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Abstract 
 The computational fluid dynamics environment has been enhanced with a 
quadrature method of moments (QMOM) population balance capability that 
operates in conjunction with its multiphase calculations to predict the particle size 
distribution within the flow field.  These prediction capabilities are tested in a 3-
dimensional constant stirred tank with a Rushton impeller.  The tank was 
operated under well mixed conditions as identified by the residence time 
distribution.  For these well mixed conditions, predictions are compared with 
analytical solution of ideal continuous mixed suspension, mixed product removal 
(CMSMPR) crystallizer.   The results of these QMOM simulations are compared 
to steady state analytical solutions for the population balance in a well mixed 
stirred tank where 1) combined nucleation and growth, 2) aggregation, and 3) 
breakage, take place separately and 4) combined nucleation, growth and 
aggregation takes place.  The results of these comparisons show varying levels 
of error for the moments of the population balance.  In some cases, the error is 
as high as 20% but that error is not due to computational inaccuracies but to the 
mixing that is not ideal even in a tank with a nearly ideal residence time 
distribution.   
 
Keyword: Population Balance, Computational Fluid Dynamics, Crystallization, 
Simulation 

1. Introduction 
 
The population balance equation (PBE) is a statement of continuity for particulate 
systems.  Cases in which a population balance applies include crystallization, 
precipitation, bubble columns, gas sparging, sprays, fluidized bed polymerization, 
granulation, wet milling, liquid-liquid dispersions, air classifiers, hydrocyclones, 
particle classifiers, and aerosol flows. In the case of a continuous mixed-
suspension, mixed-product removal (CMSMPR) crystallizer operating at steady 

 



state in which aggregation, breakage and growth are occurring the PBE is given 
by Randolph and Larson [Randolph, A. D. (1988)] as 
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with the boundary condition, n(0)=no(x).  In the above equation, n(v) is the 
number-based population of particles in the tank which is a function of the 
particle volume, v.  The subscript “in” refers to the inlet population.  G(v) is the 
particle volume dependent growth rate and b(v) is the particle volume dependent 
birth rate and d(v) is the particle volume dependent death rate.  In the case of 
aggregation, the birth and death rate terms are given by Hulburt and Katz 
[Hulburt, H. M. (1964)]: 
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where the aggregation rate constant, β(v,w), is a measure of the frequency of 
collision of particles of volume, v, with those of volume, w.  In the case of 
breakage, the birth and death rate terms are given by Prasher [Prasher, C.L. 
(1987)]: 
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where S(v) is the breakage rate constant that is a function of particle volume, v. 
ρ(v,w) is the daughter distribution function defined as the probability that a 
fragment of a particle of volume w will appear in volume v. 
 
The moments of n(v) are useful because of their physical significance.  The kth 
volume moment is defined by 
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vmo and vm1 represent the total number and total volume of particles in the 
system.   
 
Computational Fluid Dynamics (CFD) deals with equations that represent a 
balance process for mass, momentum, energy and chemical species.  These 
equations are all characterized by the following generalize partial differential 
equation. 
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For the momentum balance, Φ is given by individual components of the velocity 
vector, Γ is given by the viscosity and there are no source terms.  For the energy 
balance, Φ is given by temperature; Γ is given by the thermal conductivity and 
the source term given by the heat of reaction or other heat sources.  For the 
mass balance, Φ is given by mass fraction; Γ is given by the molecular diffusion 
coefficient and the source term given the rate of chemical reaction.   
The population balance equation can also be described in this same form as 
equation 5, when it is written in the moment form of the population balance.  In 
this case, Φ is given by several moments of the population of particles, Γ is given 
by the Brownian diffusivity and the source terms are due to breakage and 
agglomeration.  To well characterize a given particle size distribution several 
moments are used, typically 3 to 6.  In order to solve those partial differential 
equations for the momentum, mass, energy and population balance, finite 
element or finite difference methods are used. This paper uses a special type of 
finite difference algorithm called the finite volume method.  With the quadrature 
method of moments (QMOM), the population balance is written as a series of 
moment equations by multiplying equation 1 by vk and integrating with respect to 
v from zero to infinity.  These moment equations are used in place of the PBE to 
approximate the particle size distribution, see [Randolph, A. D. (1988)].  QMOM 
was first proposed by McGraw [McGraw, R. (1997)] and further developed by 
Marchisio, et. al. [Marchisio, D.L. (2003)].  With this implementation of QMOM 
PBE solver, a small number of moments, N, (typically 6) are used.  Moments are 
approximated by a quadrature approximation that uses N/2 weights, Wi, and N/2 
sizes, Li, as follows: 
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Upon substitution of these weights and sizes into the N moment equations, we 
have a series of equations that just equals the number of unknowns, N, allowing 
for the solution of the system of equations that constitutes an approximation of 
the PBE.  From the moments, the particle size distribution can be reconstituted 
using a moment transformation [Randolph, A. D. (1988)].  
 
The moments used in this QMOM algorithm are length based and are different 
from those described by equation 4 which are volume based.  There is a 
correspondence between length based moments and volume based moments. 
This correspondence is given in Table 1, where Ka is the surface area shape 
factor, and Kv is the volume shape factor.  Noting this correspondence any 
length-based moment can be compared with the volume based moment 
predicted from an analytical solution to the population balance and equation 4. 
 
Table 1 Correspondence between length based and volume based moments 
Property Volume Based Moment Length Based Moment 
Number of Particles vm0 Lm0 

 



Surface Area of Particles  vm2/3 Ka*Lm2 
Volume of Particles vm1 Kv*Lm3 
 
In this work, a 3-D analogue is used to simulate an experimental stirred tank 
CMSMPR.  These simulations are compared to steady-state analytical solutions 
to the PBE for 1) aggregation, 2) breakage, taking place separately and 3) 
combined nucleation and growth and 5) combined nucleation, growth and 
aggregation taking place.  The analytical solutions for n(v) are converted to the 
length based moments 0 to 5 and compared directly to the length based 
moments predicted by the QMOM PBE algorithm. 
 
Before this study, a residence time distribution (RTD) validation study was 
performed by comparing with experimental data [Choi, B-S., et. al. (2004)].  Using 
operating conditions where the experimental results and the fluid flow simulations 
gave nearly ideal residence time distributions, population balance verification 
simulations are performed. 
 

2. Simulation Setup for a 3-D Stirred Tank 
 
A model of 1.4 L stirred tank shown in Figure 1 was constructed using a rotating 
mesh in the region of the impeller and a fixed mesh elsewhere.  There are 4 9.5 
mm baffles inside the tank, as well as, two feed tubes and one thermowell placed 
radially between the baffles and the impeller.  The feed tube is the tube that is 
bent with an outlet just below the impeller.  The product tube is located at the 
fluid interface at the top of the tank at a radial position half way to the tank wall.  
The impeller was 45 mm in diameter and 11.25 mm in height.  See [Choi, B-S., et. 
al., (2004)],  for other geometric details.  The mesh generated to model the tank 
contains 626,512 elements.   This grid was then used for fluid flow simulations 
within the tank.  The k-ε turbulent model was used to predict the flow profile with 
flow at the inlet at the feed flow rate corresponding to several of our experimental 
cases using a velocity input boundary condition that corresponds to plug flow.  
The tank output was given a pressure outlet boundary condition. The walls of the 
tank, baffles and the other tank internals were assigned standard wall function 
boundary conditions, the top surface was assigned a symmetry boundary 
condition, the surface of the moving zone was coupled to the fixed zone using an 
interface boundary condition and the surface of the impeller, inside the moving 
zone, was assigned a standard wall function boundary condition.  The model was 
allowed to run until all the dimensionless residuals reached a value of 10-4.  This 
level of convergence took ~1,100 iterations.   This mesh has been shown to be 
grid invariant for velocity field simulations.  For the conditions where the inlet flow 
rate is 14 mL/s and a mixing rate of 80 rpm, the resulting velocity profile is given 
in Figure 2.  Velocity field shows that the steady state solution contains the two 
major circulation cells one above and one below the impeller.  Path lines 
associated with the flow suggest that the overall flow pattern is that of a helical 
flow around the surface two torous one above and the other below the impeller.  

 



This overall flow pattern is interrupted by the flow around and behind the baffles.  
The flow behind the baffles plays an important role in passing fluid from the top 
circulation cell to the bottom circulation cell as there is a minor circulation cell of 
cylindrical form behind each baffle in which the material can enter from the top 
circulation cell and exit into the bottom circulation cell or vice versa.  There is 
also some mixing of material between the two circulation cells at the plane of the 
impeller as the flow moves radially out, some of the fluid is exchanged from the 
upper circulation cell to the lower circulation cell and vice versa.   
 
 
To test the accuracy of the well mixed assumption, the residence time distribution 
was predicted using a unit tracer concentration, a second phase with the 
properties of water, in the tank that is allowed to displace a first water phase as 
time progresses.  The convective flux of the tracer at outlet is collected from this 
simulation and plotted against time [Choi, B-S., et. al., (2004)], then converted to 
residence time distribution using: 
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The RTD determined in is way is normalized since the feed tracer concentration 
was 1.0. The outlet concentration predicted by the simulation is shown in Figure 
3 for the turbulent flow simulations as well as the ideal curve.  Here we see that 
the turbulent simulation is nearly identical to the ideal curve except at the start 
where the ideal curve instantly jumps to 1.0 at time zero and the simulation E(t) 
curve more slowly increases as is the case with experimental results[Choi, B-S., 
et. al., (2004)]. Only the turbulent flow simulation accurately predicted the ideal 
residence time distribution. 
 

 



 
Figure 1 Geometry of 3-D stirred tank with a volume of 1.4 liter.   
 
 

 



 
 
Figure 2 Velocity distributions for turbulent flow The volume of the tank is 1.4 liter, 
and the inlet (and outlet) flow rate is 40 mL/min, the mixing rate is 80 rpm. 
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Figure 3 Comparison of Residence Time Distributions for Turbulent Flow 
Simulations with Ideal Well-Mixed Tank (-) with the Equation, E(t)=1/ τ *exp(-t/τ), 
τ =V/Q. 
 
The mean and standard deviation of the residence time distribution was 
determined giving the following comparison in Table 2.   
 
 
Table 2 Comparison of the Mean and Standard Deviation of the Residence Time 
Distributions for a 1.4 L tank with a feed flow rate of 40 mL/min and a mixing rate 
of 80 rpm. 

 tmean/(V/Q) Error 
% Std.Deviation/tmean

Error 
% 

CFD 
Turbulence 
Simulation 

1.00199 0.2 0.94402 5.598 

Perfect mixing 1 0 1 0 
 
Ideal values for both the mean time, tmean, divided by the ratio of tank volume, V, 
to volumetric flow rate, Q and the standard deviation divided by the mean time 
should be 1.0 if the mixing is ideal.  The turbulent flow model approximates these 
values to within 0.2% error on the mean residence time and to 5.6% error in the 
standard deviation of the residence time distribution and was shown to be as 
accurate as the experiments themselves [Choi, B-S., et. al. (2004)].   The 
population balance simulations were performed with the same tank mixing rate 
since this mixing rate gives nearly ideal mixing conditions. 
 

3. Numerical Case Studies 
 
Numerical cases have been developed to test the QMOM CFD algorithm.  First 
of all the velocity field was solved to a convergence of 10-5 for turbulent flow.  
Then a particulate multiphase calculation was initiated with the PBE solved by 
QMOM using 6 length-based moments 0 to 5 (or more precisely 3 lengths and 3 
weights) with the velocity field fixed.  The convergence criterion is lowered to 10-4 
(or lower) for the multiphase PBE calculation with a relaxation parameter of 0.9 
except when otherwise stated. 
 
 
Case 1-Nucleation and Growth:  The analytical solution to the PBE, equation 
[1], for nucleation and growth was obtained by setting the growth rate to a 
constant (G(v)=G0), the aggregation kernel, β(v,w), and the specific rate of 
breakage, S(v), to zero.  For this case the feed particle size distribution is set to 
zero, nin(v)=0 and the boundary condition is 
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where no is the number density of particles with a zero size.  The nucleation rate 
is given by the product of Go and no.  The analytical solution for this case is given 
by [Randolph, A. D. (1988)] 
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This analytical solution is converted to length-based moments for comparison 
with the simulation.  The simulation was run with GL-0=0.01 mm/s noting the 
above conversion in equation 12 and the nucleation rate was 1#/m3/s.  The mean 
residence time, τ, was 100 s for this simulation with no particles in the feed.  The 
results of this comparison are given in Table 4 for a convergence criterion of 10-9.  
Here we see that the simulation is in error by ~ 23% for the 5th length based 
moment. 
 
Table 4 Moment comparison of PBE for QMOM simulations with analytical 
solution for nucleation and growth. 
 

Outlet   
Inlet Analytical QMOM simulation Error % 

Lm0 0 100 100.88896 0.889 
Lm1 0 100 96.458548 3.541 
Lm2 0 200 183.72358 8.138 
Lm3 0 600 522.45701 12.924 
Lm4 0 2400 1970.7903 17.884 
Lm5 0 12000 9257.3487 22.855 

 
Figure 4 a & b shows Lm0 distribution inside tank.  The Lm0 value indicates total 
number of particles per unit volume.  We can see that Lm0 value at the inlet is 
very low and close to zero. That’s because there is neither particles nor nuclei 
coming from the inlet. Then due to nucleation, there are particles created in the 
tank. In the upper part of the tank, the particle density is higher.  We might expect 
that there is some segregation in a stirred tank but with segretation the higher 
particle density (and larger particle size, Figure 4c) should be found in the bottom 
of the tank or at the outside radius of the tank. The higher particle density in the 
upper part of the tank in Figures 4a & c is caused by a longer residence time in 
that circulation cell where more particles are nucleated when the residence time 
is longer.  At the impeller level moving from top to bottom, there is an abrupt 
decrease in the total number of particles.  In Figure 4b we see the Lm0 (particle 
density) profile at the impeller level.  The total number of particles is less in the 
annular zone between the impeller and the feed tubes and thermowell because 
the material from the lower circulation cell is being transported upward in this 
zone.  Behind the baffles and behind the feed tubes and thermo well, the total 
number of particles is higher because there are recirculation zones with longer 
residence times there.  In Figure 4c the Lm1 moment profile, indicating the total 

 



particle length, is shown to be of identical shape to the Lm0 profile in Figure 4a.  
This is the case because both the nucleation rate and the growth rate are 
constants in this simulation so that the age distribution of the fluid can be 
observed with both increasing number of particles and increasing the size of the 
particles. 
 

 
 
Figure 4a. Zeroth length based moment Lm0 profile.  
 

 



 
 
Figure 4b Zeroth length based moment Lm0 moment profile, top view at the level 
of the impeller:  
 

 
Figure 4c  First length based moment Lm1  profile.  

 



 
Figure 4. Moment profiles in a 1.4 L stirred tank operating at mean residence 
time of 100 s and mixing rate of 80 rpm for Case-1 Nucleation and Growth.  
Figure 4a and 4b are Lm0 moment (particle density) profiles.  Figure 4c is the Lm1 
moment (total particle length) profile. 
 
 
Case 2-Aggregation: The analytical solution to the PBE, equation [1], for 
aggregation alone was obtained by setting the growth rate to zero (G(v)=0), the 
aggregation kernel to a constant, β(v,w)= βo, and the specific rate of breakage, 
S(v), to zero.  For this case the feed particle size distribution is set to an 
exponential distribution given by: 
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The analytical solution for this case is given by [Hounslow, M.J. (1990)] 
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where Io(z) and I1(z) are modified Bessel Functions of the first kind of zero and 
first orders.  This analytical solution is converted to length-based moments for 
comparison with the QMOM simulation.  Analytical expressions [Smit, D. J. 
(1993)] for the zeroth, first and second volume based moments are  
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The QMOM simulation was run for the conditions of βo=1 m4/s, N0=100 1/m3, 
v0=100 µm3, and a mean residence time of 100 s with the relaxation factor set to 
0.9.  The simulation ran for 1,000 iterations to a convergence criterion of 10-6.   
The results of this comparison are given in Table 5.  Here we see that the 
simulation is accurate to ~6% and the 3rd length based moment, Lm3, equivalent 
to the total particle volume, is accurately predicted to essentially not change in 
the tank with aggregation alone. 
 

 



Table 5 Moment Comparison of PBE for QMOM Simulation with Analytical 
Solution for Aggregation Alone. 
 

Outlet   
Inlet Analytical QMOM Simulation Error % 

Lm0 1 0.132 0.12418192 5.923 
Lm1 1.108 0.225 0.22066035 1.929 
Lm2 1.39 0.547 0.54765437 0.12 
Lm3 1.91 1.91 1.9099633 0.001921 
Lm4 2.821 9.073 9.0124754 0.667 
Lm5 4.423 53.797 52.352038 2.686 

 
Figure 5 shows the zeroth (a), first (b), third (c) length based moment profiles in 
the tank.  In Figure 5a, the zeroth moment equivalent to the total number of 
particles is largest at the inlet.  From the inlet the zeroth moment dissipates to an 
on average lower value in the lower circulation cell below the impeller.  The zeroth 
moment is slightly smaller in the upper circulation cell above the impeller since 
the residence time is larger in the upper circulation cell and with longer time the 
particles aggregate more decreasing the particle number in the upper circulation 
cell.  In Figure 5b, the first moment, Lm1, or total particle length profile for the tank.  
This profile is similar to that of the zeroth moment, Lm0, because the total length of 
particles gets smaller due to aggregation.  In Figure 5c, the third moment, Lm3, or 
total volume of particles is every where nearly a constant as it should be for the 
aggregation process, see scale as well as figure. 

 

 



Figure 5a Zeroth length based moment Lm0 profile for aggregation only case, 
front view 
 

 
 
Figure 5b  First length based moment Lm1 profile for aggregation only case, front 
view 
 

 



 
 
Figure 5c Third length based moment Lm3 profile for aggregation only case, front 
view, different colors indicates numerical errors of 0.01%. 
 
Figure 5. Moment profiles in a 1.4 L stirred tank operating at mean residence 
time of 100 s and mixing rate of 80 rpm for Case-2 Aggregation.  Figure 5a is the 
Lm0 moment (particle density) profile.  Figure 5b is the Lm1 moment (total particle 
length) profile.  Figure 5c is the Lm3 moment (volume of particles) profile, which is 
essentially a constant.  
 
 
Case 3-Breakage: The analytical solution to the PBE, equation [1], for breakage 
alone was obtained by setting the growth rate to zero (G(v)=0), the aggregation 
kernel to zero, β(v,w)= 0, the specific rate of breakage to S(v)=v 1/s and the 
daughter distribution function is set to ρ(v,w)=2/w.  For this case the feed particle 
size distribution is set to an exponential distribution.  
 
The analytical solution for the case is given by [Nicmanis, M. (1998).]: 
 

               [17]          ( ) ( )( )[ ]
( ) 








+

++++
=

o
o

ooo

v
vvv

vvvvNvn
exp1

121)(
2

τ

τττ

 

 



This analytical solution is converted to length-based moments for comparison 
with the QMOM simulation.   
 
Analytical expressions of the zeroth and first volume moments can be derived to 
give 
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which indicate that the volume of particles equivalent to the third length based 
moment is conserved.  These moments are converted to length-based moments 
for direct comparison with the QMOM simulation. 
 
The QMOM simulation was run with constants N0 and v0 were set to unity, the 
mean residence time, τ, of 100s. The simulation was run for 21,900 interations to 
get to a convergence criterion of 10-5.  Comparison of the simulation to the 
analytical solution is given in Table 6.  The results for Lm3 moment are accurately 
predicted indicating that mass is conserved.  A plot of the Lm3 moment profile 
showed a constant value at all locations just like Figure 6c.  The errors for other 
moments are within 6.1%.   Plots of the other moment profiles are similar to 
those for Case 2 - aggregation alone except that the upper circulation cell has 
slightly more particles, Lm0, and larger particles, Lm1, than the lower circulation 
cell. 
 
Table 6 Moments Comparison of QMOM Simulation to the Analytical solution for 
Breakage only. 
 

Outlet   
Inlet Analytical QMOM simulation Error % 

Lm0 1 101  94.746816  6.191 
Lm1 1.108 21.758  20.595363  5.343 
Lm2 1.39 5.807   5.608233   3.423 
Lm3 1.91 1.91  1.9099698  1.581E-3 
Lm4 2.821 0.789 0.79229203 0.417 
Lm5 4.423 0.422 0.41217964 2.327 

 
 

 



 

 

Figure 6a Front view and top view of Lm0 contour for breakage case. 

 



 

 

Figure 6b Front view and top view of Lm1 contour for breakage case. 

 



 

 

Figure 6c Front view and top view of Lm3 contour for breakage case. 

 



Figure 6. Moment profiles in a 1.4 L stirred tank operating at mean residence 
time of 100 s and mixing rate of 80 rpm for case-3 breakage.  Figure 6a is the 
Lm0 moment (particle density) profile.  Figure 6b is the Lm1 moment (total particle 
length) profile.  Figure 6c is the Lm3 moment (volume of particles) profile, which is 
essentially a constant.  
 

Case 4-Nucleation, Growth and Aggregation Combined:  The analytical 
solution to the PBE, equation [1], for nucleation, growth and aggregation 
combined was obtained by setting the growth rate to a constant (G(v)=G0), the 
aggregation kernel to a constant, β(v,w)= βo, and the specific rate of breakage, 
S(v), to zero.  For this case the feed particle size distribution is set to zero, 
nin(v)=0 and the boundary condition was a constant, n(0)=no, where no is the 
number density of particles with zero size.  The nucleation rate is given by the 
product of Go and no.  The analytical solution for this case is given by [Liao, P.F. 
(1976)]. 
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where I1(z) is the modified Bessel Function of the first kind of first order.   
Analytical expressions of the zeroth, first and second volume moments can be 
derived to give 
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This analytical solution and the above moment equations are converted to length 
based moments for comparison with the QMOM simulation.  The simulation was 
run with a volumetric growth rate, Gv-0, of 0.01 mm3/s, which is equivalent to a 
length based growth rate, Gx-0, of 0.01/(kv*x2) mm/s where x is the particle size.  
The aggregation kernel, βo, was 0.1 m4/s, the nucleation rate was 0.01 1/m3/s 
and the mean residence time, τ, was 100 s with no particles in the feed.  The 
solution took 8000 iterations to reach a convergence criterion of 10-4 for the 
simulation. The results of the simulation compared to the analytical solution, 
equation [20], are given in Table 7.  For the QMOM simulation, the largest error 
is 0.64% in the length moment, Lm1.  
 

 



Table 7 Moments comparison of QMOM turbulent simulation to the analytical 
solution to the PBE for nucleation, growth and aggregation 
 

Outlet   
Inlet Analytical QMOM simulation Error % 

Lm0 0 0.358 0.36013501 0.596 
Lm1 0 0.346 0.34603996 0.012 
Lm2 0 0.434 0.43654082 0.585 
Lm3 0 0.684 0.68825631 0.622 
Lm4 0 1.305 1.3131342 0.623 
Lm5 0 2.904 2.9222183 0.627 

 
Figure 7 shows the moment profiles in the tank.  In Figure 7a the Lm0 moment 
profile corresponding to the total number of particles is shown.  As the flow 
enters just below the impeller without particles, nucleation takes place and 
particles are produced increasing the number of particles as the flow moves 
away from the feed port.  The mixing with other fluid in the tank dilutes and 
makes more uniform the particle number density.   In the upper circulation cell 
above the impeller the number density of particle is slightly higher than in the 
lower circulation cell due to the longer residence time in the upper circulation cell.  
The balance of nucleation and aggregation in this case lowers the total number 
of particles compared with Case-1 Nucleation and Growth - compare Figure 7a 
with Figure 4a.  In Figure 7b, the Lm1 moment profile corresponding to the total 
length of particles is shown and in Figure 7c the Lm3 moment profile 
corresponding to the total volume of particles is shown.  These figures have the 
same trends as Figure 7a, for longer residence time the total particle length per 
unit volume and the total particle volume per unit volume are larger when the 
time that the flow stays in the zone increases. 

 



 
Figure 7a Zeroth length based moment Lm0 profile 

 
Figure 7b First length based moment Lm1 profile 

 



 
Figure 7c Third length based moment Lm3 profile 
 
Figure 7 Moment profiles in a 1.4 L stirred tank operating at mean residence time 
of 100 s and mixing rate of 80 rpm for case-4 combined nucleation, growth and 
aggregation case.  Figure 7a is the Lm0 moment (particle density) profile.  Figure 
7b is the Lm1 moment (total particle length) profile.  Figure 7c is the Lm3 moment 
(total volume of particles) profile. 
 
The results of these cases are in stark contrast to 2-D simulations of a well mixed 
tank that gave more accurate solutions for all of these cases [Wan, et. al., 2005].   
The worst error with the 2-D solutions was with Case-3 Breakage where only a 
0.4% error was observed in the first length based moment.  The major difference 
in the residence time distribution between the 2-D and 3-D simulation was the 
deviation from ideality shown in Figure 3.  In the 2-D case the ideal residence 
time was more accurately predicted.  An additional difference was in the non- 
uniformity of the moment profiles.  With the 2-D model the profiles were very 
uniform while for the 3-D model we have non uniform moment profiles especially 
at and below the impeller.  As a result, we can attribute these errors in the 
simulations not to numerical problems with QMOM’s numerical methods but to 
the non ideal mixing that this stirred tank has even when it is operated nearly 
ideally. 

4. Conclusions 
 

 



A 3-D CFD model of a 1.4 L well-mixed stirred tank with baffles, Rushton impeller 
and other internals was developed.  Using a multiphase turbulence model a 
nearly ideal flow residence time distribution was validated.  Using a two-phase 
model with a QMOM model of the PBE for the second, solid phase turbulent 
simulations were performed for cases with nucleation and growth, aggregation, 
breakage and nucleation, growth and aggregation combined.  The simulations 
were compared with analytical solutions for a well mixed tank for those cases.   
The simulations were not particularly accurate with errors ranging from 0.6% to 
22% depending upon the case.   Errors from 5% to 20% were observed with 
most cases except the nucleation, growth and aggregation combined case where 
0.6% error was observed.  In this case the errors for aggregation and for 
nucleation and growth appear to cancel one another. These errors are not 
attributed to errors in QMOM or its implementation in the CFD code but to non 
ideal mixing in the tank. 
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