent field screen are
identical to those of the hard screen and the two results appear as a single
curve passing through the analytic results.

where is the guide propagation constant for the TEmode
given by

(16)

and is the cutoff wavelength of the guide. Thus, for
an arbitrarily located observation plane, the waveguide transfer
function is

(17)

To express this in discrete form, assume a uniform spatial step
size so that the distance from the plane is ,
i.e., the distance from the “reference” plane to the observation
plane is cells. Let the cutoff wavelength be ,
so that the waveguide is cells wide. Finally, consider
a time-domain simulation in which the total number of time
steps is (this need not be the number of time steps used in
an actual FDTD simulation). The discrete Fourier transform of
a time series with time steps has a spectral resolution of

so that, assuming is large enough so that
there is no aliasing, the discrete spectrum is obtained by
setting equal to in (17). Thus, ,
which can be written as

(18)

For pulsed excitation, the discrete time-domain field at an
arbitrary location is obtained by taking the inverse discrete
Fourier transform of the product where is
the discrete spectrum of the driving function and where one
must additionally incorporate appropriate scaling to reflect



SCHNEIDERet al.: TRANSPARENT SOURCES IN FDTD SIMULATIONS 1165

the vertical location of the observation point. Thus, the time-
domain field cells in front of the reference plane and
cells above the bottom plate is given by

(19)

Assuming the driving function is a Ricker wavelet and in-
corporating the discrete spectrum given in the Appendix, this
becomes

(20)

where is the inverse discrete Fourier transform, is the
most energetic frequency of the Ricker wavelet, andis the
number of points per wavelength at this frequency.

Equation (20) can be used to determine analytically the field
in the waveguide when the guide is excited by a hard screen
(and the source function is a Ricker wavelet)—the hard-wired
fields at the source screen are synonymous with the fields at the

reference plane. Fig. 4 shows the field at an observation
point obtained from an FDTD simulation employing a hard
screen and obtained from the analytic solution given by (20).
In this case, the width of the guide was such that the
cut off wavelength equaled , which is the wavelength
corresponding to the peak frequency of the Ricker wavelet

. The observation point was in front of the screen
and displaced slightly from midway between the two plates.
The relevant discrete parameters were , ,

, , and . For the analytic
solution, was 2048. Note that the FDTD simulation is
only run for as many time steps as desired (400 steps in
this case) and this number is independent of (which
must be large enough to ensure negligible frequency aliasing
in the analytic solution). Fig. 4 shows excellent agreement
between the analytic solution (circles) and the hard-screen
FDTD results (solid line). Note that the field at the observation
point bears little resemblance to the Ricker wavelet driving
function. The persistent ringing is a consequence of having
a significant portion of the driving function spectrum below
cutoff.

B. Transparent Field Screen

The transparent screen used to excite a 2-D parallel-plate
waveguide consists of a column of nodes. Similar to
(12), each node is updated by the sum of the usual update
equation, the desired source function (i.e., the same source
function that is used when driving the hard screen), and the
convolution of an impulse response with the source function.
However, each node uses a unique impulse response that is

measured specifically for the guiding structure under consid-
eration—the homogeneous-media impulse response discussed
in the previous section is no longer relevant. It is instructive
first to describe how one obtains the appropriate impulse re-
sponses for simple multi-element structures before discussing
the waveguide implementation.

Assume that one wants to radiate fields from a two-node
source. The radiated fields are to be the same as those radiated
in a homogeneous medium when both nodes are set by the
same driving function, i.e., both nodes are hard and have the
same values, but the source itself should be transparent to any
reflected energy. To insure transparency, each node must be
updated using the standard FDTD update equation; however,
to obtain the same radiated field as would be present for
hard nodes, each of the transparent source nodes must, in the
absence of any scattered field, take on the same values as the
hard nodes. As before, a convolution of an impulse response
with the source function is used to cancel the “echoed” terms
that results from using the update equation at the node. The
impulse response for each source node is measured in a grid
in which both source nodes are driven (in the hard sense)
by Kronecker delta functions. And, the impulse response is
recorded using an auxiliary simulation. At each time step,
the value obtained from the source-node update equation is
recorded, but the actual value of the source node is fixed
by the delta function. Once the impulse responses have been
recorded, they would be used in (12) to realize a transparent
two-element source which could, for example, be used to
illuminate a scatterer. Any field scattered back to the source
would pass through it.

This approach can be generalized to any number of nodes.
If all nodes are to be driven by the same source function, then
the impulse responses for all the nodes can be obtained from a
single auxiliary simulation in which each source node is driven
by a unit-amplitude impulse. In the case of the waveguide
source screen, the driving function for each node is the same
except for the sinusoidal variation of amplitude as a function
of [see (13)]. In cases such as this, where the nodes are
driven with the same temporal waveform but are scaled by
different amounts, the impulse response for each node cannot
be obtained by using unit-amplitude Kronecker delta functions
at all the source nodes in the auxiliary simulation. Instead, the
amplitudes of the delta functions must be scaled by the same
value that scales the source function in the problem at hand.
For a two-node source, if one node is given by and the
other by , then the impulse responses are obtained
by driving the first node with the Kronecker delta function

and the other with .
One must also account for the walls of the guide when

obtaining the waveguide impulse responses. To do this, a
simulation is performed in which the walls of the guide
are present and the nodes in the source screen are driven
impulsively (by Kronecker delta functions with appropriate
scaling). The way in which the impulse response is recorded
is the same as before.

As mentioned previously, in [3] and [4] the implementation
of a transparent source in which the source function is merely
added to the update equation was described. When the source



1166 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 8, AUGUST 1998

node is an electric field node, this is equivalent to establishing
a current at that node and hence the field radiated by such a
source is fundamentally different from that radiated by the
transparent field source described here. Note that the only
difference in implementation is that the transparent current
source does not use the convolution that is employed by the
transparent field source. Fig. 4 also shows the field at the ob-
servation point of the waveguide problem described previously
when the source is implemented either as a transparent field
screen or as a transparent current screen. The transparent field
screen yields precisely the same result as the hard screen and
hence excellent agreement with the analytic solution still holds
(the transparent screen results are covered by those of the hard
screen). As is expected, the transparent current screen yields a
different result. [Note that it is possible to obtain the analytic
solution for the fields in the waveguide when the source is
a current screen. In that case, the guide transfer function is
modified by .]

To illustrate further the behavior of a transparent field
screen, consider the problem shown in the inset of Fig. 5 in
which there are two discontinuities in an otherwise homoge-
neous waveguide. The ultimate goal might be, for example,
to determine the field in the vicinity of these discontinuities
under a particular pulsed TEexcitation. Other than the
discontinuities, the guide geometry, the observation point, and
the excitation are the same as those that pertained for Fig.
4. In one simulation the discontinuities are illuminated by a
hard screen and in the other a transparent field screen. The
screens are placed one half of a cutoff wavelength away from
the leading edge of the first discontinuity. The transparent
screen is backed by a homogeneous section of waveguide
that is five cells long. This backing section is then terminated
in an eight-cell perfectly matched layer (PML) [10]. (The
standard split-cell PML with central differencing was used.
No modifications were made to absorb evanescent energy.
However, to test the effects of the ABC, another simulation
was performed where the section of the waveguide behind
the screen was made long enough to causally isolate the grid
termination from the observation point. Those results were
virtually indistinguishable from those obtained using the eight-
cell PML.) The field at the observation point for the two
simulations is shown in Fig. 5. The large ringing seen in the
hard-screen result is a consequence of the trapping of energy
between the discontinuities and the screen itself, i.e., it is an
artifact of the source implementation and not truly indicative
of the way in which the discontinuities themselves trap energy.
The result obtained using the transparent source, on the other
hand, provides an accurate indication of the behavior of the
discontinuities in an otherwise uniform segment of waveguide.

V. CONCLUSIONS

By convolving the driving function and a grid impulse
response, 1-D, 2-D, and 3-D transparent field sources can be
created that radiate the same fields as hard sources but that
do not scatter energy themselves. Multiple transparent field
sources can be used in the same simulation and, if necessary,
used in adjacent nodes. This permits the creation of a wide

Fig. 5. Field at an observation point in a guide with two discontinuities. The
inset figure shows the parallel-plate waveguide geometry. Dimensions are in
number of cells. The small circle 20 cells in front of the screen indicates the
location of the observation point. The excitation is such that there are 40 cells
per wavelength at the peak frequency. The source screen is implemented either
as hard or transparent yielding the dotted line and the solid line, respectively.

variety of excitations that would be difficult or impossible
to achieve otherwise. Transparent field sources also can be
used to finely control the excitation of resonant structures
without affecting the resonances. Though more expensive to
implement than hard sources, the impulse response required
to implement a transparent field source must be calculated
only once and can be saved for subsequent simulations. The
cost of the convolution is typically small compared to other
computations for realistic 2-D and 3-D simulations.

APPENDIX

The Ricker wavelet is used for the driving function
in all the simulations presented here. The Ricker wavelet is
equivalent to the second derivative of a Gaussian; it is simple
to implement; it has no dc component; and, its spectral content
is fixed by a single parameter. The Ricker wavelet is typically
written

(21)

where is the peak frequency and is the temporal delay.
The peak frequency is the frequency with the greatest spectral
content. The delay can be set to any desired amount, but it
is convenient to express it as a multiple of . Here we
use . The FDTD simulation is assumed to start
at , but is not zero for . However, with a
delay of , is bound by 0.001, which is
small compared to the peak value of unity. Thus, the transient
caused by switching on at is relatively small. (For
applications that demand a smoother transition, the bound on

can be made arbitrarily small by increasing.)
The Fourier transform of (21) is

(22)
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Fig. 6. Normalized spectrum of the Ricker wavelet withfR = 1 Hz. The
corresponding temporal formp(t) is shown in the inset box. For other values
of fR, the horizontal axis in the time domain is scaled by1=fR. For example,
if fR were 1 MHz, the peak would occur at 1�s rather than at 1 s. In the
spectral domain, the horizontal axis is directly scaled byfR so that if fR
were 1 MHz, the peak would occur at 1 MHz.

The functions and are shown in Fig. 6. For the
sake of illustration, we have arbitrarily chosen to be 1 Hz.
Different values of change the horizontal scale but they
do not change the general shape of the curve. To obtain unit
amplitude at the peak frequency, has been scaled by

.
In an FDTD simulation the discrete function

is used instead of the continuous one. This function can be
expressed in terms of dimensionless quantities as follows.
First, assume a uniform spatial step ofand let the Courant
number be . Further assume that the spatial step size
is such that there are spatial steps at the wavelength
corresponding to the peak frequency of the Ricker wavelet,
i.e., . While the value of is dictated by the
stability limit, is chosento ensure that the peak frequency
is sampled at points per wavelength. Writing ,

, and , one obtains

(23)

Letting time be and expressing and as in (23),
the discrete form of (21) can be written as

(24)

The parameters that specify are the Courant number
and the points per wavelength at the peak frequency. This
function appears to be independent of the temporal and spatial
step sizes, but it does depend on their ratio via the Courant
number.

For a time-domain simulation in which the total number of
time steps is , the discrete spectrum is given by
with replaced by in (22). Making this substitution

and using (23) yields

(25)

Again, this is independent of the spatial and temporal step
sizes (except via their ratio in the Courant number), but it
does depend on the additional parameter. As was the case
for (18), (25) is based on the assumption that is large
enough so that no frequency aliasing occurs. However, this
number is not tied to the number of time steps in any actual
FDTD simulation. It merely has to be sufficiently large for
purposes of obtaining the unaliased analytic solution.
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