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Problem 0.1
Consider the plant P(s)=2/(s + 1) and the reference model M(s)=1/{s+1).

a) Plot the responses over 20 seconds of 8(¢), e,(t) and v(i)= () +k » #%(¢) for the MLLT. rule, the Lya-
punov redesign and the indirect scheme of chapter 0. Let r(¢)=sin(¢), #(0)=1 and all other initial condi-
tions be zero. Comment on the responses in view of the analytical results.

i

b} Repeat part a) with r{f)=¢"",

Problem 0.2

Give an example of a control system where parametric adaptation is required or desirable. Identify the
source of variation and indicate whether it is due to a nonlinearity, a slow state variable, an cxtcrnal factor,
an initial uncertainty or an inherent change in the system under control.

Problem 0.3

Consider the MRAC algorithm of chapter 0, using the Lyapunov redesign. Let r=rg be constant. Show
that the system with state variables (eg, ¢) is linear time-invariant. Calculate the poles of the system as
functions of a, k, and r,. Plot the locus of the poles as ro varies from 0 0 . Discuss what happens when
ro=0, and when k, <0.

Problem 0.4

The stability properties of the MIT rule were investigated by D.J.G. James in “Stability of a Model Refer-
ence Control System,” ATAA Journal, vol. 9, no. 5, pp. 950952, 1971. The algorithm is the same as the
one given by egn. (0.3.6). The author calculated the stable and unstable regions of the algorithm, which are
shown on Figure P0.4. '

Figure P0.4: Stability Regions for the MIT Rule

Assuming that the plant is P(s)}=1/(s + 1), the reference model is M(s)=1/(s+ 1), and the reference input
r=sin{e f), the x-axis of the figure becomes 7, =® and the y-axis becomes x, =g¢. Note that, for small
enough @, the MIT rule is stable for all g, while for small enough g, it is stable for all @. Otherwise, the
dynamic behavior of the algorithm is quite complex, with interleaving of the stable and unstable regions,

a) Write the differential equations of the overall adaptive system and show that it is a nonlinear
time-varying system. Given that the equation for y,, can be solved independently of the others, show that
the remaining equations constitute & linear time—varying system x = A(f) x.

b) Simulate the responses of the adaptive system for a few values of the parameters to check the validity of
the figure. In particular, check the responses for @=1 and g=10,35,50 and 80, then for g=10 and
w=1,1.5 and 2.5. Let all initial conditions be zero and plot the error ¢y for 50 seconds. Could such
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behavior be observed with a second-order linear time~invariant system ?

Problem 1.1
a) Determine which functions belong to Ly, Lo, L., L,,, Ly,, L..,

fi=e"?" for a>0 and a<0

AO=——: RO 0=

TR v IR
b} Show that f & L, " L., implies fe L,.

Problem 1.2
a) Show that A€ R?*? is positive definite if and only if ay; >0, a5 >0, and g,y ax > (@12 + a3 )* /4.

b) Find examples of 2x2 symmetric (but not diagonal) matrices such that A 20, A <0 and A is neither posi-
tive nor negative semidefinite. In each case, give 1;(A).

c) Find an example of two symmetric positive definite matrices A and B such that the product is neither
symmetric nor positive definite. Give 2;(A B) and 1,( (A B)+ (A B)T).

Problem 1.3

Prove the following facts. All matrices are real and square {except in a)). Use only the definitions of eigen-
values and eigenvectors.

a)Forall Ce R™, CTC20 and CTC>0 ifrank (C)=n
b) A=AT implies i;(A)e R

) A=AT and A,(A)#A,(A) implies xT x,=0
where x,, x, are the eigenvectors associated with 4;(A), A;(A)
dyAz=0 implies Red;(A)=0

Problem 1.4

Prove the following facts. All matrices are real and square. You may use the fact that A= AT implies that
A=UT AU with A=diag 2,(A) and UT U =1,

a) ForA=AT A20 ifandonlyif 2,(4)20

b) A20 ifandonlyif A,(A5)20

¢) For A=AT20 A, (A x2< xT Ax< A (A x

d) For A=AT>0 2o (A ) =(Ama(AN?}

e) ForA=AT>0 11All=1,,(4)

f) det(5)#0 implies 2, (A)=A4;(STAS)

g) A=AT>0, B=BT>0 implics A,(AB)e R and A, (AB)=0

Problem 1.5

Consider the plant P(s)=1/(s+ a,) and the reference model M(s)=1/(s + a,,). Let the controller be given
by

u=dy,+r

where r is the reference input (bounded), u and y, are the input and output of the plant, and d is an adap-
tive gain with update law

d=-geyyp
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a) Is the overall system described by a linear or nonlinear differential equation ? Is it time—invariant or
time~varying ?

b) For constant g >0, indicate whether the system is stable, uniformly stable, asymptotically stable, or uni-
formly asymptotically stable. Does eq —» 0 as t — os?

c) Let g(¢) be a continuonsly differentiable function of time. What stability properties does the system have
if g(f)>0forallz?

Problem 1.6
Let x=f(t,x), x(ty )= xy, with f(z, x) globally Lipschitz in x (with constant [} and (¢, 0) bounded (with

bound b). Show that
ky +ka e 6T <l x($) 1< ky+ kg €110

Find expressions for k,, k,, k4 and k4 as functions of t x4 1, b and 1.

Problem 1.7

Consider the linear time—invariant system
X=Azx x{to)=xp

Assume that there exist matrices P=P7 >0 and Q=07 >0 such that
ATP+PA+Q=0

Find m 20 and « >0 as functions of the matrices P and @ such that

Ix()1<me™ 0"} | x40

Problem 1.8
Consider the linear time—varying syswem (from Vidyasagar’s Nonlinear Systems Analysis, Prentice-Hall,
1978)

r=A{x

where

~1+acos®t 1-—asinicost J

~1-asintcost —1+asin’¢

a0 = {

Show that the transition matrix (¢, 7) satisfies

(a—1)¢ —t
€ Ccost € “sin{
@,0) = .
©.0) {—e(“"n'smt e“'cost)

and that the matrix A(f) has eigenvalues that are independent of ¢ and located in the left-half plane for
1< a<2. Discuss the stability properties of the equilibrium point at x=0, What conclusions can you draw
from this example ?

Problem 1.9

Determine which of the following functions are globally Lipschitz, and give the Lipschitz constant. Let x
and f be scalars.

f

) feN=1Is B fEH=7
¢y flit.x)=Ax dy f(t,x)=¢x
O fLn="5= D flx=vE

e*+e*
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Hint: use the mean-value theorem of elementary analysis to relate the Lipschitz constant to df /dx.

Problem 1.10

a) Given the linear time—invariant system X = A x, determine whether the following A matrices correspond
to an cquilibrium point x=0 that is stable in the sense of Lyapunov, asymptotically stable, or unstable.

-1 0 -1 -3 1 -3
Al‘( 0 -2] AF[ 2 4 ) A’“(z —4)
1 0 -1 1 00
“‘(0 2) "‘"(-2 1) A“'(o 0]
1 1 -1 1 -1 1
47=(-2 -2] A'=(-2 —1] A9=(—1 1)
b) For a general matrix
A=(a“ 012)
dy dp

give the conditions on a,;, a5, a5 and ax so that the equilibrium point is asymptotically stable, and so
that it is stable in the sense of Lyapunov.

Hint: to find simple conditions on the elements of the matrix, recall the Routh-Hurwitz test.

Problem 1.11
Consider the circuit depicted in Fig. P1.11.

L —]—c$a

. S

Figure P1.11; Circuit

a) Let x; be the voltage on the capacitor C and x; be the current in the inductor L. Show that the system is
described by the differential equations
& 1 1
dd  RCT C7?
g _1

=7 M

d L

b) Consider the “natural® Lyapunov function consisting of the total energy stored in the system
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What stability properties of the equilibrium can you deduce from this Lyapunov function ?
¢) Use the Lyapunov lemma to find a Lyapunov function such that

alxP<sv<alxl
for some strictly positive constants o, &3, and such that

p<—IxP

For R=L=C=1, give the specific values of the constants «;, or;. What stability properties of the equilib-
rium can you deduce from this Lyapunov function ?

Problem 1.12
a) Consider the system
dx
= =—x? x{0)=x,

Determine whether the finction on the right-hand side is locally Lipschitz, or globally Lipschitz.
b) Show that the differential equation can be solved exactly and deduce what the stability properties of the
equilibrium point are.
¢) Find a Lyapunov function to confirm the conclusions of part b).
d) Repeat parts a) to ¢) for the system
dx -
7 =€ x x(O)=x
) Repeat parts a) 1o ¢) for the system
dx 1
Z == m X 1(0) =Xp
Problem 1.13
a) Calculate the eigenvalues and eigenvectors of

(57
b) Find the decomposition A=U/T AU/ and find a symmetric positive definite matrix A2 such that
A= AlZ Al
¢) Given an arbitrary vector xe€ R", show that the matrix

A=xx"

is always symmetric positive semi—definite, but never posilive definite. What is the minimum nunber of
vectors x; needed so that the matrix

y T
A= E X; X;
i=]

can be positive definite 7

Problem 1.14
Consider the linear time—invanant sysiem with transfer function

_¥s) b
H(s)= u(s) s+a

with a >0. Show that, for zero initial conditions



My, <Hhlly Hul.

where Il A 1L, is the L, norm of the impulse response A{¢) corresponding o H(s}, and Il yll..,  u |l are the L.,
norms of y(f) and u(f) respectively. Give the value of Il 11l; as a function of a and b and show that there
exists a nonzero u(r) such that the inequality above becomes an equality.

Problem 2.1

a) Consider the identifier of section 2.2. Show that the plant transfer function may be realized by two state-
space representations (R1) and (R2):

(R i=A,x+b,r

¥p=CpX
where
»T
APZA"'bJ b
b,=b; cp=a

and A,b,,a", b"are as defined in equations (2.2.9) and (2.2.10).
R2) w=A,w+b,r
Yy P = C: w

where
A 0
A: - .
@ (b;ar A+b b J

o) el

b) Show that (R1) is controllable. Show that (R1) is observable if 5, d,, are coprime.

¢) Show that (R2}) is nonminimal and, from the cigenvalues of A,, deduce that the extra modes are those of
A,

d) Using the Popov-Belevitch-Hautus test, show that (R2) is controllable if 7, d » are coprime. In the
same manncr, show that any unobservable mode must (indeed) be a mode of A, so that (R2) is detectable.

Hint: The Popov-Belevitch-Hautus test indicates that a state-space realization is controllable if and only if
rank (s/— A B)=dim (4) for all s
and observable if and only if
C
sg-A
Note that it is only necessary to check the rank for values of s for which det (sf — A)=0.

rank( ]=dim(A) forall s

Problem 2.2
a) Let w(t)=sin (¢). Find and plot

()= J' wi(z) dt
0

b) Show that there exist @, ar; and & >0 such that

Q+d
oy 2 j witydrzay

ty



for all £520.
¢) Show that the foliowing limit exists, independently of £,

ll¢+3

= B 2 2

R""_ah..l;l!. 3 J. w (t)dr
o

where R, >0.
d) Repeat part c) with
_ sin (1)
v~ ointion )
and replacing w*(z) by w(z) w” (). What conditions must a, ¢ satisfy so that the matrix R,, is positive def-
inite ?

Problem 2.3

a) Consider the function w{¢) such that
w(t)=1 te [n,n+(1/2)"*'] for all positive integers n
w(t)=0 otherwise.

Plot w(r) and show that there exists § > 0 such that

a8

I w (z)dr>0
o

for all ¢ty 20, Show that, however, the solutions of
p=—gw'e  p0)=¢o
do not converge to zero exponentially. Is w persistently exciting ? Why ?

b) Consider the following proof of exponential convergence for §=—gw wT ¢, with w PE: Let v=¢7 ¢, so
that ¥=—2 g (87 w)* <0. Therefore, forall 1=0, §>0,and re [t9,20+6)

#7(t0) #(t0) 2 7 () 9(1) 2 4" (0 + &) ¥t + &) )
and
Y ]
v(ip)-v(tp+5)=2¢ _[ T (D w(r)wi(r)o(r) dr (2)
a
tg+d
22g¢7(ty+9) I w(z)wi(r)dr $(to+5) (3)
I

where the last inequality follows from (1). If w is PE, this implies that
v(to)— Wty +8)22 g ay W1y +5) )
and exponential convergence follows as in the proof of theorem 1.5.2. Why is this proof incorrect ?

Problem 2.4

This problem investigates the parameter convergence properties of the least-squares algorithm with forget-
ting factor

B()=—PEOw(r) (8T ) w(t)-y,(1))  6(0)=8(0)
P()=A Py~ P()w() wT (1) P(1) PO)=PT(0)=Py>0, 4>0
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a) Let A=0. Use eqn (2.0.30) to show that | 8(f)— 8" 1 >0 as t > o if

t

J- w@)wl (@) drza()!

4]

and a(f) —> o as { o0, Show that if a(f)= k¢ for some & >0, then 18(f)~ 8" | converges to zero as 1/¢.
Whatif a >e' ?

b) For A #0, find expressions similar to (2.0.29) and (2.0.30).
Hint: First derive d(P™)/ dt and d(P~" 6)/ dt.
¢) What optimization criterion does the least-squares algorithm with forgetting factor solve ?

d) Show that |8(t)— 8" | converges to zero exponentially with rate 2 if P(¢) is bounded.
¢) Show that P(¢) is bounded if w is PE.

Problem 2.5

This problem constructs discrete—time algorithms for the identification of sampled—data systems. The
derivations follow lines parallel to the continuous—time case. However, see G.C. Goodwin & K.§. Sin
{1984) for more details.

a) Consider the first order system
Yp=—a,y,tk,r

The continuous-time system is interfaced to a digital computer through discrete—time signals rp[k] and
yplk] such that

r{t)=rplk] forte kT,(k+1)T]
yplk1=y,(k T)

By solving the differential equation, show that y, and rp, satisfy exacily a first-order difference cquation
yplkl=ap yplk—11+kp rplk—1]

and find expressions for ap, kp, as functions of k,, a,, and T (this is the so—called step-response dis-
crete-time equivalent of the continuous-time system). What is the discrete-time transfer function

P(2)=3p(2)/Fp(2) ?
b) Extend the results of part a) to a general n—th order system

X=Ax+br
y,=Cx

¢) Adapt the results of section 2.2 1o the discrete~time by describing an identifier structure for an n—th
order plant with transfer function P(z). In particular, show that

yplkl=6" wik)

where 6° is a vector of unknown parameters and w is an observer state vector, Give conditions that the
polynomial A(z) must satisfy and indicate the simplifications that arise when {(z)= 2", i.e., when all the
observer poles are at the origin. What is the effect of initial conditions in that case?

d) The so-called projection algorithm is the estimate 8[£] such that
la[k]- e[k — 11
is minimized, subject 1o
yplkl=6" [kl wik]
Using Lagrange multipliers, show that the solution of this optimization crniterion is
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8" [k— 11 wik] - yp[k]
wl k] wik]

olk]=6[k—1]-wlk]

Show that @[k] is also the projection of @[k — 1] on the set of 8[k] *s such that 67 [k] wlk] — yp[k]=0.
¢) Find the (baich) least-squares estimate, which minimizes
k
J@TkD =3, (8" Ik wljl-yp[i)?
i=1
Then, show that the recursive formula for the least-squares estimate is

Plk—1]wlk] w' [k] P[k—1]
1+wT[k] Plk—1]w(k]

PlK)=Plk-1]-

Plk—1]wlk) (87 [k— 1] wlk] - yplk])

olk]=06[k~1]~ 1+ wT [k] Plk— 1] wik]

Hint: To find the difference equation for the covariance matrix, the following identity is useful
(A+BCY'=A—A'B(I+C A BY' C AT

f) Simulate the responses of the identifier with the projection algorithm. Replace the denominator
wT (k] w(k] by 1+w”[k] w[k] to avoid possible division by zero or by a very small number. Let k,=1,
a,=1,T=0.1s, and all initial conditions be zero. Plot rp[k], yp(kl, 8,(k], and 8;[k] for r;[k] =sin (kT)
and for rp[k]=1. Compare the convergence properties.

g) Repeat part f) for the least-squares algorithm. Let P{0]=T and plot Py, [k], Pgz[k] and Pz[£], in addi-
tion to the other variables.

Problem 2.6

a) Find conditions on a;, a3, B, B; such that the transfer function

n . mpstay

M(s) = 2+ 85+ B4

is SPR.

b) Find conditions on Ry, K3, Cy, C, (all > 0) such that the impedance Z(s) =V (s)/ [(s) (see figure P2.6) is
SPR.

Problem 2.7

Let M(s) be a rational, strictly proper transfer function.

a) Let s(7) be the step response associated with M(s). Show that if M(s) is SPR, then

ds d2s
= 0 and — 0
(d‘ 1-0 g (dtz lzo <

Hine: Use the Kalman-Yacubovitch-Popov lemma.
b) Show that M(s) is SPR if and only if there exists a minimal state-space representation

¥=Ax+bu

y=cl x

such that c=b and A+ AT =—( for some =07 >0.



S 1I1-

———y
+ O L

P‘\ —_ C|
v(t)

R, —= (4
-0

Figure P2.6: Circuit
Hint: Use again the Kalman-Yacubovitch-Popov lemma.

Problem 2.8
a) Prove one direction of the Kalman-Yacubovitch-Popov Iemma, that is, show that
If there exist matrices P= PT >0, 0=07 >0 such that

ATP+PA=-¢Q and Pb=c

with [ A, b] controllable
Then

M{s)=cT (s~ A b is stable
Re M(jw)>0 forall o and lim »* Re M(jw)>0
ar—p e

Hint: Show first that
Pjol-AY'+(jol-ATY' P=(—jol-ATY'Q(joI-A)"

b) Consider the system
x=Ax-b8" wix)+bu

where x,be R*, 8", we R™, Ae R™,and ue R. A and b are known exactly, w(x) is a known, globally
Lipschitz function of x and the vector x(z) itself is available. The vector " is completely unknown.
Assume that A is asymptotically stable and [A, &] is controllable. Use the Kalman-Yacubovitch-Popov
lemma to find an adaptive control law such that x — x,, =0 as t — = where

t,=Ax,+br
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where r € L... Prove the result, including the boundedness of all the signals,

Problem 2.9

This problem examines the extension of the single—input single—output identification results to multivari-
able systems where all the states are available for measurement.

a) Consider the state-space representation
x=A"x+B"u

where xe R*, ue R™, A" e R™ and B" € R™™. Assume that x, ¥ and u are available. A" and B" are
compleiely unknown. Show that a multivariable, linear error equation can be obtained, and that a gradient
identification algorithm can be derived. What stability properties can you establish?

b) Propose an algorithm for the case when x is not available and one does not wish 1o differentiate x
explicitly for noise considerations.

Problem 2.10
This problem investigates the stability properties of the projeciion algorithm. which is the discrete—time
equivalent of the gradient algorithm,

a) Consider the modified projection algorithm

8" [k — 1] wik]l - yplk]

Olk1=8lk— 1]~ — e

wlk]

Define the a priori error
¢ (k1= 6" [k= 11 wlk}— yplk]
and the a posteriori error

¢* (k) =" (k] wlk] - yp[k]

Show that
et [k]=e [k} (1 +wT k] wlk])
so that
o[k)=6[k—1]- Wi'[[tf}]w_m wikl

=6{k—1]—e*[k] w[k]
In other words, the modified projection algorithm is a gradient algorithm for the a posteriori error e*[k].
b) Let

yolk}=6" wik]  and  g[k)=6[k]-6"
Using the results of part a), show that

19kl F=1glk—11F — (e'k]1)? (2+w' kI wlk])

(2+w k] wlk])
(1 +wT[k] wik]?

=1glk~11F — (&7[k])

) A sequence x[k} is said to be in {,, if
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3 1x[k]17 <oo
=1

amd x e 1, if x[k] is bounded for all k. Show that

() 19lk11<Ig[k—1]1<16[0]1 forall k
@) ekl (1+wl kIwlk]) e i,

G ek (1+wiklwlk)” >0 as t 5w

) A L ——
(T+wilkl wkD)2 = 2
e [k]
(43 (1+wT[k]w[k])1E_)O as {—roo

(vi) lglk]l-o[k—1]150 as t oo

Does (vi) imply that 8{k] tends to some limit as k — = and, if so, is the limit necessarily 6~ ?

Problem 2,11
Show how the identification method described in section 2.2 can be exiended to proper transfer functions of
the form

Opy1 S+ 5™+ ay

st+ Bl By

XN
7w -9 =

Specialize the results to a first-order system (n = 1) to check the method.

Problem 2.12
Consider the linear error equation ¢, = ¢ w where ¢;, ¢, w are all scalars. Further, let w(t) =wy be constant,
a) Consider the gradient algorithm

9=—gwo¢
with g >0 and ¢(0)= ¢, arbitrary., Find the sclution of the differential equation. Indicate to what value ¢
converges and describe the type of convergence (exponential, asymptotic,...). Discuss the case when
Wop= 0.
b) Consider the least-squares algorithm

p=—gpwié

p=—gp’*wj
with g>0, ¢(0)=¢,, and p(0)= py>0. Find the solutions of the differential equations. Indicate to what
values ¢ and p converge and describe the type of convergence. Discuss the case when wy =0,

d -
Hint: note that Z (¢ p)=0.
¢) Consider the leasi—squares algorithm with forgetting factor

$=—gpwis
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p=—g(-Ap+p’w})
with g>0, >0, ¢(0)=¢yp, and p(0)= pg>0. Give the solutions of the differential equations. Indicate to
what values ¢ and p converge and describe the type of convergence. Discuss the case when wy=0,
Hine: start again from -3;- (¢p™.
d) Consider the stabilized least—squares algorithm with forgetting factor

p=—gpwie

p=—g(-Ap+p'wi+ap’)
with g¢>0, 1>0, a>0, ¢(0)=4¢, and p(Q}= py>0. The stabilized algorithm was proposed in the dis-
crete~time framewark by G. Kreisselmeier, in “Stabilized Least—Squares Type Adaptive Identifiers,” IEEE

Trans. on Automatic Control, vol. 35, no. 3, pp. 306-310, 1990. The stabilizing term « p? is an interesting
alternative to covariance resetting.

Give the solution of the differential equation for p. Indicate to what values ¢ and p converge and describe
the type of convergence. Discuss the case when wy=0.
Hint: show that p is bounded away from ( to establish the convergence properties of ¢.

Problem 2,13

A periodic signal y(¢) is measured. Its period T is known and one wishes to design a recursive scheme to
estimate the cocfficients of its Fourier series. It is assumed that a finite number of terms is sufficient to rep-
resent y(¢) exactly, the number being known.

a) Show that the problem can be put in the form of a linear error equation of the type described in chapter
2. Give arecursive algorithm to estimate the coefficients of the Fourier series.

b) Determine whether the estimates are guaranteed 1o converge to the values of the coefficients of the
Fourier scrics, and justify your answer.

Problem 2.14
a) Consider the assertion made in the book on p. 61 that the filters (s7—A)™! b, can be replaced by (at
least) two other vector transfer functions. For the first transfer function, indicate how the vector 8° is
related to the polynomials &, 7,(s) and d »(5). Give explicit formulas relating the &’s and §’s to the com-
ponents of 8" for the transfer function

ay s+ay
52+ Py s+ f)

B(s5) =

b} Repeat part a) for the other transfer function.
Hint: it may be useful to remember partial fraction expansions.

Problem 2.15
This problem investigates the properties of the projection modification, introduced to keep the adaptive
parameters within a specified region in which the nominal parameters are known 1o lie. It is shown that a

different projection modification is necessary for the least-squares algorithm in order to preserve the prop-
erties of the Lyapunov function,

Assume that 68" S, where § is a closed set with a smooth, differentiable boundary given by
F@.,0;,...,6)=0. Agsume that #e § if and only if f(&,...,8,)<0 and that outside S,
F@,,...,68,)>0. See figure P2.15 for n=2. Let x(8) be a vector perpendicular to the plane tangent to the
boundary of § at 8, pointing outwards.

a) Show how x(8) can be obtained from f(8,,...,8,). What condition must § satisfy so that ¢’ x > 0 for
& on the boundary ?



Figure P2.15: Projection modification. 6 \
b) Show that the modification
T
9=z—(i-;—)—'-{ if f(8)=0 and (zT x)>0
xT x
=z otherwise

congists in projecting the update vector z on the tangent plane when the boundary of the set § is reached
and the vector is pointing outwards.

¢) Show that, for the gradient algorithm (z=— g e; w), the projection modification guarantees that #(f) e §
for all ¢, assuming that 8(0) € §. Prove also that, for v=¢7 ¢

-v 2 2g(e" w)

d) Repeat part c) for the least—squares algorithm, letting z=—g Pe; w, P=—g Pww! P, and the Lya-
punov function v=¢" P! . However, note here that the properties of the Lyapunov function are not pre-
served by the projection modification.,

e) Show that to preserve both properties for the least-squares algorithm, the following projection can be
used

(" x). (P x)
g2 2 )

5 if £(8)=0 and (27 x)>0

b=

Optional: Show that this modification consists in projecting in the transformed space P~ # instead of the
8 space,

f) Consider the case when 8 € R% and the set § is the set of 8’s such that 6, <67, with 6, arbitrary, Write
explicitly what the update laws for 8, and &, are, as functions of z,, z5, Py, Pys, P, and 8] (compare the
gradient and the least-squares algorithms).

Problem 3.1

This problem considers the sampled-data control of a first-order system. The scheme is an indirect, model
reference adaptive control algorithm,

a) Consider the first order system

yp=—a,y,,+k,,u
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The continuous time system is controlled by a digital computer through discrete time signals up{k] and
yplk] such that

k()= uplk) forte (kT,(k+1)T]

Yolkl=y,(kT)
Let the control law be given by
uplkl=clklrplkl+dlk] yplk]

Show that there exist nominal values of the controller parameters ¢* and d* such that the discrete time
transfer function from r, to y, matches the reference model transfer function

M(z)= ky

Z—qay

where kys, ay are arbitrary, but la,, | < 1.

b) Simulate the responses of an indirect adaptive control algorithm, combining a discrete time identifier
using the modified projection aigorithm (cf. problem 2.10) and a control law derived from part a). Let
kp=1, a,=1, T=0.1s and M(z) be the discrete time equivalent of 3/(s+3). Let rp[k]=sin {kT].
Include a standard modification to the identification algorithm so that the estimate of the gain is bounded
away from 0 (assume that the sign and a lower bound of the gain is known).

Problem 3.2

a) Consider the vector #, in section 3.2. Show that # is the state of P in a nonminimal state—space repre-
sentation (give the A, b, and ¢ matrices),

Hint: First show that there exist unique fy, go€ R and f*,¢" € R™ such that
S’pzf(;u“'f‘r w4 g; yp"'g‘r w?

by proving that there exist unique polynomials f ‘, §" of degree at most n— 1 such that
. .
sP= %- + %:- B
Indicate how £~ and §* can be obtained from P and £.

b) Consider the polynomial § in section 3.2. Under the assumptions, is this polynomial guaranteed to be
Hurwitz 7 What can you conclude about the stability of the controller itself (as represented in Figure 3.2).

Problem 3.3
a) Consider the output error MRAC scheme of chapter 3. Let the reference model be given by
. §+3
= (s+1)(s+5)

Simulate the response of the adaptive scheme for r{t)=2 sin (¢} and

_ s+l
T 52+
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Let g=1 and all initial conditions be zero. Plot e, and the adaptive parameters for 1000 seconds, Calculate
the nominal values of the adaptive parameters and comment on the responses.

b) Repeat part a) with the plant
s+3
T2
and the same adaptive controller. Again, comment on the responses.

Note: This problem illustrates the fact that two totally different unstable systems can be stabilized by a sin-
gle adaptive controller. However, as the simulations show, some surprising responses can be observed
within the confines of the Lyapunov stability resalts. Poor convergence results are often observed with gra-
dient algorithms, and the interested student is invited to investigate other algorithms based on the
least—squares estimates.

Problem 4.1
In this problem, the averaging results will be proved in the (simpler) linear periodic case, 1.e.,

x({t)=¢e A(t) x(8) x0)=xg
where A(t) e R™" is a piecewise continuous, bounded, and periodic function of ¢ with period T.
a) Let

T
1
Ao=7 6[ A(w)dr
and
W)= _[ (A(s)- AL)dr
1]

Show that W (1) is periodic and bounded.
b) Show that, for ¢ sufficiently small, the transformation from x to z defined by

x(Hy=z()+e W(t) z(2)

is one-to-one and is differentiable with bounded derivatives. Further
lx(D—2(0) <2 TNA( L 2(0) ]

c) Show that z satisfies a differential equation
s=g Ay z+e(T+eWY L (AW-WAL)z

d) Show that if
X, =A, X,
is exponentially stable, then
r=g A(t) x(¢)
is exponentially stable for £ sufficiently small.
Hint: Use the Lyapunov lemma.
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Problem 4.2

(Calculate the averaged system and simulate the responses of the original and averaged system for
a) x=-gsin*()x g=1and g=0.25

b) k=-g(cos(t)+sin(2N))’x g=0.5

Plot In { x?) and In ( x2,).

Problem 4.3
a) Consider the least-squares algorithm

p=—gPww'yp #(0)=¢o
P=—gPww'P P(0)=P0) =Py>0

where a gain g >0 has been included. Assume that w is stationary. Find an expression for the averaged
system. Solve for P,, and ¢,, and discuss the convergence propertics of ¢,, when w is PE. In particular,
show the asymptotic stability of the parameter vector and characterize the type of convergence.

b) Repeat part a) with the least-squares with forgetting factor
P=—g(-AP+Pww' P) A0

Problem 5.1
a) Consider the system

x($y=A@) x(£)+ B(Hyu(r)

Prove a speciat case of theorem 5.3.1, by showing that
If: A(t), B(t) are piecewise continuous and bounded, and
X(r)= A1) x(r)
is exponentially stable

Then: (i) Nxll., <. llzll, for xy=0 and for llull,, <. Find an cxpression for ¥,, as a function of the con-
stants m and a of the exponential stability definition, and of the bounds on A(f) and B(f).
(ii) Ix(£)l converges to a ball of radius ., llull,, if x5 0.

b) Find an ¢xample of a system
X=f(t,x)
such that x = is a stable equilibrium point, but x= f(t, x) + £ has unbounded trajectories for any £> 0.

Problem 5.2
The following problem illustrates the tradeoff between speed of convergence and robustness.
a} Let the plant

yp=—a,y,+kpr
where k, is unknown and a,>0 is known. One wishes to identify k,. Exploiting the fact that a, is

knownn, the following identifier is created

w=—a,, w+r
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O=—gPw(Ow-y,) 2>0
P=g(AP-P2wh >0

Explain how this identifier is related to the algorithms presented in the book and what the nominal value of
the parameter @ is. Simulate the responses for a, =1, k,=1, 1=1, P(0)=1, and the other inital conditions
be all zero. Let r=sin (¢) and experiment with the values g=0.2,1, 5, 25.
b) Replace the equation for w by

W=—auw+r

Simulate again the responses, with a,;=0.9,



