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Abstract 
  
For many processes of industrial significance, due to the strong coupling 
between particle interactions and fluid dynamics, the population balance must be 
solved as part of a computational fluid dynamics (CFD) simulation. In this work, a 
CFD based population balance model is tested using a batch crystallization 
reactor. In this CFD model, the population balance is solved by the standard 
method of moments (SMOM) and the quadrature method of moments (QMOM).  
The results of these simulations are compared to analytical solutions for the 
population balance in a batch tank where 1) nucleation 2) growth, 3) aggregation, 
and 4) breakage are taking place separately.  The results of these comparisons 
show that the first 6 moments of the population balance are accurately predicted 
for nucleation, growth, aggregation and breakage at all times. 
 
Keywords: Population balance; Computational fluid dynamics; Particle process; 
Modeling 

1. Introduction 
Batch crystallization processes are widely used, especially in the pharmaceutical 
industry. Batch crystallization processes are not well understood because the 
process is affected dramatically by fluid mixing, particle aggregation and particle 
breakage.  Simple models used for batch crystallization do not account for 
mixing, aggregation and breakage.  In order to properly model batch 
crystallization the population balance must be coupled with turbulent 
computational fluid dynamics (CFD) modeling to correctly predict the particle size 
distribution (PSD). Such a model has been created based upon either the 
Sandard Method of Moments (SMOM) or the quadrature method of moments1 
(QMOM within a well established CFD model to solve the PSD for industrial 
problems, such as batch crystallization and batch precipitation.  This work 
describes our attempts to verify this new computer code with analytical solutions 
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to the population balance for batch conditions.  Verification is the first step on the 
road to model validation with experimental data, to be handled in another 
publication.  In this verification work, we compare these CFD results with 
analytical solutions to the population balance model for a batch crystallizer using 
nucleation only, growth only, aggregation only, and breakage only cases.  The 
QMOM solution to the population balance is calculated using the first 6 moments 
(zero to five) of the population.  For comparison, the analytical solutions are 
reduced to the first 6 moments of the population and compare directly with CFD 
simulation results.  
 

2. Batch Population Balance Equation (PBE) 
The population balance equation (PBE) is a statement of continuity for particulate 
systems.  For a batch crystallizer with nucleation, aggregation, breakage and 
growth occurring, the PBE is given by Randolph and Larson 2 as 
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with the initial condition, n(v,t=0) = no(v).  In the above equation n(v) is the 
number-based population of particles in the crystallizer which is a function of 
the particle volume, v.  G(v) is the volume dependent growth rate and b(v) is 
the volume dependent birth rate and d(v) is the volume dependent death 
rate.  For aggregation, the birth and death rate terms are given by Hulburt 
and Katz 3: 
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where the aggregation rate constant, β(v,w), is a measure of the frequency of 
collision of particles of size v with those of size u.  In the case of breakage, the 
birth and death rate terms are given by Prasher 4: 
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where S(v) is the breakage rate that is a function of particle size, v, ρ(v,w) is the 
daughter distribution function defined as the probability that a fragment of a 
particle of size w will appear at size v.  In this paper, we use analytical solutions 
to the population balance for comparison with standard method of moments 
(SMOM) and quadrature method of moments (QMOM) CFD solutions to the 
population balance. 
 
With SMOM and QMOM the population balance is simplified into a series of a 
few discrete moment equations.  Certain moments of the population have 
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physical significance as shown in Table 1.  The kth volume-based moment is 
defined by5: 
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vmo and vm1 represent the total number and total volume of particles in the 
system.   
 
In the CFD code, the particle density function is described as a function of 
particle size x, instead of particle volume v and the population balance is written 
in terms of n(x) instead of n(v).  Thus the population balance, eq. [1], is rewritten 
as: 
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and the kth length-based moment is defined by6: 
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A comparison of several volume-based moments and length-based moments are 
given in Table 1.  
 
Table 1: Comparison of volume based moments and length-based moments: 
 
Property 

Volume-Based 
Moment 

Length-Based 
Moment 

Number of 
Particles 

vm0 Lm0 

Surface Area of 
Particles  

Kav*vm2/3 Ka*Lm2 

Volume of 
Particles 

vm1 Kv*Lm3 

Ka, Kav and Kv are area and volume shape factors 
 
The SMOM proposed by Randolph and Larson2 is an alternative method for 
solving the PBE.  Instead of solving PBE, equation [1], directly, SMOM converts 
the PBM into several moment equations that are solved separately.  The moment 
transformation for growth and breakage is given by:  
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where ηi is defined as: 
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where P(v|v’) is daughter distribution function, assuming that P(v|v’) is purely a 
function of ξ=v/v’. The advantages to this approach are that SMOM reduces the 
dimensionality of the problem significantly.  It is relatively simple to solve the 
transport equations for lower-order moments.  The disadvantages are that exact 
closure of the growth term and the right-hand side of equation [7] is possible only 
in special cases - those with polynomial breakage rate combined with a daughter 
distribution that is a polynomial in v/v’, constant aggregation rate and either size-
independent growth rate or linear (in volume) growth rate.  In all other cases, 
closure is not possible.  Closure is the situation where equation [7] reduces to a 
set of equations where the equation for d vmi/dt only has terms with equal or 
lower order moments allowing the solution for all order moments in terms of 
lower or equal order moments and never higher order moments.  This closure 
constraint is overcome, however, with QMOM.  The QMOM method was first 
proposed by McGraw7 for modeling the size evolution of aerosols and for 
coagulation problems.  Its applications by Marchisio et al.8 have shown that the 
method requires a relatively small number of scalar equations to track the 
moments of population with small errors.  The QMOM method provides an 
attractive alternative to the SMOM method for size dependant growth, size 
dependant aggregation and breakage.  Rather than an exact PSD, QMOM gives 
a series of N weights and N abscissas that can be converted into 2N moments.  
Its advantages are that there are fewer variables (typically only six moments) and 
a dynamic calculation of the size bins.  The disadvantages are that the number of 
abscissas may not be adequate to describe the PSD and that solving the 
Product-Difference algorithm9 may be time consuming.  
 
The QMOM method is based on the following quadrature approximation. 
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where weights ( ) and abscissas ( ) are determined through the product-
difference(PD) algorithm from the lower-order moments

iw iL
9;  By using the PD 

algorithm, a quadrature approximation with N weights and N abscissas can be 
constructed using the first 2N moments of the PSD.  In the CFD simulations 
presented in this work, N = 3 giving the first six moments (Lm0, Lm1, Lm2, Lm3, 
Lm4, and Lm5).  Using the quadrature approximation, 
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any kth moment can be approximated allowing closure of the moment-based 
population balance equation.  The moment-based population balance results in 
2N transport equations for the first 2N moments.  All these moment transport 
equations can be solved together with the other transport equations including: 
the momentum balance and the mass balance equations.  In the CFD code, 6 
moments are tracked which is enough to characterize the PSD for many cases. 
 
For our time dependant well-mixed batch simulations, a single 2D cell is used 
with CFD code’s multi-phase mixture model.  The various parameters for 
population balance including: nucleation rate, growth rate, aggregation rate and 
breakage rate can be set to a constant or a user-defined function can be created 
and compiled within the CFD code.  For these simulations the momentum 
balance and the mass balance were turned off and only the SMOM or QMOM 
population balance transport equations (PBM) were solved using double 
precision calculations.  The results of these simulations are the first six length-
based moments (Lm0, Lm1, Lm2, Lm3, Lm4, and Lm5).  These moments are 
compared directly to those calculated from the analytical solutions of the 
population balance equation for specific cases discussed in the next section of 
this paper. 
 

3. Results and Discussion 

Case 1 - Nucleation 
With nucleation the population balance, equation [1], can be simplified by 
deleting the 2nd and 4th terms.  On the right hand side of equation [1] only the 
birth term for particles of effectively zero size remains.  The population balance 
for this case is given by: 
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where Bo is nucleation rate (#/m3 s), δ(x-xo) is the Dirac delta function centered at 
the size of the nuclei, xo, with units for the delta function of 1/ µm.  Integrating 
equation [11] with time from the initial condition, n(x,t=0)=0 to t, assuming that 
the nuclei size xo=0 µm and using the definition of length-based moments, we 
obtain a solution for the length-based moments:  
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This means that the zeroth moment, Lm0, which is equal to the total number of 
particles, increase linearly with time while higher order moments are equal to 
zero at all times. Because there is no growth happens. 
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For the CFD simulations, the nucleation rate was set to Bo = 0.01 #/(m3.µm s) 
and the convergence criteria was set to 10-4 for every time step. With this 
convergence criterion it took less than 40 iterations for convergence at each time 
step.  The results for the 0th moment, the total number of particles is shown in 
Figure 1.  Both the SMOM and the QMOM methods in CFD code accurately 
predict the analytical results given in equation [12] at all times between 0 and 100 
s.  The higher order moments were also predicted by SMOM and QMOM in CFD 
code to be zero within round off error for the convergence criterion used in this 
calculation.  Table 2 shows the maximum error in the 0th moment to be 10-6 which 
is the error associated with the convergence criterion for the calculation. 
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Figure 1. Comparison of 0th moment values calculated with the analytical 
solution, eq. [14], SMOM and QMOM methods using CFD code for Case 1 - 
Nucleation. 
 
Table 2. Maximum error for SMOM and QMOM CFD simulations over the time 
period 0 to 100s for Case 1 – Nucleation  
Convergence criteria was set to 10-6 for every time step. 

Moments Error for SMOM % Error for QMOM % 
Lm0 10-6 10-6 

 

Case 2 - Growth  
With growth the population balance, equation [1] is simplified by deleting the 

3rd and 4th terms which corresponding to the birth and death terms.  In this case 
we will assume that the growth rate, G(x) [=G] is not a function of particle size, x, 
and that there is an initial distribution of particles described by a delta function 
centered at size xm.  The population balance for this case is given by: 
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with initial condition, n(x,t=0) = δ(x-xm).  Equation [13] has the analytical solution: 
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Using the moments definition, equation [6], and with xm=0, we get, 

 
k
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This result states that the total number of particles will not change with time 

making the 0th moment is a constant.  The higher moments increase with time to 
a power equal to the order of the moment, for example the 1st moment will 
increase linearly with time and the second moment will increase quadratically 
with time, etc. 
 
For the CFD simulations, the growth rate was constant at G = 1 µm/s, the initial 
number of zero sized particles is 100 m-3, which allows the initial conditions for all 
the moments to be described as:  
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For growth Lm0 is constant with time since the total number of particle does not 
change but moments 1 to 5 increase with time as the particles grow.  Among 
them, Lm1 will change with time linearly; Lm2 will change quadratically with time, 
etc.  For these CFD calculations, the convergence criteria are set to 10-4 for 
every time step for both SMOM and QMOM simulations.  For this value of the 
convergence criterion it will took less than 40 iterations for convergence at each 
time step.  The results of the CFD simulations are shown in Figure 2A-F.  In 
Figure 2 we see the values of the various moments plotted as a function of time.  
In each graph are the SMOM and QMOM simulations as well as the analytical 
solution given in equation [17].  Both SMOM and QMOM simulations predict the 
time evolution of the moments reasonably well.  The lower moments are 
predicted accurately but the higher order moments are not predicted as well.  
Table 3 lists the maximum errors for the various moments over the time period 
for the simulations shown in Figure 2 as calculated by SMOM and QMOM 
methods.  The maximum errors are worst for the higher moments and approach 
10 % for the SMOM CFD simulation while the QMOM simulation is more 
accurate for showing only 0.7% error. 
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m2 vs. time

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

0 50 100

time (seconds)

m
om

en
ts

m2smm

m2qmom

m2_analytical

C) Lm2 D) Lm3 

D) Lm4 

m5 vs. time

0

2E-19

4E-19

6E-19

8E-19

1E-18

1.2E-18

0 20 40 60 80 100

time (seconds)

m
om

en
ts

m5smm

m5qmom

m5_analytical

F) Lm5 
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Figure 2 Plot of length-based moments 0 to 5 versus time for analytical solution, SMOM 
and QMOM CFD simulations for Case 2 - Growth. 
 
 

 8



Table 3 Maximum error for SMOM and QMOM CFD simulation over the time 
period 0 to 100s for Case 2 – Growth  
Convergence criteria is set to 10-4 for every time step. 

Moments Error for SMOM % Error for QMOM % 
Lm0 0 0 
Lm1 0 0 
Lm2 1 0.5 
Lm3 3 0.7 
Lm4 5.9 0.8 
Lm5 9.7 0.7 

 

Case 3 - Aggregation 
 
With aggregation only the 2nd term in equation [1], the growth term, disappears 
and the birth and death terms are given by equation [2].  For this case we will 
assume that the aggregation rate kernel β(u,v) is a constant β.  Von 
Smoluchowshi has developed the analytical solution for aggregation case with an 
initially monodisperse distribution of particles and a constant aggregation rate10.  
The analytical result is a distribution given by: 
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This distribution is discrete in time due to the fact that any particle of size xi results from 
the aggregation of i particles of size xo so that the aggregate size is given by: 
 
 xi = (i xo
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In equation [18] the aggregation half-life is defined by:  
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where β is the aggregation rate constant.  The total number density, NT or  , 
decreases with time according to  
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Other moments are determined by: 
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The values of these analytically derived moments are used to compare with CFD 
simulations.  For the CFD simulations the aggregation rate constant, β, was set to 
1.104x10-17(#/m3)-1/s, the initial particle size, xo, to 0.01 m and No, the initial particle 
density, to 100 #/m3, so the initial conditions for moments are: Lm0=100, Lm1 = 1, Lm2 
=0.01, Lm3=10-4, Lm4=10-6, Lm5= 10-8.  The CFD simulations were not performed with the 
SMOM option as this leads to moment closure problems as was discussed above.  Only 
the QMOM simulation was performed for the aggregation case.  The CFD simulations 
were performed for time step intervals of 10-14 seconds using a convergence criterion of 
10-4 for every time step.  For this value of the convergence criterion it will took less than 
50 iterations for convergence at each time step.  The length-based moments results of this 
simulation are compared to the analytical solution, equations [21] and [22], in Figure 3A-
F.  Here we see that the simulation accurately predicts the various moments.  The 3rd 
moment gives a constant value as it should since the mass of particles does not change 
during aggregation.  The maximum errors in the moments from these simulations are 
captured in Table 4.  Again we see that the 3rd moment (and 4th) is accurately predicted 
with the simulation.  The worst error is 0.9% occurring with the first moment that 
corresponds to the number of particles in the batch. 
 

 10



 

0

20

40

60

80

100

120

0 5E+15 1E+16 1.5E+16 2E+16 2.5E+16 3E+16

m0_analytical
m0_qmom

 
A) Lm0 

0

0.2

0.4

0.6

0.8

1

1.2

0 5E+15 1E+16 1.5E+16 2E+16 2.5E+16 3E+16

m1_analytical

m1_qmom

 
B) Lm1 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5E+15 1E+16 1.5E+16 2E+16 2.5E+16 3E+16

m2_analytical

m2_qmom

 
C) Lm2 

0.00008

0.000085

0.00009

0.000095

0.0001

0.000105

0.00011

0.000115

0.00012

0 5E+15 1E+16 2E+16 2E+16 3E+16 3E+16

m3_analytical

m3_qmom

D) Lm3 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

0 5E+15 1E+16 2E+16 2E+16 3E+16 3E+16

m4_analytical

m4_qmom

 
D) Lm4 

0.00E+00

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

1.20E-07

0 5E+15 1E+16 2E+16 2E+16 3E+16 3E+16

m5_analytical

m5_qmom

F) Lm5 
Figure 3 Plot of length-based moments 0 to 5 versus time for analytical solution, SMOM 
and QMOM CFD simulations for Case 3 - Aggregation. The unit for x axis is seconds. 
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Table 4 Maximum error for QMOM CFD simulation over the time period 0 to 100s 
for Case 3 – Aggregation.  Convergence criteria is set to 10-4 for every time step 

Moments Error % 
Lm0 0.908 
Lm1 0.448 
Lm2 0.15 
Lm3 0 
Lm4 0 
Lm5 0.1 

 
 

Case 4 - Breakage 
 
The 2nd term in equation [1], which is growth rate term, disappears with breakage 
only case and the birth and death terms from equation [3] are used for the right 
hand side of equation [1].  In equation [3], we need to define the breakage rate 
S(v) in terms of particle volume or S(x) in terms of particle size, and the daughter 
distribution function ρ(v,w) in terms of particle volume or ρ(x,x’) in terms of 
particle size.  An analytical solution11 to this population balance equation has 
been obtained by transforming the population balance on a number basis, n(v,t) 
or n(x,t), to a population balance on a cumulative mass basis, F(x,t).  The 
relationship between the two populations is given by: 
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where ρs is the particle density.  The population balance on a cumulative mass 
basis is obtained by performing the integration in equation [23] for each term in 
equations [1] and [3] giving12: 
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where S(x’) is the breakage rate and P(x|x’) is the cumulative daughter 
distribution function given by13: 
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For this case we will use a mono-sized initial condition at size xm, a cumulative 
daughter distribution function given by: 
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where κ is a constant and a breakage rate is given by: 
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where ko and λ are constants.  After converting the cumulative volume daughter’s 
distribution to number distribution, we found that only for κ = 6 do we have binary 
breakage.  Because the this CFD code can only calculate binary breakage 
problems, the daughter distribution function that satisfied this condition, is κ = λ  
= 6 which we will use here.   
 
The analytical solution to the population balance on a cumulative mass basis is 
given by11,14: 
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where is the generalized hyper geometric series and 2Φ 1Ξ1 is confluent hyper 
geometric function15 defined by: 
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and 
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A plot of equation [28] with k0=1 hr-1, κ=λ=6, binary breakage, xm=1 um, a mono 
sized feed, is given in Figure 4.  Here wee see that the cumulative mass 
distribution starts at a large size and decreases to smaller size as time increases 
typical of batch breakage. 
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Figure 4 Plot of the cumulative mass distribution (equation [26]) versus size, x, 
for the conditions: k0=1 hr-1, κ=λ=6, xm=1 um. 
 
 
Note that in all these equations, PSD is expressed using F(x,t), cumulative 
volume density distribution based on length.  All of these distributions need to be 
converted to number density distribution before they can be converted to 
moments and compare with CFD simulation results.  The population, n(x,t) can 
be obtained from the cumulative mass distribution, F(x,t), using: 
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where NT is the total number of particles per unit volume. From equation [33] and 
the moments definition equation [6], the various moments can be calculated from 
this analytical solution.  For the CFD simulations we use the conditions k0=1 hr-1, 
κ=λ=6, binary breakage, xm=1 um, a mono sized feed and a convergence criteria 
of 10-4 for every time step.  With this convergence criterion, it took less than 40 
iterations for each time step to get convergence.  Since we are using κ=λ=6, the 
SMOM formulation will not give moment closure.  The results for the various 
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moments are shown in Figure 5.  Here we see exponentially increasing, 0th, 1st  
and 2nd moments, a constant 3rd moment corresponding to a constant mass of 
particles and exponentially decreasing 4th and 5th moments.  These moments 
compare favorably with the analytical values of the moments also plotted in 
Figure 5.  The maximum error in the moments is captured in Table 5.  Here we 
see that the largest error is in the 0th moment, the total number of particles.  The 
maximum error in all of the moments is 4.664% 
 
The analytical solution to the population balance for breakage can also be solved 
using the method of moments transformation.  Starting with equations [7] and 
eliminating the 2nd term, the growth term, the moment transport equation is given 
by: 
 

 ∫
∞

−=
0

),()()12( dvtvnvSx
dt
md i

i
iv η        [34] 

 
where ηi is defined by equation [8].  When S(x)=So and p(v|v’)=v/v’ the moment 
equation is reduced to: 
 
 ivoi

iv mS
dt
md

)12( −= η         [35] 

 
which can be readily solved for the various moments12: 
 
 tSmtm oiiviv )12exp()0()( −= η        [36] 
 
This solution gives an exponentially increasing number density (0th volume 
moment) and a constant total particle mass (1st volume moment and 3rd length 
moment) because η0=1 and η1 =1/2 due to conservation of mass as seen in 
Figure 5.  
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Figure 5 Plot of length-based moments 0 to 5 versus time for analytical solution, and 
QMOM CFD simulations for Case 4 - Breakage 
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Table 5 Maximum error for SMOM and QMOM CFD simulation over the time 
period 0 to 30s for Case 4 – Breakage.  Convergence criteria is set to 10-4 for 
every time step 

Moments Error % 
Lm0 4.664 
Lm1 2.076 
Lm2 0.825 
Lm3 0 
Lm4 0.515 
Lm5 0.729 

 
 

4. Conclusion: 
A two-phase model for the contents of a tank with a PBE for the solid phase has 
been developed and solved with either the SMOM or QMOM options within CFD 
code.  This model has been tested using numerical cases with nucleation, 
growth, aggregation and breakage to validate the model. These CFD simulations 
are compared with analytical solutions to the batch PBE for these cases.  The 
SMOM simulations8 can be used for cases with moment closure.  The QMOM 
simulation can be used for all cases.  The QMOM simulation accurately predicts 
all of these cases.  To obtain less than 1% accuracy for these cases, 
convergence criteria less than 10-4 are necessary. The only concern about this 
CFD PBM code is that proper units should be used for the particle size system. 
For example, if we use meters for particle size, then for nano particles with size 
of 10-9 meters, the 6th moments will goes to order of 10-54, numerical error will be 
dramatic for that small number. For all the cases tested here, microns are used 
for particle size. 
 

5. Nomenclature: 
B0 Nucleation rate 
F(x,t) Cumulative Mass distribution (volume density) function based 

on length at time t 
Ka Area shape coefficient 
kB Boltzmann Constant 
Kv Volume shape coefficient 
Li abscissas 
Lmi Length based moments, i= 1, 2 …. 
n(x,t) Population density function 
N0 the initial number of particles 
NT Total number of particles per unit volume 
P(x) Cumulative daughter’s distribution function  
S(x) Breakage rate 
T Temperature 
t1/2 half-life 
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v Volume, m3 

wi weights 
x Particle length,  m 
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