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'_ Advanced Coupling Matrix Synthesis Techniques
for Microwave Filters
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Abstract—A general method is presented for the synthesis of
the folded-configuration coupling matrix for Chebyshev or other
fiitering functions of the most general Kind, including the fully
enonical case, e, N prescribed finite-position transmission

“geros in an Nth-degree network. The method is based on the
N 4+ 27 transversal network coupling matrix, which is able
#o accommodate multiple input/output couplings, as well as the
direct source—load coupling needed for the tully canonical cases.
Firstly, the direct method for building up the coupling matrix for
ghe transversal network is deseribed. A simple nonoptimization
process is then outlined for the conversion of the transversal
matrix to the equivalent “N 4 27 folded-configuration coupling
_matrix. The folded matrix may be used directly to realize mi-
aowave bandpass filters in a variety of technologies, but seme
of the-= could require awkward-to-realize cross-couplings. This
 paper -oncludes with a description of two simple procedures
for transforming the transversal and folded matrices into two
povel network configuratinns. which enable the realization of ad-
" yanced microwave bandpass filters without the need for complex
fter-resonator coupling elements.

Index Terms—Asymmetric filtering functions, Chebyshev

characteristics, circuit synthesis methods, coupling matrix,
sicrowave filters, transversal network.

[. INTRODUCTION

le [1i. a recursive method for deriving the transfer and
reflection polynomials for Chebyshev filtering tunctions
m prescribed finite-position transmission zeros (TZs) wus
Pesented. This was followed by the synthesis methods for
e corresponding N x N7 coupling maurix, ready for the
ization of a microwave filler with rcsonators arranged s
plded cross-coupled array.- It was mentioned in [1] that.
ough the polynomial synthesis procedure was capable
genc:~.ing N TZs for an Nth-degree network (i.e., fuily
pnical), that a maximum of only N — 2 finite-position
could be realized by the N x N coupling matrix. This
fuded some useful filtering characteristics. including those
require multiple input/output couplings. which have been
g applications recently [3].
i 'hlS paper, a method is presented for the synthesis of the
canonical or *N + 2" folded coupling matrix, which over-
some of the shortcomings of the conventional N« N
g = urix. The .V + 2 or “extended” coupling matrix has
T pair of tows Lop and bottom and an extra pair of columns
Bd right surrounding the “core” N x V' coupling matrix,
b carry the input and output couplings from the source and
inations to resonator nades in the core matrix.
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Fig. 1. Canonical wansversal array. () N —resonator ransversal array
including direct source-load coupling M. (b) Equivalent circuit of the kth
“low-pass resonator” in the transversal array.

The N + 92 matrix has the following advantages, as compared
with the conventional coupling matrix.

« Multiple input/output couphings may be accorunudated,
i.e.. couplings may be made directly from the source
and/or to the load to internal resonators, in addition to the
main inpur/ouipul couplings t© the first and last resonator
in the filter circuit.

» Fully canonical filtering functions (i.e., Nth-degree char-
acteristics with N finite-position TZs) may be synthe-
sized.

+ During certain synthesis procedures that employ 2
sequence of similarity transforms (rotations), it is sorme-
times convenient to temporarily “park” couplings in the
outer rows or columns, whilst other rotations are carried
out elsewhere in the matrix.

The paper begins by detailing the procedure for synthesizing
the N +2 coupling matrix from the transversal array circuit rep-
resentation of the filtering function (see Figs. 1(a)and 2), which
follows on from the methods originally established in [4]-[7]
and later extended in [1]. The new method is actually simpler to
derive than those used to synthesize the N x N coupling matrix,
not requiring the Gram-Schmidt orthonormalization stage. The
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Fig. 2. N 4 2 fully canonical coupling matx {M] for the trapsversal array.
g y pling

The “core” ¥ x N matrix is indicated within the double lines. The matrix 13
symumetric about the principal diagonal. ie.. M., = AL

reduction of the transversal coupling matrix to the NV -+ 2 folded
cross-coupled array coupling matrix is then outlined. following
much the same procedure as in {1]. A demonstration of the use
of the techniques to synthesize the coupling matrix for a fully
canonical filtering function is included.

Finally, the direct synthesis of two novel filter configurations
are presented; one starting with the transversal coupling matrix
and the second based on the folded coupling matrix. Both are ap-
plicable to the design of microwave bandpass [ilters in a variety
of technologies, but the second. in particular, has some impor-
tant implementation advantages that should considerably ease
the design and production of high performunce filters for space
or terrestrial communications systems.

II. S¥YNTIIESIS OF THE “N 4+ 27 TRANSVERSAL
COUPLING MATRIX

The approach that will be employed to synthesize the N +2
transversal coupling matrix will be 0 construct the two-port
short-circuit admittance parameter matrix [Yy] for the overall
network in two ways; the first from the coetficients of the ra-
tional polynomials of the transfer and reflection scattering pa-
rameters So1{s) and §11(s), which represent the characteristics
of the filter to be realized, and the second from the circuit el-
ements of the transversal array network. By equating the (Y]
matrices as derived by these two methods. the elements of the
coupling matrix associated with the transversal array network
may be related to the coetficients of the Sy (s) and S11(s) poly-
nomials.

A. Synthesis of Admittance Function [Y~| From the Transfer
and Reflection Polynomials

The transfer and reflection polynomials that are generated in
[1] for the general Chebyshev filtering function are in the form

P(s) F(s)

=y 1is) = crE(s)

= 2E(s) D

821(5)

where ¢ = (1/V10RL/10 —1). (P(s)/F(S)H.«:j» RL is the
prescribed return loss in decibels, and it is assume<! that the poly-
nomials E(s), F(s), and P(s) have been normaiized to their
respective highest degree coefficients, Both E{s) and F{s) are
Nth-degree polynomials, N is the degree of the filtering func-
tion. whilst P(s). which contains the finite-position prescribed
TZs. is of degree ng,. where ng is the number of finite-posi-
tion TZs that have been prescribed. For a realizable network,
g, Must be <N.

=g 1s unity for all cases except for fully canonical filtering
functions. where all the TZs are prescribed at finite frequencies,
i.e. ng = N In this case. the value of Sa1(s) (in decibels) is
finite at infinite frequency, and if the highest degree coefficient
of the polynomials E{s), F{s),and P(s) are each normalized to
unity, 2 will have a vajue shghtly greater tharn unity as follows:

iR = ﬁ: (2)
it is also important to ensure that the transfer and reflection vec-
tors are orthogonal in order to satisty the unitary conditions for
the scattering matrix [3]

Sy - ST+ S5y =1
S-w - 5;1 + 512 ) sz =1
S;lsrg‘\"gl’l 5‘32 =0 (3)

From (3), it may be shown (see [2, p. 177]) that the phases
&, 8, and A2 of the vectors Sa(#), S1i(s). and Soq(s), respec-
tively, are related by the following:

f, 4+ 8
2

i —

—A.= %(ZA; +1) (1)

where k is an integer.

Equation {4) shows shat the difterence A between the phase
of the S», vector. and the average of the phases of the Sy1 and
S,y vectors must be an odd multiple of w/2 rad. For this con-
dition to be atisfied at any value of the frequency variable s,
the 1y, TZs of Sa1(s) must be positioned symmetrically about
the imaginary (jw) axis or upon the imaginary axis itself. Sim-
ilarly, the pattern of the N zeros of §22(s) must either be co-
incident with those of Sp1(s) on the imaginary axis, w form
mirror-image pairs about the imaginary axis with corresponding
off-axis zeros of S11(s). I this way, the sum of the phases of the
individual vectors that ruake up the overall phases of the vectars
Sa1. 511, ete., will be multiples of /2 rad.

Since So,(s). Spi(s), and §4gu(s) share a common denom-
inator polynomial E{(«}, itis only necessary 1o consider their
numerator polynomials as far as (4) is concerned. The multiples
of 7 /2 rad referred to above therzfore depend upon the number
of finite-position transmit (Tx) 2108 Tz for the 52, s) numer-
ator polynomial P{s), and the degree IV Of the filtering func-
tion for the Sp1(s) and Sao(s) numerator polynomials (F(s)
and F* (), respectively). With this in mind, it follows that, for
the left-hand side of (4) w produce an odd multiplc of /2 rad,
the integer quantity N - 7 must itself be odd. Thus, to ensure
orthogonality between the F(") and P (3) vectors, e, A, is

a1 odd multiple of ™ /2 rad, it is necessary to multiply the P(s)

polynomial by j whenever N = ng is an even integer,
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The numerator and denominator polynomials for the yo; ()
and yo2{s) elements of [Yx] may be built up directly from the
'transfer and retlection polynomials for Sa; (s} and Sy, (s) [1].
For a double-terminated network with source and load termina-

tions G0

yoo(5) = yaon(5)/yals) = ny(s)/my(s)

and

yo1(8) = yaun(s)/yals) = (P(s /5)/m1 for N even
yao(s) = yoon () yals) = mo(s)/n(s
and

g8 =weials) fuals) = { 3 /5)/:11 for N odd
where

my(s) =Releg+ foj+ilmler+ fi)s+Re(ea + fo)s7 +- -

ni(s) = jlmleq+ fo) +Refe + fi)s+ In(ea+ fo)s? +

(5)

and e; and f7, & = 0. 1.2.3,... N are the compiex coef-
ficients of E{s) and F({s)/cp, respectively. The yo1{s) and

%:2.5) polynomials for single-terminated networks may be
found by a similar procedure [1].

Knowing the denominator and numerator polynomials
for yoi(s) and yao(s), their residues ropy, and
k= 1.2..... N may be found with partial fraction ex-
pansions, and the purely real eigenvalues Ay of the network
found by rooting the denominator polynomial 3,(s) common
to both ya1 () and yo2(s), which has purely imaginary roots
= iAp (see [1, Appendix]). Expressing the residues in matrix
fi-m yields the following equation for the admittance matrix
[Y'v] for the overall network:

T2k,

Yy = yuls)  yne(s)
ya1(s)  waals)
Jli.n 3 Ul)n(b)
U(i }"ln JQZn(bj
0 N 1 11k Tizk
=, + —_— (6)
[KU 0 J %1 (s = JAk) [rzm rzzJ

where the real constant K = 0, except for the fully canonical
case where the number of finite-position TZs iy in the filtering
function is equal to the filter degree V. In this case, the degree
of the numerator of yo1(s) (y21.(s), = jP(s)/c) is equal to
its dentominator yq(s), and Ky has to be extracted from yz) (s)
{=y12(8)) first to reduce the degree of its numerator polynomial
Y21.(s) by one before its residues r; . may be found. Note that,
in he fully canonical case, whete the i iteger quantity NV —rnig, =
0is even, it is necessary to multiply P(s) by j to ensure that the
unitary conditions for the scattering matrix are satisfied.

Being independent of ¢, Ky may be evaluated at s+ = joc as
follows:

_JPs)/z!

ST Yainls
Ya (C )

7
yals) o

s=joc s=joc

The process for building up 3, [see (5)] results in its highest
degree coefficient having a value of 1 4+ 1/eg and, since the
highest degree coefficient of P(s) = 1, the value of Ky may be
found as follows:

Ky - o= T8 : ®

The new numerator polynomial i3, , () may now be determined
as follows:

Yorn(8) = y21als) = TKqyals) )

which will be of degree V — 1, and the residues 15y, of oy (8) =

Yo, {41/ 4a( ) may now be found as normal.

B. Svnthesis of Admintance Function |Y | —Circuit Approach

The wo-port short-circuit admittance parameter matrix
[¥'v] for the overall network may also be synthesized directly
from the fully canonical transversal network. the general form
of which ig¢ shown in Fig. l(a). It comprises a series of N
individual first-degree low-pass sections, connected in parallel
between the source and load terminations, but not to each other.
The direct source—load coupling inverter Mqr is included ta
allow fully canonical transfer functions to be realized, ac-
cording to the “minimum path™ rule. i.e., ¢, ae. the maximum
number of finite position TZs that may be realized by the
network = N — ny,5,. where siy,;, is the number of resonators
in the shortest route through the network between the source
and load terminations. In fully canonical networks iy, = 0
and, thus. ny_ . = V. the degree of the network.

Each of the .V low-pass scctions comprises one paraltel-con-
nected capacitor 'y, and one frequency invariant susceptance B,,.
connected through admittance inverters of characteristic admit-
tances Mgy and Ay tothe source and load terminations, respec-
tively. The circuitof the Ath low-pass sectionis shownin Fig, L(b).

Fullv Canonical Filtering Functions

The direct source-load inverter My in Fig. l(a) is zero ex-
cept for fully canonical filtering functions, where the number of
finite-position zeros equals the degree of the filter. At infinite
frequency (s = £joc}. all the capacitors Cy, become parallel
short cireuits, which appear as open circuits at the source-load
ports through the inverters Mgy and M 4. Thus, the only path
between source and load is via the frequency-invariant admit-
tance inverter My,

If the load impedance is 1 £2, the driving point admittauce
Y112 looking in at the input port will be (Fig. 3)

,Hx = ‘MTSL
Therefore, the input reflection coefficient Suis)ats = jocis

(l — Yll:x:)
{1+ V1)

Substituting for [ S| in the conservation of energy equation

using (10)
=1 =182
21 2Msp

- (1 +Y11x) B (1 + ﬂ,fgL).

S1108)smie = [S110c| = (10)

{8210
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Fig. 3. Equivalent circuit of transversal array at < = +x.

Solving for Mgy,

1+ T = 15nl  1E|81x]

Mg = - = .
o |21 | |Sa1]

Al infinite frequency |82 (joc )| = (Pijoc) /el E(jxc)=1/7
because, for a fully canonical filtering function. 7 and
E will both be Nth-degree polynomials with their
highest degree coefficients normalized to unity. Similarly,
Sulix)| = (F(ix)/er)/E(yx) = 1/=g. Therefore,

W

A/ISL =

(cp 4 1)
.

Since = g is slightly greater than unity for a fully canonical net-

work. choosing the negative sign will give n relatively small

value for My,

elen — 1)
R

Mg, = (rn
and correctly gives My, = 0 for noncanonical filters, where
2p = 1. It can he shown that the positive sign will give a second
solution MY, = 1/Ms1, but since this will be a large number.
it is never used in practice [8].

Syathesis of Two-Port Admittance Matrix |Y~]

Cascading the elements in Fig. 1(b) gives an ABC' D transter
matrix for the kth “low-pass resonator” as follows:

My (sCy +JBy)
Mg Mo Mg
ABCD], = - | M5t My My, 02
0 M
Mg

which may then be directly converted into the equivalent short-
circuit y-parameter matrix

yik{s)  yak (s)
[wx) = \
Yore(s) yoor(s)
ﬂJSk
J[gk l\[ Lk 7 ﬂrf Lk
(5(_"&: + f B.K: ) -‘WILA‘
Mgk.

M,

. 1 ) { M Sk ’U Lk
("" (-.?Js' + J B ke ) A/irs I M Lk

. (13
12
M;,
The two-port short-circuit admittance matrix {¥x] for the par-
aliel-connected transverse array is the sum of the y-parameter
matrices for the V¥ individual sections, plus the y-parameter ma-

trix [ys1] for the direct source—load coupling inverter Mgy,

Yal = yi(s)  yals)
] [1121(3) 922(5)]

lysLl + Z PU*("") ylgk(s)}

= Lyzls) ganels)

) 0 My, N 1
a8 E
Ms O £ (sCy + By
) [ 55 .Skij Lk] . (14)
May, Ay JMTL &

C. Svmthesis of the N + 2 Transversal Matrix

Now the two expressions for [V ], the first in terms of the
residues of the transfer function (6), and the second in terms
of the circuit elements of the transversal array {14), may be
equated. It may be seen immediately that My, = Ky, and for
the “217 and “22” elements in the matrices in the right-hand
sides of (6) and (141)

ralk Mg My

: = - (15a)
(5= M) (5Cx +1By)
Fagg A’[.;Jh
—— = . (15b)
(s —JjAe) (G +J By)

The residues rs1x and 125 and the eigenvalues Ay have already
been derived from the 5o and Sys polynomials of the desired
filtering function [see (3)] and. thus. by equating the real and
imaginary parts in ([ 5a) and (15b), it hecomes possible to relate
themn directly to the circuit parameters

C, =1and By(=Mip) = — A
A/[Ek = Tggk and Mo Mpy = rap

Mpg — Vroze = T
and
k=12 .... N
(16)

Mgy = rone [0k = The.

It may be recognized at this stage that Mg, and M, constitute
the unscaled row veciors Ty and Ty, of the orthogonal matrix
[T], as defined in [1, Appendix].

Since the capacitors (', of the parallel networks are all
unity, and the frequency-invariant snsceptances Bi (=—Aw.
representing the self couplings My — My ). the imput
couplings Mgy, the output couplings My, and the direct
source—oad coupling Mgy are all now known, the reciprocal
N + 2 transversal coupling matrix [M] representing the
network in Fig. 1{a) may now be constructed. Mgy (=T),) are
the N input couplings and occupy the first row and column of
the matrix from positions 1 to IV (see Fig. 2). Similarly, M
(=Twy) are the N output couplings and they occupy the last
row and column of [M] from positions 1 to N. All other entries
are zero. M2%, and M7, are equivalent to the terminating
impedances Ry and Ry, respectively, in [1].
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§ 1 23 a5 L
S m ... xa Possible non-zero couplings:
1].{sm X2 ] X5 s - self coupling
201 s | mlxales m - main line coupling
: Xa - asymmetric cross-coupling
Xs - symmelric cross-coupling
1 - couplings are symmetric about

the principal diagonal

All unspecified matrix entries are zero.

(a)
s 1 2 3
[0 & .- o o suurcerluad werminals
X . . resonator node
: ’ main line coupling
‘ (} - —» cress coupling
L 3 +

(b}

Ty 4 Folded canonical network coupling matrix form—tifth-degree

» wample. (a) Folded coupling matrix form. “s* and “ve” couplings are zero for
symmetric shanacteristics. (by Coupling and routing schematic.

Reduction of the N + 2 Trunsversal Matrix to the Folded
Canonmical Form

With V input and cutput couplings, the transversal topology

is clearly impractical to realize for most cases and must be trans-
formed to a more suitable topology if it is to be of practical use.
\ more convenient form is the folded or “reflex” configuration
(9]. which may be realized directly or used as the starting point
for further transformations o other topologies more suitable for
the technology it is intended to use for the construction of the
filter.

To reduce the transversal matrix to the folded form, the formal
procedure, as described in (1], may be applied. working on the
N +2 matrix instead of the N x V coupling matrix. This proce-
dure involves appfving 2 series of similarity transforms (“rota-
tions™), which eliminate unwanted coupling matrix entries alter-
nately right to left along rows and top to bottom down columns.
starting with the outermost rows and columns and working in-
wards toward the center of the matrix, until the only remaining
couplings are those that can be realized by filter resonators in a
folded structure (Fig. 4)

As with the .V x /¥ matrix, no special action needs to be taken
to eliminate unneeded “za” and “rs” couplings in the cross-di-
agonals—they will automatically become zero if they are not
required to realize the particular filte: characteristic under con-
sideration.

Hlustrative Example

Toillustrate the .V +2 matrix synthesis procedure, an example
s taken of a fully canonical fourth-degree asyrmetric filtering
function witli 22-dB return loss and four TZs. two at —33.7431
and —71.8051, which produce two attenuation lobes of 30 dB
each on the lower side of the passband, and two at +71.3690
and +6.1910, producing a lobe of 20 dB on the upper side.

Applying the recursive technique of [1, Sec. 1I] yields the
coefficients for the numerator and denominator polynomials of
S11(s) and Say{s)

Sauls) = ——Pé()f (s) = —_Fgg/)”

w

and these are shown in Table I. Being fully canonical. 5 # 1
and may be found from (2). Note that, because N — ng, = 0
and is, therefure, an even number, the coefficients of P(s) have
been multiplied by § in Table I.

Now the mumerator and denominator polynomials of
L':u(-‘?)(:yzln(ﬁ)/yd(s)) and yzz(s)(zyzzn(ﬁ)/yd(ﬁ)) may be
constructed using (5). The coefficients of Ya(s), yaan(s), and
Y21n(8), normalized to the highest degree coefficient of y4(s),
are summarized in Table II.

The next step is to find the residues of y21(s) and ya(s)
with partial fraction expansions. Since the numerator of io2(8)
(y220(5)) is one less in degree than its denominator Yal$),
finding the associated residues rqap is straightforward. How-
ever, the degree of the numerator of yo:(s) (121,(8)) is the
same as its denominator y,(s), and the factor K, o (=Msg) has
to be extracted first to reduce g2, (%) in degree by one.

This is easily accomplished by first finding Vs by evalu-
ating w1 (5) at s = jx., i.e., Ws; equals the ratio of the highest
degree coefficients in the numerator and denominator polyno-
mials of ya(5) [see (7) and (8)] as follows:

.“I‘_an { 5‘)

y‘i(";) F.s‘::joc

JMsp — yzl(ﬁﬂ,.zjx = —= ;0.01509

which may be seen is the highest degree coefficient of Yornls)
in Table TI. Alwrnatively, Mg may be derived trom (17).

Msp may now be extracted from the numerator of yo1{s) [see
(9] as follows:

,'J"i)ln (5\’ = Yrin (“’) - J.j[S[_.f]ri("".J-

Atthis stage. i, () will be one degree less than y.(~) and the
residues ro;, may be found as normal. The residues, the eigen-
values Ay [where A, are the roots of y4(s)], and the associated
eigenvectors T4 and Ty are listed in Table 11L.

Note that, for double-terminated lossless networks with equal
source and load terminations, roo, will be positive real for a
realizable network, and |ray;| = {ranel.

Now knowing the valucs of the cigenvalues Ag, the eigenvec-
tors T34 and Ty, and Mgp. the ¥V + 2 transversal coupling
matrix (Fig. 2) may be completed as shown in Fig. 5.

Using the same reduction process as deseribed in (1}, but op-
erating upon the N + 2 matrix, the transversal mairix may be
reduced to the folded form with a series of six rotations, anni-
hilating the elements Mg, Mgy, Mg, Mar, Mar., and finally
M3 inorder (see Table IV). The resulting folded configuration
coupling matrix is shown in Fig. 6(a), and its corresponding cou-
pling and routing schematic is shown in Fig. 6(b).

The analysis of this coupling matrix is shown in Fig. 7. It
may be seen that the return loss and rejection characteristics are
unchanged from those abtained from the analysis of the original
S11 and S5, polynomials,

[II. TRANSFORMATIONS OF THE COUPLING MATRIX

A microwave filter may be realized directly from the folded
coupling matrix, the topology and stren gths of its inter-resonator
couplings directly corresponding to the nonzero elements of the
coupling matrix. However, it is sometimes necessary to apply
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TABLE 1
44 FILTERING FUNCTION---COEFFICIENTS OF E{s}, F(s) aAND P(s) POLYNOMIALS
Coefficients of S;; and S;; | Coefficients of §;; Numerator Coefficients of §;; Numerator
s Dencminator Polynomial Polynomial F(s) Polynomial P(s)
Eis) i @)
i ()
0 1.9877 - j0.0025 0.1580 j65.6671
1 +3,2898 ~ j0.0489 —0.0009 +1.4870
2 +3.6063 - j0.0031 +1.0615 +26.5826
3 +2.2467 - jO.0047 —0.0026 +2.2128
4 +1.0 +1.0 +i1.0
ez = 1.000456 £ = 33.140652
TABLE 11
44 FILTERING FUNCTION—COEFFICIENTS OF NUMERATOR AND DENOMINATOR POLYNOMIALS OF 31 {s) AND ya2(s)
‘ Coefficients of Denominator Coefficients of Numerator Coefficients of Numerator
s Polynomial of yxn(s) and Polynomial of yu(s) Polynomial of y(s)
yai(s) { y2a(5)) ! { Y21l 5) }
i (yds))
0 1.0730 —0.0012 j0.9910
1 —0.0249 +1.6453 +0.0224
2 +2.3342 —0.0016 +0.4012
3 —i0.0036 +1.1236 +0.0334
4 +1.0 +i0.0151
TABLE (II
4—1 FILTERING FUNCTION—RESIDUES, EIGENVALUES, AND EIGENVECTORS
Eigenvalues Residues Eigenvectors
T‘Nk le
k A Yo Fak = - rnk/ Fony
1 —~1.3142 0.1326 0.1326 0.3641 0.3641
2 -0.7831 0.4273 -0.4273 0.6537 —0.6537
3 0.8041 0.4459 0.4459 0.6677 0.6677
4 1.2968 0.1178 -0.1178 0.3433 -(.3433
s 1 2 3 4 L s 1 2 3 4 L
S i 03641 -0.6537 0.6677 -0.3433 00151 | s, i 1.0600 0 0 [i 0.0151
1 03641 13142 0 0 0 0.3641 1 1.0600 -0.0023 9.873% )] -0.3259 0.0313
2§ 06537 0 07831 0 0 0.6537 2 ] 0.8739 0.0483 0.8359 0.0342 0
3 Q6677 0 0 —0.8041 Q 0.6G677 3 o 1] 0.8359 —(.0568 0.8723 ¥]
4| -0.3433 a 0 ] ~1.2968 0.3433 4 0 ~.3259 0.0342 0.8723 0.0171 1.0595
L 0.0151 0.3641 0.6537 0.6677 0.3433 [\] L{ 0.0151 0.031% 0 0 1.0595 o]
Fig. 5. Transversal coupling matrix for 44 fully canonical filtering function. a)
The matrix is symmetric about the principal diagenal. S 1 2
O B O source/load terminals
TABLE 1V [ ] resonator node
FoURTH-DEGREE EXAMPLEPTVOTS AND ANGLES OF THE SIMILARITY main line coupling
TRANSFORM SEQUENCE FOR THE REDUCTION OF THE TRANSVERSAL o - cross coupling
MATRIX TO THE FOLDED CONFIGURATION. TOTAL NUMBER OF L 4 3
TrRansFORMS R = V77w = 6 ®)
Transform | Pivot Element 8, = tan M, /M) Fig. 6. Fully canonical synthesis example. Folded coupiing matrix for 4—}
Number (411 to be i o filiering function. (a} Coupling matrix. Matrix is symmeltric about the principal
r Annihilated Fig. 5 k i | m | - diagonal. {b) Coupling and routing schematic.
1 [3, 4] M, inrow 'S’ s 4 S E] -1
2z [2.3) Ms; s 3]s |z |
3 1,2 My, . sl 2]s ] 1]- . ]
5 {2’ g M:L T T T T T Ta Here, two novel realizations are introduced; parallel-con-
5 [3.4] My . 3Ll 4]+ nected two-port networks and the “‘cul-de-sac™ configuration.
& [2.3] My in row 1 1 3 1 2 -1

a further series of rotations to the matrix, to transform it into
a form more convenient or more practical to the application in

hand, e.g., [10]-{12].

The first may be derived by grouping residues and forming
separate two-port subnetworks, which are then connected in
parallel between the source and load terminations. The second
is formed by a series of similarity transforms operating upon
the folded coupling matrix.
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Wf;’ e |
g [ 4th Degree Fully H i ;
& 18 -1 Canonical Prototypo :
L Sn .
a i 1
=1 I ;
zw01 i
z ! | | .
% 50 i | i i
2 \ , N3
g ¢ i !
£l ? Lo
= 40 1 . i
g | \
50 t i
8 6 0 2 4 5 3
FREQUENCY (radjsec)

Fiv. 7. 4= fully canonical synthesis exumple:‘ analysis ot folded coupiing
n

m. <. Rejection as s — tjxc = 201log {2} = 30407 dB.

A. Parallel-Connected Two-Port Networks

Being closely related to short-circuit admittance parameters,
the eigenvalues and corresponding iesidues of the (Hering func-
tion may be separated into groups and subnetworks constructed
from them using the same procedures as described above, The
subnetworks may then be connected in parailel between the
seurce and load terminations to recover the original filtering
¢ aracteristics. The transverse array itself may be regarded as
a parallel connection of V single-resonator “groups.”

Although the choice of residue groupings is arbitrary, it
will be found that difficult-to-realize couplings will be created
within the subnetworks, and between the internal nodes of the
subnetworks and the source-load terminations if the choice
of filtering function and of residue groupings 1s not restricted.
The restrictions are: 1) filtering functions may be fully canon-
ical, but must be syuunetric and even degiee and 2 tesidue
roups must consist of complementary pairs of residues and
cigenvalues, i.e., if the residues with indexes ¢/ and j (9,
ra1; and rue;, r2y;) constitute a group or are part of a group,
then roo; = rga; and ra;, = —rep;. This implies that only
networks double-terminated between equal-value source and
load terminations can be synthesized.

If these restrictions are observed, the overall network will
consist of a number of two-port networks, the number corre-
sponding to the number of groups that the residues have been
divided into, each connected in parallel between the source and
load terminals. If the filtering function is fully canonical, the di-
rect source—load coupling Mg will also be present.

Once the residucs have been divided into groups, the syn-
thesis of the sub-matrices and their reduction to the folded form
follows exactly the same process as for a single network, as de-
scribed in Section TT, working on each subnerwork individuatly.
To illustrate the process, an example is taken of a 23-dB return
loss sixth-degree characteristic, with two symmetrically placed
TZs at +;1.3958 producing lobes of 25 dB on either side of
the passband, and a pair of rcal-axis zcros at =1.0749 to give
group-delay equalization over approximately 50% of the pass-
band. This filter will be synthesized as two subnetworks, one of
degree 2 and one of degree 4.

Fellowing the procedure of Section II results in a set of
residues and eigenvalues for the characteristic as shown in
Table V.

Grouping residues £ = 1 and 6 yields the folded matrix for
the second-degree subnetwork shown in Fig. 8. Now grouping
residues & = 2, 3, 4, and 5 yields the folded coupling matrix tor
the fourth-degree subnetwork shown in Fig. 9.

Superimposing the two matrices yields the overall matrix
shown in Fig. 10.

The results of analyzing the overall coupling matrix are
shown in Fig, 11(a) (rejection/return loss) and Fig. 11(b) (group
delay), which show that the 25-dB lobe level and equalized
in-band group delay have been preserved.

Other solutions for this topology are available depending on
the combinations of residues that are chosen for the subnet-
works. However, whatever combination is chosen, at least one
of the inputfoutput couplings will be negative. Of course, the
number of topology options increases as the degree of the fil-
tering function increases, for example. a tenth-degree filter may
be reatized as two paraltlel-connected two-port networks, one
fourth degree and one sixth degree. or as three networks, one
second degree and two fourth degree. all connected in parallcl
between the source and load terminations. Also, each subnet-
work itself may reconfigured (o other two-port topologies with
further transformations. if feasible.

If the network is to be synthesized as N/2 parallel-coupled
pairs (see Fig. 12 for a sixth-degree example), a rather more di-
rect synthesis route exists. Starting with the transversal matrix, it
is only necessary to apply & series of rotations to annthilate half
the coupiingsin the top row from positions Mg backtothe mid-
pointof thistow Wy v, o4.1e...V/2 rotations {see Fig. 2}. Due
to the symmetry of the vaiues in the outer rows and columns of the
transversal matrix. the corresponding entries Mg to My o in
the last column will be annihilated simultaneously.

The pivots of the rotations to annihilatc these couplings start
at position [1. V] and progress toward the center of the matrix
until position [.V/2. V/2 + 1]. For the sixth-degree example,
this is a sequence of V/2 = 3 rotations according to Table V1
and applied to the transversal matrix:

After the series of rotations. the matrix. as shown in
Fig. 12(a). is obtained, which corresponds to the coupling and
routing diagram in Frg. 12¢b}. In every case, at least one of the
input/output couplings will be negative. An interesting example
of a fourth-degree implementation of this topology realized in
diglectric resonator technology is given in [I3].

B. “Cul-de-Suc” Configurations

The "cul-de-sac” conliguration [14] is restricted ro double-
terminated networks and will realize a maximum of ¥ —3 TZs.
Otherwise it will accommodate even- or odd-degree symmetric
or asymmetric prototypes. It has an tmportant advantage over
other configurations in that. whatever the prototype filtering
function, there will be only one negative coupling in the en-
tire network and there will be no “diagonal” cross-couplings,
which are sometimes swkward to realize in practice. Moreover,
its form lends itself to a certain amount of flexibility in the phys-
ical layout of its resonators.

A typreal "cul-de-sac” configuration is shown in Fig. 13(a) for
atenth-degree prototype with the maximum-allowable seven Tx
zeros (in this case, three imaginary-axis and two complex pairs).
There is a central *corc” of a quartct of resonators in a squarc
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TABLE V
6-2-2 SYMMETRIC FILTERING FUNCTION—RESIDUES, EIGENVALUES, AND EIGENVECTORS
Eigenvalues Residues Eigenvectors
T Tu
k l"‘ iz a1k - Foay = rau/'\) Fos
1 -1.2225 0.0975 —0.0975 03122 03122
2 -1.0648 0.2365 0.2363 0.4863 04863
3 -0.3719 (12262 -0.2262 0.4756 ~0.4756
4 0.2719 22872 N.2762 N.4756 0.4756
S 1.0648 0.2365 -0.2365 0.4863 -0.4863
6 12225 0.0975 0.0975 0.3122 0.3122
) i 6 L 0 0
S 0 0.4413 0 0 & [ a5 : :
1 0.4415 Q 1.2225 0 z r -2 Prototype: i
10— ; :
6/ 0 1.2225 0 04415 @ [ Parsle-Comecied '
L 0 0 0.4415 0 3 L :
E 20 X ;
(a) ? A . . i
o I
o " e AEPNTTNIEN
——— Z / | : \\
1 6 = ’ i i ‘ i N
£ w I i .
(b) 270 : l ; ' \ |
Fig. 8. Coupling sub-matrix and coupling/routing diagram for residues b = 1 ] s & : ! ______ i_ L. j s
and 6. (a) Coupling matrix. tb) Coupling and routing diagram. i ' ) '
-4 -3 -2 -1 0 1 2 3 4
5 2 3 4 5 L FREQUENCY (rad/sec)
5 ] 09619 0 ] 0 0 {al
2 09619 0 0.7182 0 0.3624 0 12
3 ] 0.7182 4] 0.3305 0 0 | |
4 0 0 0.3305 0 0.7182 0 i |
5 0 03624 0 0.7182 0 -0.9619 !
L 0 0 0 n |
% .
= H
3
@ :
=] .
s I
2 4 ‘. ‘
1 | |
: — \
| o S
0 ; ; . : 3 ;
Fig. 9. Coupling sub-matrix and coupling/routing diagram for residue group 2 LS -1 % UEN?ZY rldJM 1 15 2
k= 2.3.4. and 5. (a) Coupling matrix. (b) Coupling und routing diagram. Q (rad/sec)
(h)
s 1 2 3 4 5 6 L Fig. 11. Analysis of puarallel-connected two-port  coupling  matrix|
S 0 04415 09619 0 0 il 0 0 (a) Rejection and return loss. thy Group delay.
1| 04415 0 0 0 1.2225 0
2] 09619 a .71 a 0 0
3 0 (] 0 . 0 0
4 0 a L33 0 Q 5 I 2 3 4 5 6 L
5 0 0 0 0 -0.9619 S [] 04415 06877 06726 0 0 0 i}
6 0 12225 0 0 0.4415 1| 0445 0 0 0 0 0 12225 0
L Q i} 0 04415 0 2| 06877 ] 0 0 2 1.0648 0 0
3 36726 a a 0 037248 0 1] 0
4 G il 0 03720 0 0 0 0.6706
5 0 a 10648 0 Q 0 0 ).6877
6 0 1.2225 0 g 0 ] 0 0.4455
L 0 0 n Y {.6726 -0.6877 0.4415 0
(a)
3 4
2 3
S L
(h)
Fig. 10. Superimposed second- and fourth-degree sub-matrices. (a) Coupling
matrix. (b) Coupling and routing diagram. 1 6
(b)

formation {1, 2, 9, and !0 in Fig. 13(a)], straight-coupled to each
other (i.e., no diagonal cross-couplings). One of these couplings

Fig. 12, Symmetric 6-4 filter example—realized as paraltel-coupled pairs)
{a) Coupling matrix. {b) Coupling and routing diagram.
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TABLE VI
SIXNTH-DEGREE EXAMPLE—SIMILARITY TRANSFORM SEQUENCE FOR THE
REDUCTION OF THE TRANSVERSAL MATRIX TO THE PARALLEL-COUPLED
PAIRS FORMAT

Transform | Pivot Elements 8, =tan" (cM, /M)
*lumber i/} to be ]
r Aannihilated A { m n c
! [1. 6] Mg, (and M) | S 6 S 1 -1
2 f2, 3] Mys (and M~) | S 5 S 2] -1
3 [3.4] Msy (and My) | S 4 S 3 |-t
1 9 8 7 6
SO - H . .
L & . 4 & —OL
3 4 3 2 10
(a)
i . - . +—OL
$C— ] &
] 2 [} 5
{b)
3 2 7
0~«~—?f1}——OL
S O—l—(b——-—%——.
! 6 3 4
()
Fig. 13, “Cul-de-sac™ network configurations. (a) 10-3-4 network. (b) 8-3

network. {¢) 7-1-2 network.

is always negative: the choice of which one is arbitrary. The
entry to and exit from the core quartet are from opposite corners
of the square [1 and 10, respectively, in Fig. 13(a)].

Some o all of the rest of the resenators are strung out in cas-
<ade from the other two corners of the core quartet in equal num-
bers (even-degree prototypes) or one more than the other {odd-
degree prototypes). The last resonator in each of the two chains
has no output coupling, hence, the nomenclature “cul-de-sac™
for this configuration. Other possibie configurations are shown
in Fig. 13(b) (eighth degree) and Fig. 13(¢) (seventh degree).

C. Synthesis of the “Cul-de-Sac” Network

Fortunately, the synthesis of the "cul-de-sac" network is very
simple and is entirely automatic. Starting with the folded cou-
pling matrix, elements are annihilated using a series of regular
similarity transforms (for odd-degree filters), and “cross-pivot”
transforms {for even-degree filters), beginning with a main line
coupling near the center of the matrix, and working outwards
along or parallel to the antidiagonal. This gives a maximum of
{N —2)/2 transforms for even-degree prototypes and { V 3)/2
for odd-degree prototypes,

The “cross-pivot” similarity transform for even-degree filters
is one where the coordinates of the element to be eliminated are
the same as the pivot of the transform, i.e., the element to be
annihilated lies on the cross-points of the pivot. The angle for
the annihilation of an element at the cross-point is different to
that of a regular annihilation and is given by

I 2M,; k7
br =5 tan [(M,-,- - M,,J t 5

(17)

9
TABLE VII
Prvor COORDINATES FOR THE REDUCTION OF THE ¥ + 2 FOLDED MATRIX
TO THE “CUL-DE-SAC” CONFIGURATION
Pivot Position [/, ] and Element 10 be Annihilated
Dagree Similarity transform number r Transform
r=1,213,..,R R =(N-2)2 (N even) Angle
= (N3)2 (N odd)
I s —1 2z 3 ! r 0,
4 [2.3] Mz ¢ eq(17)
5 4] Mn eq(18)
6 [3.4] Mu [25] M eq17)
7 357 Mu [2.6] Mo eq(18)
8 (4.5] M [3.6] M [27] M. | 2q(17)
9 [46] My o [37] My (28] My eq(18)
N (even) L M, [ f] M, eq(17y
i=(N+22 -1 P=(N+2y2-r
jeNa2l Lj-wizer
N (odd) L] M. . . COlEA] Mo eq( 1)
i (M4 1y2-11 i=(N+1y2-r
J=IN U2+ 1 PN e 1T
s 1 2 3 4 5 6 7 L
s 0 1.0572 [} i v T 1 [ 0
V] LOSTZ 001 08884 0 0 0 i 0 [L
2 0 08884 00258  0.6159 bl { 0.0941 0 0
30 4] 06159 0013 05101 0878 0.0700 0 0
4 n n a3 0.5101 —.tR56 015810 ul 5] o]
s o 0 0 01878 04551 00237 06119 0 o |
[} 0 0 00941 007N i} 06119 00258 0.8884 ]
1 o b 0 o 0 0 08884 0031 1057
Li o 0 0 1] 0 0 0 10572 o
(a}
s ! 3 3 4 5 4 7 L
5 i] 1.0572 1 [i] i} ] [0 [l o 1
1] L0S7T2 o2l 06282 a i 0 0.6282 0 0
M 0 06382 0083 0.57% bl 0 0 06282 0
K} [’} 1] NS08 i il 0 1) ) i} .
i o a o 0 03856 Ue8d6 0 0 v
] n 0 bl o 06836 01869 (.6499 o 0
] 0.6282 bl 0 i 06499 01199 D82 ]
7,0 0 —0.6282 o ] 0 062827 00211 10§72
L; i} 1] N 1] 0 3] 1] 10572 ]

(b)

Fig. 14 "Cul-de-sac” configuration—seventh-degree example. (a) Original
folded coupling matrix. (b) After transformation to “cul-de-sac” conficuration.

where ¢. j are the coordinates of the pivot and also of the efe-
ment to be annihilated, #, is the angle of the similarity trans-
form, and 4 is un arbitrary integer. Note that, for Cross-pivot an-
nihilations of Mi; (#0), where the self-couplings A,; = M.
#. = £x /4 It is also allowable to have 8, = +x /1 for when
M;; = 0, which will give a slightly different configuration alter-
native. For odd-degree filters, the angle formulu takes the more
conventional form

H, = tan~! (;\-I,_J_l fMiZy )

Table VI gives the pivot coordinates and angle formula to
be used for the sequence of similarity transforms to be applied
to the folded coupling matrix for degrees 49, and a genetal
formula for the pivot coordinates for any degree >4,

An example is made of the double-terminated version of the
seventh-degree prototype that was used in [1]. This character-
istic had 23-dB return loss. a TZ at +; 1.2576 to give a rejection
lobe level of 30 dB on the upper side of the passband, and a com-
plex pair of Tx zeros at £0.9218 — j0.1546 to give group-delay
equalization over approximately 60% of the passband.

After following the procedure of Section II, the V + 2 folded
matrix shown in Fig. 14(a) is obtained. Applying a series of
two siniilarily trunsforms at pivets [3. 5] and (2, 6] (lable VID
with angles according to (18) results in the coupling matrix of
Fig. 14(b). The corresponding coupling and routing diagram is
given in Fig. 13(c).

(18)
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Fig. 15, Seventh-degree "cul-de-sac” synthesis example—analysis of folded
coupling matrix. (a) Rejection and return loss. (h) Group delay.

-2 -1.5

The results of analyzing this coupling matrix are presented in
Fig. 15. confirming that the rejection lobe level und group-delay
equalization performances have been preserved intact.

As was noted above, all the couplings are positive, except for
one in the core quartet. This may be moved to any one of rhe
four couplings ter the greatest convenience and implemented as
a probe. for example, if the filter is to be realized in corxial-res-
onator technology where the other couplings are inductive irises
or inductive loops. Also, there are no diagonal couplings even
though the original prototype was asymmetric. If it is feasible
to implement a diagonal coupling between the input and output
of the core quartet, then an extra TZ may be realized, bringing
the maximum number realizable by this topology to N —2. This
coupling in the "cul-de-sac" core will have the same value as in
the folded coupling matrix.

IV. CONCLUSIONS

In this paper. a simplc and general method for the synthesis of
the *¥ + 2" coupling matrix in the folded cross-coupled array
configuration has been presented. The JV + 2 coupling matrix is
applicable to symmetric or asymmetric, single- or double-termi-
nated, and even- or odd-degree filtering functions, and will ac-
commodate the fully canenical and multiple-input/output cou-
pling configurations.

The NV + 2 folded coupling matrix may be used directly for
the design of a microwave filter if it is convenient to do so, or
used as the starting point for the application of a further series of
similarity transforms to reconfigure it into a topology more con-
venient for the technelogy or production process it is intended

to employ. Two examples of such reconfigurations are included
in the paper: the parallel-coupled two-port petwork configura-
tion and the *“cul-de-sac” filter configuration. The latter fea-
tures some important constructional simplifications that should
ease the volume production process for high-performance mi-
crowave filters for the wireless industry.
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