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PREFACE

The objective of this book is to give, in a concise and unified
fashion, the major results, techniques of analysis and new directions of
research in adaptive systems. Such a treatment is particularly timely,
given the rapid advances in microprocessor and multi-processor technol-
ogy which make it possible to implement the fairly complicated non-
linear and time varying control laws associated with adaptive control.
Indeed, limitations to future growth can hardly be expected to be com-
putational, but rather from a lack of a fundamental understanding of the
methodologies for the design, evaluation and testing of the algorithms.
Our objective has been to give a clear, conceptual presentation of adap-
tive methods, to enable a critical evaluation of these techniques and sug-
gest avenues of further development.

Adaptive control has been the subject of active research for over
three decades now. There have been many theoretical successes, includ-
ing the development of rigorous proofs of stability and an understanding
of the dynamical properties of adaptive schemes. Several successful
applications have been reported and the last ten years have seen an
impressive growth in the availability of commercial adaptive controllers.

In this book, we present the deterministic theory of identification
and adaptive control. For the most part the focus is on linear, continu-
ous time, single-input single-output systems. The presentation includes
the algorithms, their dynamical properties and tools for analysis—
including the recently introduced averaging techniques. Current research
in the adaptive control of multi-input, multi-output linear systems and a

XV



XVvi Preface

class of nonlinear systems is also covered. Although continuous time
algorithms occupy the bulk of our interest, they are presented in such a
way as to enable their transcription to the discrete time case.

A brief outline of the book is as follows: Chapter 0 is a brief his-
torical overview of adaptive control and identification, and an introduc-
tion to various approaches. Chapter 1 is a chapter of mathematical pre-
liminaries containing most of the key stability results used later in the
book. In Chapter 2, we develop several adaptive identification algo-
rithms along with their stability and convergence properties. Chapter 3
is a corresponding development for model reference adaptive control. In
Chapter 4, we give a self contained presentation of averaging techniques
and we analyze the rates of convergence of the schemes of Chapters 2
and 3. Chapter 5 deals with robustness properties of the adaptive
schemes, how to analyze their potential instability using averaging tech-
niques and how to make the schemes more robust. Chapter 6 covers
some advanced topics: the use of prior information in adaptive
identification schemes, indirect adaptive control as an extension of
robust non-adaptive control and multivariable adaptive control.
Chapter 7 gives a brief introduction to the control of a class of nonlinear
systems, explicitly linearizable by state feedback and their adaptive con-
trol using the techniques of Chapter 3. Chapter 8 concludes with some
of our suggestions about the areas of future exploration.

This book is intended to introduce researchers and practitioners to
the current theory of adaptive control. We have used the book as a text
several times for a one-semester graduate course at the University of
California at Berkeley and at Carnegie-Mellon University. Some back-
ground in basic control systems and in linear systems theory at the gra-
duate level is assumed. Background in stability theory for nonlinear sys-
tems is desirable, but the presentation is mostly self-contained.
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CHAPTER 0
INTRODUCTION

0.1 IDENTIFICATION AND ADAPTIVE CONTROL

Most current techniques for designing control systems are based on a
good understanding of the plant under study and its environment. How-
ever, in a number of instances, the plant to be controlled is too complex
and the basic physical processes in it are not fully understood. Control
design techniques then need to be augmented with an identification tech-
nique aimed at obtaining a progressively better understanding of the
plant to be controlled. It is thus intuitive to aggregate system
identification and control, Often, the two steps will be taken separately.
If the system identification is recursive—that is the plant model is
periodically updated on the basis of previous estimates and new data—
identification and control may be performed concurrently. We will see
adaptive control, pragmatically, as a direct aggregation of a (non-
adaptive) control methodology with some Jorm of recursive system
identification.

Abstractly, system identification could be aimed at determining if
the plant to be controlled is linear or nonlinear, finite or infinite dimen-
sional, and has continuous or discrete event dynamics. Here we will res-
trict our attention to finite dimensional, single-input single-output linear
plants, and some classes of multivariable and nonlinear plants. Then, the
primary step of system identification (structural identification) has
already been taken, and only parameters of a fixed type of model need to
be determined. Implicitly, we will thus be limiting ourselves to
parametric system identification, and parametric adaptive control,



2 Introduction

Applications of such systems arise in several contexts: advanced flight
control systems for aircraft or spacecraft, robot manipulators, process
control, power systems, and others.

Adaptive control, then, is a technique of applying some system
identification technique to obtain a model of the process and its environ-
ment from input-output experiments and using this model to design a
controller. The parameters of the controller are adjusted during the
operation of the plant as the amount of data available for plant
identification increases. For a number of simple PID (proportional +
integral + derivative) controllers in process control, this is often done
manually. However, when the number of parameters is larger than three
or four, and they vary with time, automatic adjustment is needed. The
design techniques for adaptive systems are studied and analyzed in
theory for unknown but fixed (that is, time invariant) plants. In practice,
they are applied to slowly time-varying and unknown plants.

Overview of the Literature

Research in adaptive control has a long and vigorous history. In the
1950s, it was motivated by the problem of designing autopilots for air-
craft operating at a wide range of speeds and altitudes. While the object
of a good fixed-gain controller was to build an autopilot which was
insensitive to these (large) parameter variations, it was frequently
observed that a single constant gain controller would not suffice. Conse-
quently, gain scheduling based on some auxiliary measurements of
airspeed was adopted. With this scheme in place several rudimentary
model reference schemes were also attempted—the goal in this scheme
was to build a self-adjusting controller which yielded a closed loop
transfer function matching a prescribed reference model. Several
schemes of self-adjustment of the controller parameters were proposed,
such as the sensitivity rules and the so-called M.L.T. rule, and were
verified to perform well under certain conditions. Finally, Kalman
[1958] put on a firm analytical footing the concept of a general self-
tuning controller with explicit identification of the parameters of a
linear, single-input, single-output plant and the usage of these parameter
estimates to update an optimal linear quadratic controller.

The 1960s marked an important time in the development of con-
trol theory and adaptive control in particular. Lyapunov’s stability
theory was firmly established as a tool for proving convergence in adap-
tive control schemes. Stochastic control made giant strides with the
understanding of dynamic programming, due to Bellman and others.
Learning schemes proposed by Tsypkin, Feldbaum and others (see Tsyp-
kin [1971] and [1973]) were shown to have roots in a single unified
framework of recursive equations. System identification (off-line) was

Section 0.1 Identification and Adaptive Control 3

thoroughly researched and understood. Further, Parks [1966] found a
way of redesigning the update laws proposed in the 1950s for model
reference schemes so as to be able to prove convergence of his controller.

In the 1970s, owing to the culmination of determined efforts by
several teams of researchers, complete proofs of stability for several
adaptive schemes appeared. State space (Lyapunov based) proofs of sta-
bility for model reference adaptive schemes appeared in the work of
Narendra, Lin, & Valavani [1980] and Morse [1980]. In the late 1970s,
input output (Popov hyperstability based) proofs appeared in Egardt
[1979] and Landau [1979). Stability proofs in the discrete time deter-
ministic and stochastic case (due to Goodwin, Ramadge, & Caines
[1980]) also appeared at this time, and are contained in the textbook by
Goodwin & Sin [1984]. Thus, this period was marked by the culmina-
tion of the analytical efforts of the past twenty years.

Given the firni, analytical footing of the work to this point, the
1980s have proven to be a time of critical examination and evaluation of
the accomplishments to date. It was first pointed out by Rohrs and co-
workers [1982] that the assumptions under which stability of adaptive
schemes had been proven were very sensitive to the presence of unmo-
deled dynamics, typically high-frequency parasitic modes that were
neglected to limit the complexity of the controller. This sparked a flood
of research into the robustness of adaptive algorithms: a re-examination
of whether or not adaptive controllers were at least as good as fixed gain
controllers, the development of tools for the analysis of the transient
behavior of the adaptive algorithms and attempts at implementing the
algorithms on practical systems (reactors, robot manipulators, and ship
steering systems to mention only a few). The implementation of the
complicated nonlinear laws inherent in adaptive control has been greatly
facilitated by the boom in microelectronics and today, one can talk in
terms of custom adaptive controller chips. All this flood of research and
devel'opment is bearing fruit and the industrial use of adaptive control is
growing,.

Adaptive control has a rich and varied literature and it is impossi-
ble to do justice to all the manifold publications on the subject. It is a
tribute to the vitality of the field that there are a large number of fairly
recent books and monographs. Some recent books on recursive estima-
tion, which is an important part of adaptive control are by Eykhoff
[1974], Goodwin & Payne [1977], Ljung & Soderstrom [1983] and Ljung
[1987]. Recent books dealing with the theory of adaptive control are by
Landau [1979], Egardt [1979], Ioannou & Kokotovic [1984], Goodwin &
Sin [1984], Anderson, Bitmead, Johnson, Kokotovic, Kosut, Mareels,
Praly, & Riedle [1986], Kumar and Varaiya [1986], Polderman [1988]
and Caines [1988]. An attempt to link the signal processing viewpoint
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with the adaptive control viewpoint is made in Johnson [1988]. Surveys
of the applications of adaptive control are given in a book by Harris &
Billings [1981], and in books edited by Narendra & Monopoli [1980]
and Unbehauen [1980]. As of the writing of this book, two other books
on adaptive control by Astrom & Wittenmark and Narendra &
Annaswamy are also nearing completion.

In spite of the great wealth of literature, we feel that there is a need
for a “toolkit” of methods of analysis comparable to non-adaptive linear
time invariant systems. Further, many of the existing results concern
either algorithms, structures or specific applications, and a great deal
more needs to be understood about the dynamic behavior of adaptive
systems. This, we believe, has limited practical applications more than
it should have. Consequently, our objective in this book is to address
fundamental issues of stability, convergence and robustness. Also, we
hope to communicate our excitement about the problems and potential
of adaptive control. In the remainder of the introduction, we will review
some common approaches to adaptive control systems and introduce the
basic issues studied in this book with a simple example.

0.2 APPROACHES TO ADAPTIVE CONTROL

0.2.1 Gain Scheduling

One of the earliest and most intuitive approaches to adaptive control is
gain scheduling. It was introduced in particular in the context of flight
control systems in the 1950s and 1960s. The idea is to find auxiliary
process variables (other than the plant outputs used for feedback) that
correlate well with the changes in process dynamics. It is then possible
to compensate for plant parameter variations by changing the parame-
ters of the regulator as functions of the auxiliary variables. This is illus-
trated in Figure 0.1,

Gain AUXILIARY
Scheduler [ MEASUREMENT

r
COMON'I:‘AND 6 CONTROLLER

PARAMETER
REFERENCE y PLANT
SIGNAL | OUTPUT
Controlier CONTROL _ Plant > Yp
> INPUT
u

Figure 0.1: Gain Scheduling Controller
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The advantage of gain scheduling is that the parameters can be
changed quickly (as quickly as the auxiliary measurement) in response to
changes in the plant dynamics. It is convenient especially if the plant
dynamics depend in a well-known fashion on a relatively few easily
measurable variables. In the example of flight control systems, the
dynamics depend in relatively simple fashion on the readily available
dynamic pressure—that is the product of the air density and the relative
velocity of the aircraft squared.

Although gain scheduling is extremely popular in practice, the
disadvantage of gain scheduling is that it is an open-loop adaptation
scheme, with no real “learning” or intelligence. Further, the extent of
design required for its implementation can be enormous, as was illus-
trated by the flight control system implemented on a CH-47 helicopter.
The flight envelope of the helicopter was divided into ninety flight condi-
tions corresponding to thirty discretized horizontal flight velocities and
three vertical velocities. Ninety controllers were designed, correspond-
ing to each flight condition, and a linear interpolation between these
controllers (linear in the horizontal and vertical flight velocities) was
programmed onto a flight computer. Airspeed sensors modified the con-
trol scheme of the helicopter in flight, and the effectiveness of the design
was corroborated by simulation.

0.2.2 Model Reference Adaptive Systems

Again in the context of flight control systems, two adaptive control
schemes other than gain scheduling were proposed to compensate for
changes in aircraft dynamics: a series, high-gain scheme, and a parallel
scheme.

Series High-Gain Scheme
Figure 0.2 shows a schematic of the series high-gain scheme.

. PLANT
REFERENCE | Roforence | '™ * " High Gain Y Plant ouTPUT
SIGNAL Model A Servo, k 7 an TR

T
L

Galn Limit Cycle
- Adjustment Detector

Figure 0.2: Model Reference Adaptive Control—Series,
High-Gain Scheme
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The reference model represents a pilot’s desired command-response
characteristic. It is thus desired that the aircraft response, that is, the
output y,, matches the output of the reference model, that is, y,,.

The simple analysis that goes into the scheme is as follows: con-
sider Is(s) to be the transfer function of the linear, time invariant plant
and k the constant gain of the servo. The transfer function from y,, to
Yy is k I3(s)/l +k13(s). When the gain k& is sufficiently large, the
transfer function is approximately | over the frequencies of interest, so
that y,, ~ y,.

The aim of the scheme is to let the gain £ be as high as possible, so
that the closed-loop transfer function becomes close to |, until the onset
of instability (a limit cycle) is detected. If the limit cycle oscillations
exceed some level, the gain is decreased. Below this level, the gain is
increased. The limit cycle detector is typically just a rectifier and low-
pass filter.

The series high-gain schéme is intuitive and simple: only one
parameter is updated. However, it has the following problems

a)  Oscillations are constantly present in the system.

b) Noise in the frequency band of the limit cycle detector causes the
gain to decrease well below the critical value.

¢) Reference inputs may cause saturation due to the high-gain.

d)  Saturation may mask limit cycle oscillations, allowing the gain to
increase above the critical value, and leading to instability.

Indeed, tragically, an expsrimental X-15 aircraft flying this control sys-
tem crashed in 1966 (cf. Staff of the Flight Research Center [1971]),
owing partially to the saturation problems occurring in the high-gain
scheme. The roll and pitch axes were controlled by the right and left
rear ailerons, using differential and identical commands respectively.
The two axes were assumed decoupled for the purpose of control design.
However, saturation of the actuators in the pitch axis caused the aircraft
to lose controllability in the roll axis (since the ailerons were at max-
imum deflection). Due to the saturation, the instability remained
undetected, and created aerodynamic forces too great for the aircraft to
withstand.

Parallel Scheme

As in the series scheme, the desired performance of the closed-loop Sys-
tem is specified through a reference model, and the adaptive system
attempts to make the plant output match the reference model output
asymptotically. An early refere.ice to this scheme is Osburn, Whitaker,
& Kezer [1961). A block diagram is shown in Figure 0.3. The controller
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A
M
»| REFERENCE Yu__ Modei
MODEL
Reference
Input
T
u Yp .
»| CONTROLLER e PLANT
. Control Plant
Input Output
t INNER LOOP
Controller ADJUSTMENT [

Parameter MECHANISM

QUTER LoOP
Figure 0.3: Model Reference Adaptive Control—Parallel Scheme

can be thought of as having two loops: an inner or regulator loop that is
an ordinary control loop consisting of the plant and regulator, and an
outer or adaptation loop that adjusts the parameters of the regulator in
such a way as to drive the error between the model output and plant
output to zero.

The key problem in the scheme is to obtain an adjustment mechan-
ism that drives the output error €0=Yp~VYm to zero. In the earliest
applications of this scheme, the following update, called the gradient
update, was used. Let the vector  contain the adjustable parameters of

the controller. The idea behind the gradient update is to reduce e? (6)
by adjusting 6 along the direction of steepest descent, that is

D - s 2G0) ©02.1)

It

-2g0(0) 37 (€0(0)) = ~2ge00) 2 (1,0)  (0.2.2)

where g is a positive constant called the adaptation gain,

The interpretation of eq(6) is as follows: it is the output error (also
a function of time) obtained by freezing the controller parameter at 6.
The gradient of ey(6) with respect to 4 is equal to the gradient of y, with
respect to 6, since y,, is indepenqent of 0, and represents the sensitivity
of the output error to variations in the controller parameter 4.
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Several problems were encountered in the usage of the gradient
update. The sensitivity function dy,(6) /6 usually depends on the unk-
nown plant parameters, and is consequently unavailable. At this point
the so-called M.I.T. rule, which replaced the unknown parameters by
their estimates at time ¢, was proposed. Unfortunately, for schemes
based on the M.LT. rule, it is not possible in general to prove closed-
loop stability, or convergence of the output error to zero. Empirically, it
was observed that the M.LT. rule performed well when the adaptation
gain g and the magnitude of the reference input were small (a conclusion
later confirmed analytically by Mareels et a/ [1986]). However, examples
of instability could be obtained otherwise (cf. James [1971]).

Parks [1966] found a way of redesigning adaptive systems using
Lyapunov theory, so that stable and provably convergent model refer-
ence schemes were obtained. The update laws were similar to (0.2.2),
with the sensitivity dy, (6) /86 replaced by other functions. The stability
and convergence properties of model reference adaptive systems make
them particularly attractive and will occupy a lot of our interest in this
book.

0.2.3 Self Tuning Regulators

In this technique of adaptive control, one starts from a control design
method for known plants. This design method is summarized by a con-
troller structure, and a relationship between plant parameters and con-
troller parameters. Since the plant parameters are in fact unknown, they
are obtained using a recursive parameter identification algorithm. The
controller parameters are then obtained from the estimates of the plant
parameters, in the same way as if these were the true parameters. This is
usually called a certainty equivalence principle.

The resulting scheme is represented on Figure 0.4. An explicit
separation between identificatiun and control is assumed, in contrast to
the model reference schemes above, where the parameters of the con-
troller are updated directly to achieve the goal of model following. The
self tuning approach was originally proposed by Kalman [1958] and
clarified by Astrom & Wittenmark [1973]). The controller is called self
tuning, since it has the ability to tune its own parameters. Again, it can
be thought of as having two loops: an inner loop consisting of a conven-
tional controller, but with varying parameters, and an outer loop consist-
ing of an identifier and a design box (representing an on-line solution to
a design problem for a system with known parameters) which adjust
these controller parameters.

The self tuning regulator is very flexible with respect to its choice of
controller design methodology (linear quadratic, minimum variance,
gain-phase margin design, ...), and to the choice of identification scheme
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Figure 0.4: Self-tuning Controller

(least squares, maximum likelihood, extended Kalman filtering, ...). The
analysis of self tuning adaptive systems is however more complex than
the analysis of model reference schemes, due primarily to the (usually
nonlinear) transformation from identifier parameters to controller
parameters.

Direct and Indirect Adaptive Control

While model reference adaptive controllers and self tuning regulators
were introduced as different approaches, the only real difference between
them is that model reference schemes are direct adaptive control
schemes, whereas self tuning regulators are indirect. The self tuning
regulator first identifies the plant parameters recursively, and then uses
these estimates to update the controller parameters through some fixed
transformation. The model reference adaptive schemes update the con-
troller parameters directly (no explicit estimate or identification of the
plant parameters is made). It is easy to see that the inner or control
loop of a self tuning regulator could be the same as the inner loop of a
model reference design. Or, in other words, the model reference adap-
tive schemes can be seen as a special case of the self tuning regulators,
with an identity transformation between updated parameters and con-
troller parameters. Through this book, we will distinguish between
direct and indirect schemes rather than between model reference and self
tuning algorithms.
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0.2.4 Stochastic Control Approach

Adaptive controller structures based on model reference or self tuning
approaches are based on heuristic arguments. Yet, it would be appealing
to obtain such structures from a unified theoretical framework. This can
be done (in principle, at least) using stochastic control. The system and
its environment are described by a stochastic model, and a criterion is
formulated to minimize the expected value of a loss function, which is a
scalar function of states and controls. It is usually very difficult to solve
stochastic optimal control problems (a notable exception is the linear
quadratic gaussian problem). When indeed they can be solved, the
optimal controllers have the structure shown in Figure 0.5: an identifier
(estimator) followed by a nonlinear feedback regulator,

Reference Control Plant Output
Signat r Signal u
a1 CONTROLLER PLANT Yp
A
HYPERSTATE
CALCULATION
Hyperstate

Figure 0.5: “Generic” Stochastic Controller

The estimator generates the conditional probability distribution of the
state from the measurements: this distribution is called the hypersiate
(usually belonging to an infinite dimensional vector space). The self
tuner may be thought of as an approximation of this controller, with the
hyperstate approximated by the process state and process parameters
estimate.

From some limited experience with stochastic control, the following
interesting observations can be made of the optimal control law: in
addition to driving the plant output to its desired value, the controller
introduces probing signals which improve the identification and, there-
fore future control. This, however, represents some cost in terms of con-
trol activity. The optimal regulator maintains a balance between the
control activity for learning about the plant it is controlling and the
activity for controlling the plant output to its desired value. This pro-
perty is referred to as dual control. While we will not explicitly study
stochastic control in this book, the foregoing trade-off will be seen
repeatedly: good adaptive control requires correct identification, and for
the identification to be complete, the controller signal has to be
sufficiently rich to allow for the excitation of the plant dynamics. The

Section 0.2 Approaches to Adaptive Control 11

presence of this rich enough excitation may result in poor transient per-
formance of the scheme, displaying the trade-off between learning and
control performance.

0.3 A SIMPLE EXAMPLE

Adaptive control systems are difficult to analyze because they are non-
linear, time varying systems, even if the plant that they are controlling is
linear, time invariant. This leads to interesting and delicate technical
problems. In this section, we will introduce some of these problems
with a simple example. We also discuss some of the adaptive schemes
of the previous section in this context.

We consider a first order, time invariant, linear system with
transfer function
k,
s+a

where @ >0 is known. The gain k, of the plant is unknown, but its sign
1s known (say k,>0). The control objective is to get the plant output to
match a model output, where the reference model transfer function is

1
s+a

P(s) =

(0.3.1)

M(@s) = (0.3.2)

Only gain compensation—or feedforward control—is necessary,
namely a gain 6 at the plant input, as is shown on Figure 0.6.

A

M
1 M
s+a
r - 9o
’g +
«
s+a Yp

Figure 0.6: Simple Feedforward Controller

Note that, if k, were known, 6 would logically be chosen to be 1/k,.
We will call-

6= — (0.3.3)

the nominal value of the parameter 6, that is the value which realizes the
output matching objective for all inputs. The design of the various
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adaptive schemes proceeds as follows.

Gain Scheduling

Let v(t) € R be some auxiliacy measurement that correlates in known
fashion with k,, say k,(¢) = f(v(¢)). Then, the gain scheduler chooses at
time ¢

o(t) = (0.3.4)

|
Sv@))

Model Reference Adaptive Control Using the ML.LT. Rule

To apply the M.IT. rule, we need to obtain dey(8)/96 = dy,(8)/4a9,
with the understauding that 8 is frozen. From Figure 0.6, it is easy to

see that
3y,(0) k, /
a0 " s+a D = Korm ©.3)

We see immediately that the sensitivity function in (0.3.5) depends on
the parameter k, which is unknown, so that dy,/d6 is not available.
However, the sign of k, is known (k,> 0), so that we may merge the con-
stant k, with the adaptation gain. The M.LT rule becomes

b = —geoVm g>0 (0.3.6)

Note that (0.3.6) prescribes an update of the parameter 8 in the direction
opposite to the “correlation” product of ey and the model output y,,.

Model Reference Adaptive Control Using the Lyapunov Redesign

The control scheme is exactly as before, but the parameter update law is
chosen to make a Lyapunov function decrease along the trajectories of
the adaptive system (see Chapter 1 for an introduction to Lyapunov
analysis). The plant and reference model are described by

Vo = —ay,+k,0r 0.3.7)
Vm = =AYm+ 7T = —ayy + Kk, 0%r (0.3.8)
Subtracting (0.3.8) from (0.3.7), we get, with ¢y = y, — Y,
ép = —aey+ k,(0-0%)r (0.3.9)

Since we would like 6 to converge to the nominal value 6* = 1/k,, we
define the parameter error as

¢ = 6-¢ (0.3.10)
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Note that since 6* is fixed (though unknown), b =0.

The Lyapunov redesign approach consists in finding an update law
so that the Lyapunov function

v(eo,¢) = e§ + k,¢ (0.3.11)
is decreasing along trajectories of the error system
éo = —aeyp+ k,or
¢ = update law to be defined (0.3.12)

Note that since k,> 0, the function v (eg,¢) is a positive definite func-
tion. The derivative of v along the trajectories of the error system
(0.3.12) is given by

v (e, ¢) = -2ae} +2k,eqor + 2k, 06 (0.3.13)
Choosing the updat(eo'f:‘alvzg
b = ¢ = —epr (0.3.14)
yields
v(ep¢) = —2ae} <0 (0.3.15)
I\

thereby guaranteeing that ef + kp¢2 is decreasing along the trajectories of
(0.3.12), (0.3.14) and that ey, and ¢ are bounded. Note that (0.3.}6 is
similar in form to (0.3.6), with the difference that ¢ is correlated with r
rather that y,,. An adaptation gain g may also be included in (0.3.14).

Since v(ep,¢) is decreasing and bounded ‘below, it would appear

that eg— 0 as t - oo. This actually follows from further analysis, pro-
vided that 7 is bounded (cf. Barbalat’s lemma 1.2.1).

Having concluded that ey— 0 as ¢t — oo, what can we say about 6?
Does it indeed converge to §*=1/k,? The answer is that one can not

conclude anything about the convergence of § to §* without extra condi-
tions on the reference input. Indeed, if the reference input was a con-
stant zero signal, there would be no reason to expect 8 to converge to 6.
Conditions for parameter convergence are important in adaptive control
and will be studied in great detail. An answer to this question for the
simple example will be given for the following indirect adaptive control
scheme.

5
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Indirect Adaptive Control (Self Tuning)

To be able to effectively compare the indirect scheme with the direct
schemes given before, we will assume that the control objective is still
model matching, with the same model as above. Figure 0.7 shows an
indirect or self tuning type of model reference adaptive controller.

L Ym

[

9-/77

Figure 0.7: A Simple Indirect Controller

The identifier contains an identifier parameter =(¢) that is an esti-

mate of the unknown plant parameter k,. Therefore, we define =* = k,.
The controller parameter is chosen following the certainty equivalence

principle: since §* = 1 /k, and =*=k,, we let 6(¢) = 1/ x(¢). The hope is
that, as ¢ - oo, n(¢) = k,, so that 8(¢)— 1/k,.
The update law now is an update law for the identifier parameter

w(¢). There are several possibilities at this point, and we proceed to
derive one of them. Define the identifier parameter error

) = w(t)-=* (0.3.16)
and let

W= ——gr) = =

S+a s+a

The signal w may be obtained by stable filtering of the input u, since
a>0is known. The update law is based on the identifier error

e = TW-Y, (0.3.18)

Equation (0.3.18) is used in the actual implementation of the algorithm.
For the analysis, note that

(u) (0.3.17)
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5 9 : 0.3.19

yp—Ha(r)—rw (0.3.19)
so that

e = yw (0.3.20)
Consider the update law

o=y o= —gew g>0 (0.3.21)
and let the Lyapimov function

v o= 2 (0.3.22)

This Lyapunov function has the special form of the norm square of the
identifier parameter error. Its derivative along the trajectories of the
adaptive system is

v o= —gytw? (0.3.23)
Therefore, the update law causes a decreasing parameter error and all

signals remain bounded.

The question of parameter convergence can be answered quite sim-
ply in this case. Note that (0.3.20), (0.3.21) represent the first order
linear time varying system

v o= —gwiy (0.3.24)
which may be explicitly integrated to get

t
wt) = ¥(0)exp(-¢ fwz(f) dr) (0.3.25)
4]

It is now easy to see that if

t
f wi(r)dr - oo as { - oo (0.3.26)
0

then Y(¢)—0, so that «(¢)—>=" and 6(¢t)—> 1 /k,, yielding the desired
controller. The condition (0.3.26) is referred to as an identifiability con-
dition and is much related to the so-called persistency of excitation that
will be discussed in Chapter 2. It is easily seen that, in particular, it
excludes signals which tend to zero as ¢ — co.

The difficulty with (0.3.26) is that it depends on w, which in turn
depends on u and therefore on both 8 and r. Converting it into a condi-
tion on the exogenous reference input r(z) only is another of the prob-
lems which we will discuss in the following chapters.
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The foregoing simple example showed that even when simple feed-
forward control of a linear, time invariant, first order plant was
involved, the analysis of the resulting closed-loop dynamics could be
involved: the equations were time-varying, linear equations. Once feed-
back control is involved, the equations become nonlinear and time vary-
ing.

CHAPTER 1
PRELIMINARIES

This chapter introduces the notation used in this book, as well as some
basic definitions and results. The material is provided mostly for refer-
ence. It may be skipped in a first reading, or by the reader familiar with
the results.

The notation used in the adaptive systems literature varies widely.
We elected to use a notation close to that of Narendra & Valavani
[1978], and Narendra, Lin, & Valavani [1980], since many connections
exist between this work and their results. We will refer to texts such as
Desoer & Vidyasagar [1975], and Vidyasagar [1978] for standard results,
and this chapter will concentrate on the definitions used most often, and
on nonstandard results.

1.1 NOTATION

Lower case letters are used to denote scalars or vectors. Upper case
letters are used to denote matrices, operators, or sets. When u () is a

function of time, #(s) denotes its Laplace transform. Without ambi-

guity, we will drop the arguments, and simply write # and #. Rational
transfer functions of linear time invariant (LTI) systems will be denoted

using upper case letters, for example, H(s) or H. Polynomials in s will
be denoted using lower case letters, for example, 7A(s) or simply 7.
Thus, we may have H = /i/d, where H is both the ratios of polynomials

in s and an operator in the Laplace transform domain. Sometimes, the
time domain and the Laplace transform domain will be mixed, and

17
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parentheses will determine the sense to be made of an expression. For
example, ﬁ(u) or H4 is the output of the LTI system H with input u.
Hu)v is Hu) multiplied by v in the time domain, while H(uv) is H
operating on the product u(¢) v (¢).

1.2 L, SPACES, NORMS

We denote by | x| the absolute value of x if x is a scalar and the
euclidean norm of x if x is a vector. The notation || || will be used to
denote the induced norm of an operator, in particular the induced
matrix norm

4l = sup |4x] (1.2.1)

and for functions of time, the notation is used for the L, norm

[0¢}
lull, = ([ u@)|?dr)’ (1.2.2)
0

for pe[ |, c0), while
'l = sup | u()] (1.2.3)

an? we say that uel, when | u|, exists. When p is omitted, || u||
denotes the L, norm. Truncated functions are defined as

f:([) f([) t<s
=0 t>s (1.2.4)

if

and the extended L, spaces are defined by
L, = (f| foralls <o, f; € L,) (1.2.5)

For example, ¢’ does not belong to Loo, but ¢’ € Looe. When
u e Looe, we have

Il = sup|u(m)] (1.2.6)

A function f may belong to L, and not be bounded. Conversely, a
bounded function need not belong to L,. However, if feL, NL o’

then feL, for all pe[l, 0o] (cf. Desoer & Vidyasagar [1975], p. 17).

Also, f € L, does not imply that -0 as ¢t >oo. This is not
even guaranteed if f is bounded. However, note the following results.
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Lemma 1.2.1 Barbalat’s Lemma
t

If S () is a uniformly continuous function, such that lim ff(f)df
1 --00 0
exists and is finite,

Then f(t)—>0ast— co.
Proof of Lemma 1.2.1 cf. Popov [1973] p. 211.

Corollary 1.2.2 .
If g,g'eLw,andgeLp,forsomepe [1,c0),

Lowtn, cart
Proof of Corollary 1.2.2 Vd

Direct from lemma 1.2.1, with / = | g| *, since g,¢ bounded implies
that f is uniformly continuous. [I

Then g(t)—>0ast— co.

1.3 POSITIVE DEFINITE MATRICES

Positive definite matrices are frequently found in work on adaptive sys-
tems. We summarize here several facts that will be useful. We consider
real matrices. Recall that a scalar u, or a function of time u(¢), is said
to be positive if u 2 0, or u(t) 2 0 for all ¢. It is strictly positive if u >0,
or, for some a>0, u(¢) = « for all ¢. A square matrix 4 € R"*" is posi-
tive semidefinite if xT A x > 0 for all x. It is positive definite if, for some
a>0, xTAx 2 axTx = a| x|? for all x. Equivalently, we can require
xT4x =z a for all x such that | x| = 1. The matrix 4 is negative
semidefinite if -4 is positive semidefinite and for symmetric matrices,
we write 4 = B if A - B = 0. Note that a matrix can be neither posi-
tive semidefinite nor negative semidefinite, so that this only establishes a
partial order on symmetric matrices.

The eigenvalues of a positive semidefinite matrix lie in the closed
right-half plane (RHP), while those of a positive definite matrix lie in the
open RHP. If 4 >0 and 4 = AT, then 4 is symmetric positive
semidefinite. In particular, if 4 2 0, then 4 + 47 is symmetric positive
semidefinite. The eigenvalues of a symmetric matrix are all real. Such a

matrix also has n orthogonal eigenvectors, so that we can decompose 4
as

A=UTAU (1.3.1)

where U is the matrix of eigenvectors satisfying UT U = I (that is, U is
a unitary matrix), and A is a diagonal matrix composed of the
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eigenvalues of 4. When 4 2 0, the square root matrix A" is a diagonal
matrix composed of the square roots of the eigenvalues of 4, and

A" = UTA"U (1.3.2)

is the square root matrix of 4, with 4 = 4" 4" and (4"%)T = A",

If 420 and B 20, then 4 +B = 0 but it is not true in general
that 4 - B > 0. However, if 4, B are symmetric, positive semidefinite
matrices, then AB—although not necessarily symmetric, or positive
semidefinite—has all eigenvalues real positive.

Another property of symmetric, positive semidefinite matrices, fol-
lowing from (1.3.1), is

Amin(4)] x]2 < xTAXx < Apa(4)] x| 2 (1.3.3)

This simply follows from the fact that x”" A x = xTUTAUXx = zT Az
and | z|? = 27z = | x|% We also have that

14l = Amax(4) (1.3.4)
and, when 4 is positive definite
BA = 1/Amin(4) (1.3.5)

14  STABILITY OF DYNAMIC SYSTEMS

1.4.1 Differential Equations
This section is concerned with differential equations of the form

x = f(t,x) x(to) = Xg (1.4.1)

where x € R",¢ = 0.

The system defined by (1.4.1) is said to be autonomous, or time-
invariant, if f does not depend on ¢, and non autonomous, or time-
varying, otherwise. It is said to be linear if f(¢t,x) = A(t)x for some
A(): R, - R"*" and nonlinear otherwise.

We will always assume that f(¢,x) is piecewise continuous with
respect to ¢. By this, we mean that there are only a finite number of
discontinuity points in any coripact set.

We define by By, the closed ball of radius # centered at 0 in R”,
Properties will be said to be true:

® Jocally, if true for all xq in some ball By,
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® globally, if true for all x, € R".

® inany closed ball, if true for all x, € By, with 4 arbitrary.
® uniformly, if true for all ¢4 > 0.

By default, properties will be true locally.

Lipschitz Condition and Consequences

The function f is said to be Lipschitz in x if, for some 4 >0, there
exists / = 0 such that

[ S, x0) = f(t,x2)] < 1]x)-xy (1.4.2)
for all x|, x, € By, t 2 0. The constant / is called the Lipschitz con-
stant. This defines locally Lipschitz functions. Globally Lipschitz func-
tions satisfy (1.4.2) for all x,, x; € IR", while functions that are
Lipschitz in any closed ball satisfy (1.4.2) for all x|, x, € By, with /
possibly depending on 4. The Lipschitz property is by default assumed
to be satisfied uniformly, that is, / does not depend on .

If f is Lipschitz in x, then it is continuous in x. On the other hand,

if f has continuous and bounded partial derivatives in x, then it is
Lipschitz. More formally, we denote

6xj

a .
D,f := [—f'-] (1.4.3)
so that if || D, f|| </, then f is Lipschitz with constant /.
From the theory of ordinary differential equations (cf. Coddington
& Levinson [1955]), it is known that J locally bounded, and f locally

Lipschitz in x imply the existence and uniqueness of the solutions of
(1.4.1) on some time interval (for as long as x € By).

Definition Equilibrium Point
x is called an equilibrium point of (1.4.1), if f(¢,x) =0 forall ¢ = 0.

By translating the origin to an equilibrium point x,, we can make
the origin 0 an equilibrium point. This is of great notational help, and
we will assume henceforth that 0 is an equilibrium point of (1.4.1).

Proposition 1.4.1

If x = 0 is an equilibrium point of (1.4.1), / is Lipschitz in x with
constant / and is piecewise continuous with respect to ¢

Then  the solution x(¢) of (1.4.1) satisfies
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lxol €79 2 |x(t)] 2 |xo| &' (1.4.4)
as long as x(¢) remains in B,,.

Proof of Proposition 1.4.1
Note that | x| 2 = x7 x implies that

d 2| _ d I
|12 = 2001 |2 1x
- T d Ii l
= 2|x dtxl < 2|x| pr X (1.4.5)
so that
4 Ii I
|d1|x;| s |2 (1.4.6)
Since f is Lipschitz
d
- udl < 4.7
x| < S1xl < I (1.47)
and there exists a positive function s(¢) such that
%'x' = —l|x| +s | (1.4.8)

Solving (1.4.8)

t

]xol e-l(l—lo) +J/e-l(t—r)s(1,)d_r
to

| x| ™ /¢~ y (1.4.9)

The other inequality follows similarly from (l.[7). a

| x(2)|

v

Proposition 1.4.1 implies that solutions starting inside B, will
remain inside By, for at least a finite time interval. Or, conversely, given
a time interval, the solutions will remain in B, provided that the initial
conditions are sufficiently small. Also, f globally Lipschitz implies that
xelL_,. Proposition 1.4.1 also says that x cannot tend to zero faster
than exponentially.

The following lemma is an important result generalizing the well-
known Bellman-Gronwall lemma (Bellman [1943]). The proof is similar
to the proof of proposition 1.4.1, and is left to the appendix.
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Lemma 1.4.2 Bellman-Gronwall Lemma
Let x(.),a(), u(): R,>R,. Let T =2 0.

If
{
x(t) < [a(f)x(f)dr +u(t) (1.4.10)
0
forallt € [0,T]
Then
{ j.a(a)da
x() s[a(r)u(r)ef dr + u(t) (1.4.11)
. 0

forallt € [0,T]
When u(.) is differentiable

1

a(o)do { a(o)do
x(t) < u(O)e"; + fll(-r)el dr (1.4.12)
0

forall: e [0, T)
Proof of Lemma 1.4.2 in Appendix.

1.4.2 Stability Definitions

Informally, x = 0 is a stable equilibrium point, if the trajectory x(¢)
remains close to O if the initial condition x, is close to 0. More pre-
cisely, we say

Definition Stability in the Sense of Lyapunov
x = 0 is called a stable equilibrium point of (1.4.1), if, for all ¢o = 0 and
e> 0, there exists §(£q, ¢) such that

| xo| < é(tg,e) = |x(1)| <e forall ¢t 2 ¢,

where x(¢) is the solution of (1.4.1) starting from x, at ¢,

Definition Uniform Stability
x =0 is called a uniformly stable equilibrium point of (1.4.1) if, in the
preceding definition, § can be chosen independent of ¢,

Intuitively, this definition captures the notion that the equilibrium

point is not getting progressively less stable with time. Stability is a very
mild requirement for an equilibrium point. In particular, it does not
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require that trajectories starting close to the origin tend to the origin
asymptotically. That property is made precise in the following
definition.

Definition Asymptotic Stability
x = 0 is called an asymptotically stable equilibrium point of (1.4.1), if

(a) x = 0 is a stable equilibrium point of (1.4.1),
(b) x = 0 is attractive, that is, for all ¢y > 0, there exists 5(¢p), such
that

[xo] <8 = lim |x(¢)] =0
l—»00

Definition Uniform Asymptotic Stability (u.a.s.)

x =0 is called a wuniformly asymptotically stable (u.a.s.) equilibrium

point of (1.4.1), if

(a) X = 0 is a uniformly stable equilibrium point of (1.4.1),

(b) the trajectory x () converges to 0 uniformly in 75, More pre-
cisely, there exists >0 and a function «(r,xg):

R, x R"—>1IR,, such that lim vy(r,xq) = O for all x, and
T Q0

[xo] <6 = |x(t)] < ~v(t-1tg, xg) for all ¢ Z/ 607/0

The previous definitions are local, since they concern neighbor-
hoods of the equilibrium point. Global asymptotic stability is defined as
follows.

Definition Global Asymptotic Stability
x =0 is called a globally asymptotically stable equilibrium point of
(1.4.1), if it is asymptotically stable and lim |x()] =0, for all
>
X0 € R", ®
Global u.a.s. is defined likewise. Note that the speed of conver-
gence is not quantified in the definitions of asymptotic stability. In the

following definition, the convergence to zero is required to be at least
exponential.

Definition Exponential Stability, Rate of Convergence

x =0 is called an exponentially stable equilibrium point of (1.4.1) if
there exist m, a > 0 such that the solution x(¢) satisfies

[x()] s me "7 x,] (1.4.13)
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for all xo € By, t 2ty = 0. The constant « is called the rate of conver-
gence.

Global exponential stability means that (1.4.13) is satisfied for any
xo € IR”. Exponential stability in any closed ball is similar except that
m and o may be functions of 4. Exponential stability is assumed to be
uniform with respect to fo. It will be shown that uniform asymptotic
stability is equivalent to exponential stability for linear systems (see Sec-
tion 1.5.2), but it is not true in general.

1.4.3 Lyapunov Stability Theory

We now review some of the key concepts and results of Lyapunov stabil-
ity theory for ordinary differential equations of the form (1.4.1). A more
complete development is available, for instance, in the texts by Hahn
[1967] and Vidyasagar [1978].

The so-called Lyapunov second method enables one to determine
the nature of stability of an equilibrium point of (1.4.1) without expli-
citly integrating the differential equation. The method is basically a gen-
eralization of the idea that if some “measure of the energy” associated
with a system is decreasing, then the system will tend to its equilibrium.
To make this notion precise, we need to define exactly what we mean by
a “measure of energy,” that is, energy functions. For this, we first define
class K functions (Hahn [1967], p. 7).

Definition Class K Functions

A function a(¢) : R, - IR, belongs to class K (denoted () € K), if it
is continuous, strictly increasing, and «(0) =

Definition Locally Positive Definite Functions

A continuous function v(¢,x) : R, x R” - IR, is called a locally posi-
tive definite function (l.p.d.f) if, for some 4 >0, and some a(.) € K

v(t,00=0 and v(t,x)2a(x|) forallx € By,t 20

An l.p.d.f. is locally like an “energy function.” Functions which are
globally like *“‘energy functions™ are called positive definite functions
(p.d.f.) and are defined as follows.

Definition -Positive Definite Functions
A continuous function v(f,x): R, x R" > R, is called a positive
definite function (p.d.f)) , if for some «(.) € K

v(t,00 =0 and v(t,x) 2 a(|x|) forallx e R",r >0
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and the function ¢ (p)—>co as p—+ 0o .

In the definitions of lLp.d.f. and p.d.f. functions, the energy like
functions are not bounded from above as ¢ varies. This follows in the
next definition.

Definition = Decrescent Function
The function v(z,x) is called decrescent, if there exists a function
B8(.) € K, such that

v(t,x) < B8(]| x||) forallx € B,,t =20

Examples

Following are several examples of functions, and their membership in
the various classes:

v(t,x) = | x]?: p.d.f., decrescent

v(t,x) = xT P x, with P >0 : p.d.f., decrescent
v(t,x) = (¢t + 1)|x|%: p.d.f.

v(t,x) = e~*|x|?: decrescent

v(t,x) = sin?(| x| ?) : Lp.d.f., decrescent

Lyapunov Stability Theorems _
Generally speaking, the theorems state that when v(¢,x) is a p.d.f., or an
l.p.d.f., and dv/dt(t,x) <0, then we can conclude the stability of the

equilibrium point. The derivative of v is taken along the trajectories of
(1.4.1); that is,

v, x) Coav(t,x) L av(t,x) "
dr Lo o T ax f(t,x) (1.4.14)

Theorem 1.4.3 Basic Theorems of Lyapunov
Let v(¢,x) be continuously differentiable:
Then
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Conditions on Conditions on .
¥(t, %) — ¥t x) Conclusions
Lp.d.f. 2 0 locally stable
Lp.d.f., decrescent | = 0 locally uniformly stable
lL.p.d.f. l.p.d.f. asymptotically stable
l.p.d.f., decrescent | lp.d.f. uniformly asymptotically stable
p.d.f., decrescent p.d.f. globally u.as

Proof of Theorem 1.4.3 cf, Vidyasagar [1978], p. 148 and after.

Example

We refer to Vidyasagar [1978] for examples of application of the
theorems. An interesting example is the second order system

X1 = x(xt+x3-1)-x,
Xy = x|+ X0t +x3-1) (1.4.15)
with the p.d.f.
v(xy,x2) = x{ +x} (1.4.16)
The derivative of v is given by
V(XX = 2(xt +xH)(x} +x3 - 1) (1.4.17)

so that —v is an Lp.d.f. (in By, where h <1), establishing the local
asymptotic stability of the origin. The origin is, in fact, not globally
asymptotically stable: the system can be shown to have a circular limit
cycle of radius 1 (by changing to polar coordinates).

From (1.4.17), we can also show that for all x € B,
v < =2(1-h%)v (1.4.18)
so that

v(t) < v(0)e 2U-AN
[ x(2)]

and, in fact, x = 0 is a locally exponentially stable equilibrium point.
Note that the Lyapunov function is in fact the squared norm of the
state, a situation that will often occur in the sequel.

|x(0)] e~ =D forallt=0  (1.4.19)

A
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Comments

The theorems of Lyapunov give sufficient conditions guaranteeing the
stability of the system (1.4.1). It is a remarkable fact that the converse of
theorem 1.4.3 is also true: for example, if an equilibrium point is stable,
there exists an Lp.d.f. v(¢,x) with v(¢,x) £0. The usefulness of
theorem 1.4.3 and its converse is limited by the fact that there is no gen-
eral (and computationally non-intensive) prescription for generating the
Lyapunov functions. A significant exception to this concerns exponen-
tially stable systems, which are the topic of the following section.

1.5 EXPONENTIAL STABILITY THEOREMS

We will pay special attention to exponential stability for two reasons.
When considering the convergence of adaptive algorithms, exponential
stability means convergence, and the rate of convergence is a useful
measure of how fast estimates converge to their nominal values. In
Chapter 5, we will also observe that exponentially stable systems possess
at least some tolerance to perturbations, and are therefore desirable in
engineering applications.

1.5.1 Exponential Stability of Nonlinear Systems

The following theorem will be useful in proving several results and
relates exponential stability to the existence of a specific Lyapunov func-
tion.

Theorem 1.5.1 Converse Theorem of Lyapunov

Assume that f(¢,x) : R, x R” - IR" has continuous and bounded first
partial derivatives in x and is piecewise continuous in ¢ for all
Xx € By, t 20. Then, the following statements are equivalent:

(a) x = 0 is an exponentially stable equilibrium point of
X = f(t,x) x{ty) = xq (1.5.1)
(b) There exists a function v (¢, x), and some strictly positive con-
stants /', a; ay a3 a4, such that, for all x € By, >0
ay|x]? S v(t,x) £ ay]x|? (1.5.2)
vt x) | < —ay) x|? (1.5.3)
dt (1.5.1)
| WEX) | < x| (1.5.4)

dx
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Comments
Again, the derivative in (1.5.3) is a derivative taken along the trajec-
tories of (1.5.1), that is

av(t,x) JvLx) | 8v(,x) 1t .,x) (1.5.5)
This means that we consider x to be a function of ¢ to calculate the
derivative along the trajectories of (1.5.1) passing through x at ¢. It does
not require of x to be the solution x(¢) of (1.5.1) starting at x(¢g).

Theorem 1.5.1 can be found in Krasovskii [1963] p. 60, and Hahn
[1967] p. 273. 1t is known as one of the converse theorems. The proof
of the theorem is constructive: it provides an explicit Lyapunov func-
tion v(¢,x). This is a rather unusual circumstance, and makes the
theorem particularly valuable. In the proof, we derive explicit values of
the constants involved in (1.5.2)-(1.5.4).

Proof of Theorem 1.5.1

(a) implies (b).

(i) Denote by p(r, x, t) the solution at time 7 of (1.5.1) starting at x(¢),
t, and define

t+T

v(t,x) = [|pG,x,0|%dr (1.5.6)
t
where T >0 will be defined in (ii). From the exponential stability and
the Lipschitz condition
mlx|e = > |p(r,x,t)| = |x|e !0 (1.5.7)
and inequality (1.5.2) follows with
a) = (1-e72Ty/2] ay i= m¥*(1-e%T)/2a  (1.5.8)

(ii) Differentiating (1.5.6) with respect to ¢, we obtain

dV(ét,x) = lpe+T,x,01* - | p@t,x,0|*
t+Ta,
) + [ Uptx,0|)dr (1.5.9)
, ;.

Note that d/dt is a derivative with respect to the initial time ¢ and is
taken along the trajectories of (1.5.1) By definition of the solution p,

plr,x(t +At),t +At) = p(r,x(t),t) (1.5.10)
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for all A¢, so that the term in the integral is identically zero over
[£,t +T]. The second term in the right-hand side of (1.5.9) is simply

| x| 2, while the first is related to | x|2 by the assumption of exponential
stability. It follows that

dv(t,x) < (1— 2 ,-2aT 2
g S ~U-mfer x|

Inequality (1.5.3) follows, provided that T >(1/a)Inm and

(1.5.11)

a3 := | -m2e 2T (1.5.12)
”?(iii) Differentiating (1.5.6) with respect to x;, we have
t+T p
av(t,x) api(r,x,1)
—_—= = 2 pir,x,t)—————= dr (1.5.13)
6xi '[ j§ / axl'

Under the assumptions, the partial derivative of the solution with
respect to the initial conditions satisfies

d |, x,0f 4 |d
E?[ ox, = o | @ pexn)

—627 /it x,0)

- é:_){Ll -—————-‘9”"(;:’” (1.5.14)
k=19% 17 p(r,x.0) i
(except possibly at points of discontinuity of f(,x)). Denote
Qij(r,x,t) := Opi(r,x, 1) /dx;
Ajj(x,t) = af it ,x)/ox; (1.5.15)
so that (1.5.14) becomes
Ed:Q(r,x,t) = AW(r,x,t),7)  Q(r,x,t) (1.5.16)

Equation (1.5.16) defines Q(r,x,t), when integrated from r=1¢ to
7=1t+T, with initial conditions Q(¢,x,t)=1. Thus, Q(r,x,t) is the
State transition matrix (cf. Section 1.5.2) associated with the time vary-
ing matrix A(p (r,x,t),7). By assumption, || 4(.,.)|| < k for some k,
so that

| Q(r,x,0)|| < k-0 (1.5.17)

Section 1.5 Exponential Stability Theorems 31

and, using the exponential stability again, (1.5.14) becomes

Iav(z,x) < 2'}Tm|x, etk ~a)r-1)g, (1.5.18)
ox |
which is (1.5.4) if we define
ag i= 2m(e®*=OT _ 1) /(k - @) (1.5.19)

Note that the function v(s,x) is only defined for x € B) with
h’=h/m, if we wish to guarantee that p(r,x,t) e By forall r>¢.
(b) implies (a)
This direction is straightforward, using only (1.5.2)-(1.5.3), and we find

. 1
m = 2 2 o = _l.gé.
’ T2«

(1.5.20)
ay 2

0

Comments

The Lyapunov function v (¢, x) can be interpreted as an average of the
squared norm of the state along the solutions of (1.5.1). This approach
is actually the basis of exact proofs of exponential convergence presented
in Sections 2.5 and 2.6 for identification algorithms. On the other hand,
the approximate proofs presented in Chapter 4 rely on methods for
averaging the differential system itself. Then the norm squared of the
state itself becomes a Lyapunov function, from which the exponential
convergence can be deduced.

Theorem 1.5.1 is mostly useful to establish the existence of the
Lyapunov function corresponding to exponentially stable systems. To
establish exponential stability from a Lyapunov function, the following
theorem will be more appropriate. Again, the derivative is to be taken
along the trajectories of (1.5.1).

Theorem 1.5.2 Exponential Stability Theorem

If there exists a function v (¢, x), and strictly positive constants a;,
a3, a3, and §, such that for all x e Byt 20

. aj|x[? < v(t,x) S ay|x|? (1.5.21)

% v(t,x(t)) <0 (1.5.22)

* (LS
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L +8

[ L virxto)

t (L.5.1)

dr < —a;3|x(t)|? (1.5.23)

Then  x(t) converges exponentially to O.
Proof of Theorem 1.5.2
From (1.5.23)

v, x(U)=v(E+6,x(t+6) = (az/ap) v(t,x(t)) (1.5.24)
for all ¢ = 0, so that

v(E+6,x(t+0) < (I —az/ay) v(L,x(2)) (1.5.25)

forall t 2 0. From (1.5.22)

v(E,x(8) < v(t,x(t)) forallt; e [t,t +6] (1.5.26)

Choose for ¢ the sequence fg, to+98, {o+28,... so that v(¢,x(¢)) is
bounded by a staircase v(fg,x(f)), v(¢g+8,x(fg+96)),... where the
steps are related in geometric progression through (1.5.24). It follows
that

v(e,x@) < mye Ty (10 x(t0)) (1.5.27)
for all ¢t =ty = 0, where
m, = ra'}m a = —;—ln [(1—_713—/—@] (1.5.28)
Similarly,
[x(0)] < me ") x(1p)] (1.5.29)
where

N —

) l 1
= |- — = — In |——— 1.5.30
" [(11 l—-a;/az ] “ 26 n[l-—a3/a2 ] ( >3 )

O

1.5.2 Exponential Stability of Linear Time-Varying Systems
We now restrict our attention to linear time-varying (LTV) systems of
the form

x = A@t)x x(tg) = Xxg (1.5.31)

where A(z) e R"™" is a piecewise continuous function belonging to
L

e’
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Definition State-Transition Matrix
The state-transition matrix ®(t,t0) € R"*" associated with A4(t) is, by
definition, the unique solution of the matrix differential equation

d

7[(‘1’([,[0)) = A@)®(t,1) ®(tg,t0) = 1 (1.5.32)

Note that linear systems with A(.) € L, . automatically satisfy the
Lipschitz condition over any finite 1nterval so that the solutions of
(1.5.31) and (1.5.32) are unique on any time interval. It is easy to verify
that the solution of (1.5.31) is related to that of (1.5.32) through

x(t) = ®(t,t0) x(to) (1.5.33)

In particular, this expression shows that trajectories are “proportional”
to the size of the initial conditions, so that local and global properties of
LTV systems are identical.

The state-transition matrix satisfies the so-called semigroup property
(cf. Kailath [1980], p. 599):

(t st()) = Q(t ,T)‘I’(T,zo)
and its inverse is given by

®(t,10)"" = ®(tg,1) (1.5.35)

forallt 27 >1¢g (1.5.34)

A consequence is that

‘I’([ to)

d -1

~®(to, 1) ' A(10) B (10, 1) B (20, t) "
(1) ALy (1.5.36)

The following propositions relate the stability properties of (1.5. 31
to properties of the state-transition matrix.

Proposition 1.5.3 Uniform Asymptotic Stability of LTV Systems
x =0 is a uniformly asymptotically stable equilibrium point of (1.5.3 1)
if and only if x = 0 is stable, which is guaranteed by

sup (tsup &, t)]) < co (1.5.37)

120

and x = 0 is attractive, which is guaranteed by

| ®(,t0)]| -0 as t >0 uniformly in ¢, (1.5.38)
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Proof of Proposition 1.5.3 direct from the expression of the solution
(1.5.33).

Proposition 1.5.4 Exponential Stability of LTV Systems
x = 0 is an exponentially stable equilibrium point of (1.5.31)
if and only if for some m, a > 0

| @, t0)|| = me ot (1.5.39)

forallt 2 ¢, =0.
Proof of Proposition 1.5.4 direct from the expression of the solution
(1.5.33).

A unique property of linear systems is the equivalence between uni-
form asymptotic stability and exponential stability, as stated in the fol-
lowing theorem.

Proposition 1.5.5 Exponential and Uniform Asymptotic Stability
x = 0 is a uniformly asymptotically stable equilibrium point of (1.5.31)

if and only if x = 0 is an exponentially stable equilibrium point of
(1.5.31).

Proof of Proposition 1.5.5

That exponential stability implies uniform asymptotic stability is obvi-
ous from their definitions and in particular from proposition 1.5.3 and
proposition 1.5.4. We now show the converse. Proposition 1.5.3
implies that there exists M >0 and T >0, such that

| @, )] < M forallt 2t =0 (1.5.40)
and
| @@+ T t0)| < —é- for all 1 = 0 (1.5.41)

For all t=>=t, there exists an integer »n such that
t € [to+nT,ty+(n+1)T]). Using the semigroup property recursively,
together with (1.5.40), (1.5.41)

¢t < || 2, t0+nT)|| || @(o+nT,ty)|l

117 1] -0t
<M 5 =M 5 (1.5.42)

which can easily be expressed in the form of (1.5.39), O
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Uniform Complete Observability—Definition and Results
Through the definition of uniform complete observability, some addi-
tional results on the stability of linear time-varying systems will now be

established. We consider the linear time-varying system [C(t),4(?)]
defined by

1]

X(t) = A()x(1)
y(t) = Cx) (1.5.43)

where x(¢) € IR", y(t) € IR™, while A(t) € R"** C(t) ¢ R™*" are
piecewise continuous functions (therefore belonging to Looe).

Definition Uniform Complete Observability (UCO)

The system [C (), 4 (t)] is called uniformly completely observable (UCO)
if there exist strictly positive constants 8,,8,,5, such that, for all ¢y > 0

81 = N(lgto+8) = 81 (1.5.44)

where N(tg, 1o+ 8) e R"*" is the so-called observability grammian
o+

N(to,to+8) = [ @7(r,10)CT()C(r) ®(r, 1) dr (1.5.45)
o

Comments
Note that, using (1.5.33), condition (1.5.44) can be rewritten as

lo+6

Balx(t)? 2 [ |C@)x(r)|2dr = B[ x(t0)]? (1.5.46)
o

for all x(zp) € IR", ¢y > 0, where x(¢) is the solution of (1.5.43) starting
at x(¢p).

The observability is called uniform because (1.5.43) is satisfied uni-
formly for all £y and complete because (1.5.46) is satisfied for all x(¢).
A specific x(to) is observable on a specific time interval [¢g, ¢o + 6] if con-
dition (1.5.46) is satisfied on that interval. Then, x(fo) can be recon-
structed from the knowledge of y(.) using the expression

lo+d
x(t)) = Nltoto+8)™" [ &T(r,t))CT(p(r)dr  (1.5.47)

fo
On the other hand, if condition (1.5.44) fails to be satisfied, (1.5.46)
shows that there exists an x(fg) # 0 such that the corresponding output
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satisfies
to+o
[ 1ym)2ar = 0 (1.5.48)
Lo

so that x(¢) is not distinguishable from O.

Theorem 1.5.6 Exponential Stability of LTV Systems

The following statements are equivalent:

(a) x = 0 is an exponentially stable equilibrium point of (1.5.31).

(b) For all C(t) e R™*" (with m arbitrary) such that the pair
[C(1),A(t)] is UCO, there exists a symmetric P(¢) e R"*",
and some vy, v, >0, such that

v2l 2 P(t) 2 v/ (1.5.49)
~P@t) = AT@Q)P@) + P)A{) + CT(1)C@t)  (1.5.50)
for all £ 20.
(c) For some C(t) € IR™*" (with m arbitrary) such that the pair

[C(2),A(1)] is UCO, there exists a symmetric P(t) € IR"*" and
some v, v2 >0, such tiat (1.5.49) and (1.5.50) are satisfied.

Proof of Theorem 1,5.6
(a) implies (b)
Define

o o]
P@t) = [ @T(,0)CT()C(N&(r,1)dr (1.5.51)
!

We will show that (1.5.49) is satisfied so that P(¢) is well defined, but
first note that by differentiating (1.5.51), and using (1.5.36), it follows
that P(t) satisfies the linear differential equation (1.5.50). This equation
is a linear differential equation, so that the solution is unique for given
initial conditions, However, we did not impose initial conditions in
(1.5.50), and P(0) is in fact given by (1.5.51).

By the UCO assumption

t+3

B, I = j *T(r,0)CT(r)C(r) & (r,t)dr = B1 (1.5.52)
!

for all ¢+ = 0. Since the integral from ¢ to oo is not less than from ¢ to
t + 6, the lower inequality in (1.5.50) follows directly from (1.5.52), To
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show the upper inequality, we divide the interval of integration in inter-
vals of size 6 and sum the individual integrals. On the interval
[t +6,1+26]

t+28

j *T(r,0)CT()C(r)®(r,t)dr = ®T(t +6,1)

t+4 - é

1+28
[ @7, t +8)CT()C(D)®(r 1 +0)dr | Mt +5,1)
{+8
< Bymie 2t (1.5.53)

where we used the UCO and exponential stability assumptions. There-
fore

(¢ o]

[@7(,0)CT()C(r) & (r 1) dr

t
S B(l+m?em 28 4 mle et )T = 4] (1.5.54)

(b) implies (c) trivial.
(c) implies (a).
Consider the Lyapunov function

v(t,x)

xT()P(t)x(2) (1.5.55)
so that

i
<.
|

= = xT@WPE)AW)x(t) - xTE)YAT(1) P(t) x(2)
—xT(E
xT()P(t)x@) »

xT(t)CT(t)C(t)x(t)){O (1.5.56)
Using the UCO property

t+48 t+3

[var = =xT@)| [ @7, 0)CT()C(r) & (r,1)dr | x(t)
t t

< =B x@)? (1.5.57)

Exponential convergence follows from theorem 1.5.2.
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It is interesting to note that the Lyapunov function is identical to
the function used in theorem 1.5.1, when C = I, and the upper bound of
integration tends to infinity. 0O

1.5.3 Exponential Stability of Linear Time Invariant Systems

When the system (1.5.31) is time-invariant, even further simplification
of the stability criterion results. Specifically, we consider the system

X = Ax x(fo) = Xxp (1.5.58)

Note that since the system is linear, local and global stability pro-
perties are identical, and since it is time-invariant, all properties are uni-
form (in tg).

Theorem 1.5.7 Lyapunov Lemma

The following statements are equivalent:

(a) All eigenvalues of 4 lie in the open left-half plane

(b) x = 0 is an exponentially stable equilibrium point of (1.5.58)

(c) For all C € R™*" (with m arbitrary), such that the pair [C,A4]
is observable, there exists a symmetric positive definite
P e R"*" satisfying

ATP + PA = -CTC (1.5.59)
(d) For some C e R™*" (with m arbitrary), such that the pair

{C,A4] is observable, there exists a symmetric positive definite
P e R"*” satisfying (1.5.59).

Proof of Theorem 1.5.7
(a) implies (b).

This follows from the fact that the transition matrix is given by the
exponential matrix (cf. Vidyasagar [1978), pp. 171)

B ,ty) = 70 (1.5.60)
(b) implies (c).
Let

¢
S@t) := jeA’chCeAde
0
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t
= [etTt=CTCett -y G (1.5.61)
0

Clearly S(¢)=S7(t), and since [C, A] is observable, S(1)>0 for all
¢t >0. Using both expressions in (1.5.61)

Sty = ef’'CTCet = ATSW)+SWA4+CTC (1.5.62)

and using the exponential stability of A

lim S(t) = 0 = ATP+PA +CTC (1.5.63)
{ =00
where
P = lim S(t) (1.5.64)
{ =+ 00

(c) implies (d) trivial.
(d) implies (b) as in theorem 1.5.6. O

Remark

The original version of the Lyapunov lemma is stated with Q positive

definite replacing CT C (which is only semi-definite), and leading to the
so-called Lyapunov equation:

ATP + P4 = -Q (1.5.65)

Then, the observability hypothesis is trivial. We stated a more general
version of the Lyapunov lemma partly to show the intimate connection
between exponential stability and observability for linear systems.

1.6 GENERALIZED HARMONIC ANALYSIS

An appropriate tool for the study of stable linear time-invariant systems
is Fourier transforms or harmonic analysis, since e/* is an eigenfunction
of such systems. We will be concerned with the analysis of algorithms
for identification and adaptive control of linear time-invariant systems.
The overall adaptive systems are time-varying systems, but, under cer-
tain conditions, they become “asymptotically” time-invariant. For these
systems, generalized harmonic analysis is a useful tool of analysis. The
theory has been known since the early part of the century and was
developed in Wiener’s Generalized Harmonic Analysis (Wiener [1930]).
Boyd & Sastry [1983] and [1986] illustrated its application to adaptive
systems. Since the proofs of the various lemmas used in this book are
neither difficult nor long, we provide them in this section.
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Definition Stationarity, Autocovariance
A signal u: R, - IR" is said to be stationary if the following limit
exists, uniformly in ¢,
I o+ T
R() = lim — [ u@uT(+n)dr e R (1.6.1)
T —» [oa] T ‘0
in which instance, the limit R,(¢) is called the autocovariance of u,

The concept of autocovariance is well known in the theory of sto-
chastic systems. There is a strong analogy between (1.6.1) and
Rh(t) = E [u(r)uT(¢t + 7)), when u is a wide sense stationary stochas-
tic process. Indeed, for a wide sense stationary ergodic process u(t,w) (v
here denotes a sample point of the underlying probability space), the

autocovariance R,(t,w) exists, and is equal to R (¢) for almost all w.
But we emphasize that the autocovariance defmed in (1.6.1) is com-
pletely deterministic,

Proposition 1.6.1
R, is a positive semi-definite matrix-valued function, that is, for all ¢,, . .
, 4 € Ryandcy, ..., ¢ € R”

k

E C,‘TRu(tj—t,')Cj 20 (162)
i,j=1

Proof of Proposition 1.6.1
Define the scalar valued function v (t) by

v(t) : 2 cdu+1t) (1.6.3)
i=1
Then, for all T >0
T
0 < lT£|v(r)|2dr (1.6.4)
k T
= C[T(lT£u(T+t,‘)uT(T+tj)dT)Cj
i,j=1
k L+ T
= 3 d(5 [ WU ey~ t)de)e, (1.6.5)
ij=1 7
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Since u has an autocovariance, the limit of (1.6.5) as T — oo is

k
2 C,'TRu(tj = t[)Cj (166)
ij=1
From (1.6.4), we find that (1.6.6) is positive, so that (1.6.2) follows. 0O
From proposition 1.6.1, it follows (see, for example, Widder
[1971]) that R, is the Fourier transform of a positive semi-definite
matrix S,(dw) of bounded measures, that is,

1 % .
Rt) = 5 f e/l S, (dw) (1.6.7)
-00
and
oo
f Sy(dw) = 2rR,0) < oo (1.6.8)
-00

The corresponding inverse transform is

+ 0O
S,(dw) = f e~ R (r)dr (1.6.9)

-0

The matrix measure S,(dw) is referred to as the spectral measure of
the signal u. In particular, if ¥ has a sinusoidal component at frequency
wo, then u is said to have a spectral line at frequency wgy. S,(dw) has
point mass (a delta function) at wy and —wqy. If u(¢) is periodic, with
period 2w/wy, then S,(dw) has point mass at wy, 2wg,... and - wp,
- 2wq,... . Further, if u(¢) is almost periodic, its spectral measure has
point masses concentrated at countably many points.

Since R, is real, (1.6.9) shows that Re(S,) is an even function of w,
and Im(S,) is an odd function of w. On the other hand, (1.6.1) shows
that

R,(t) = Rl (- 1)
Therefore, (1.6.9) also shows that Re(S,) is a symmetric matrix, while
Im (S,) is an antisymmetric matrix. In other words,

ST(dw) = S;(dw)

Equations (1.6.1) and (1.6.9) give a technique for obtaining the
spectral content of stationary deterministic signals. For example, con-
sider the scalar signal
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u(t) = sin(w;t) + sin(wyt) + f(2) (1.6.10)

where f(¢) is some continuous function that tends to zero as ¢ — co.
The signal u has autocovariance

R,(t) = —;-cos(w,t)+%cos(w2t) (1.6.11)
showing spectral content at w, and w,.

The autocovariance of the input and of the output signals of a
stable linear time-invariant system can be related as in the following pro-
position,

Proposition 1.6.2 Linear Filter Lemma

Let y = I?(u), where H is a proper, stable m x n matrix transfer func-
tion, with real impulse response H (¢).

If u is stationary, with autocovariance R,(t)

Then y is stationary, with autocovariance

o0 oo
R(t) = [ [H@)R( +7-1)H (ry)dr, dr,  (1.6.12)

~-00 -0
and spectral measure
Sy(dw) = H(jw)S(dw)H(jw) (1.6.13)

Proof of Proposition 1.6.2
We first establish that y has an autocovariance, by considering

g+ T to+ T

T [yoyeend - 4 [ JHeout-mdn)

(JuT(t + 7= 1) H (1) dry)dr  (1.6.14)

For all T, the integral in (1.6.14) exists absolutely, since H is stable, and
therefore // € L,. Therefore, we may change the order of integration,
to obtain

to-n+T

[[HG)dn iT [ w@uTC+o+r-n)de

-y

(HT(ry)dry) (1.6.15)
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The expression in parenthesis converges to R,(t +7{-7,) as T— oo,
uniformly in #o. Further, it is bounded as a function of T, ¢, 7| and 7,
since, by the Schwarz inequality

I to-7+T
I? f u(@ul(t +o+7,-7,)do
Ig—-71¢
1 o+ T
1 2
< sup 7 [ lu)?dr (1.6.16)

{o

Hence, by dominated convergence, (1.6.15) converges uniformly in ¢, as

T - o0, to (1.6.12), so that y has an autocovariance given by (1.6.12).
To complete the proof, we substitute (1.6.7) in (1.6.12) to get

o= [[HEdr [0 8, (do) HT (ry) i

R,(1)

= oo [eR ([ STH () dn) S o) ([P H ) dr)T

L
27
Note that (1.6.17) is the Fourier representation of R, so that, using the
fact that H(z) is real

Sydw) = H(- jw)S,(dw) H(jw)
H (jw) Sy(dw) HT (jw) (1.6.18)

j e/ H(~ jw)S,(dw) HT(jw) (1.6.17)

]

Remark
It is easy to see that if u has a spectral line at frequency wy, so does y,
and the intensity of the spectral line of y at wy is given by (1.6.18).

Note, however, that if & (s) has a zero of transmission at wg, then the
amplitude of the spectral line at the output is zero.

We will also need to define the cross correlation and cross spectral
density between two stationary signals.
Definition Cross Correlation

Let u: IR, —>IR" and y: R, - IR™ be stationary. The cross correlation
between u and y is defined to be the following limit, uniform in ¢,
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to+ T

Ru0) i= lim & [y uT@+r)dr € R™*"  (1.6.19)

T —-00 T to

It may be verified that the relationship between R, and Ry, is

R,(t) = RL(-1) (1.6.20)
and the Fourier transform of the cross correlation is referred to as the

cross spectral measure of u and y.

The cross correlation between the input and the output of a stable
LTI system can be related in much the same way as in proposition 1.6.2,

Proposition 1.6.3 Linear Filter Lemma—Cross Correlation

Let y = H (u), where Hisa proper stable m x n matrix transfer func-
tion, with impulse response H(t).

If u is stationary

Then  the cross correlation between u and y is given by

o0
Ry(t) = [ H(r)Rt +71)dr, (1.6.21)
-00
and the cross spectral measure is
Syldw) = H*(jw)S,(dw) (1.6.22)

Proof of Proposition 1.6.3

The proof is analogous to the proof of proposition 1.6.2 and is omitted
here.

CHAPTER 2
IDENTIFICATION

2.0 INTRODUCTION

In this chapter, we review some identification methods for single-input
single-output (SISO), linear time invariant (LTI) systems. To introduce
the subject, we first informally discuss a simple example. We consider
the identification problem for a first order SISO LTI system described by
a transfer function

Vo(s N k
2 pyy - L
F(s) $+ap
The parameters k, and a, are unknown and are to be determined by the
identification scheme on the basis of measurements of the input and out-

put of the plant. The plant is assumed to be stable, i.e. a,>0.

(2.0.1)

Frequency Domain Approach

A standard approach to identification is the frequency response approach.
Let the input r be a sinusoid

i r(t) = sin{(wpt) (2.0.2)
The steady-state response is then given by
)?l) = msin(wp! + ¢) (2.0.3)

where

45
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. k,
m = |P(uwp)| = ————
Vwh+a?
L Q)O
¢ = argP(Jwg) = - arc tan [ T] (2.0.4)
P

Measurements of the gain m and phase ¢ at a single frequency wg # 0
uniquely determine k, and a, by inversion of the above relationships.
At wg = 0, that is when the input signal is constant, phase information is
lost. Only one equation is left, giving the DC gain. Then, only the ratio
of the parameters k, and a, is determined. Conversely, if several fre-
quencies are used, each contributes two equations and the parameters
are overdetermined.

Frequency response methods will not be further discussed in this
book, because our goal is adaptive control. We will therefore concen-
trate on recursive approaches, where parameter estimates are updated in
real-time. However, we will still analyze these algorithms in the fre-
quency domain and obtain similar results as above for the recursive
schemes.

Time Domain Approach
We now discuss schemes based on a time-domain expression of the plant
(2.0.1), that is

Vo(t) = —apyp(t) + kypr(t) (2.0.5)

Measurements of y,, y, and r at one time instant ¢ give us one equation
with two unknown a, and k,. As few as two time instants may be
sufficient to determine the unknown parameters from

-2 Y1) ’(")}" B(t1)
[k"p] ) [yp(tz) r(t2) t2) (2.0.6)

assuming that the inverse exists. Note that, as in the frequency-domain
approach, a constant input r(¢;) = r({;) with constant output
Vp(t1) = y,(t2) will prevent us from uniquely determining a, and k.

We may refine this approach to avoid the measurement of y,(¢).
Consider (2.0.1) and divide both sides by s + A for some A>0
s+a, k, .

s+A P T s+>\r. (2.0.7)

This is equivalent to
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’ S+X P s+ (2.0.8)
Define the signals
() _ 1 a ~(2) 1 ~
W s+>‘r we = s+>\y” (2.0.9)
or, in the time domain
W = w4 @ o 0, Y (2.0.10)

Then, in the time domain, (2.0.8) reads
vp(t) = kw(e) + (A - a,)w(t) (2.0.11)

The signals w), w? may be obtained by stable filtering of the input and
of the output of the plant. We have assumed zero initial conditions on
w and w®, Nonzero initial conditions would only contribute
e;(ponential decaying terms with rate A (arbitrary), but are not con-
sidered in this simplified derivation. Equation (2.0.11) is to be com-
pared' with (2.0.5). Again, measurements at one time instant give us one
eguanon. with two unknowns. However, we do not require
differentiation, but instead stable filtering of available signals.

In the sequel, we will assume that measurements of r and y, are
made continuously between 0 and 7. We will therefore look for algo-
rithms that use the complete information and preferably update esti-
-mates only-on the basis of new data, without storing the entire signals.
But f}rst, we transform (2.0.11) into the standard framework used later
In this chapter. Define the vector of nominal identifier parameters

* kp
b = A - a, (2.0.12)

Knowledge of 6° is clearly equivalent to the knowledge of the unknown
p?rameters k, and a,. Similarly, define 6(¢) to be a vector of identical
dlm?nsion, called the adaptive identifier parameter. 6(z) is the estimate
of 6" based on input-output data up to time ¢. Letting

] o) = | e (2.0.13)
equation (2.0.11) may be written
%) = 67 w(t) = wi) 6" (2.0.14)

Based on measurements of r(t) and y,(t) up to time ¢, w(t) may be
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calculated, and an estimate 6(¢) derived. Since each time instant gives
us one equation with two unknowns, it makes sense to consider the esti-
mate that minimizes the identification error

ei(t)y = 6T() w(t) - y,(t) = [ 0T(z)-o‘r] w(t)  (2.0.15)

Note that the identification error is linear in the parameter error 6 — 8",
We will therefore call (2.0.15) a linear error equation. The purpose of
the identification scheme will be to calculate #(¢), on the basis of meas-
urements of e¢;(¢) and w(¢) up to time ¢.

Gradient and Least-Squares Algorithms

The gradient algorithm is a steepest descent approach to minimize e (¢).
Since

%, 2.0.16

 ~ g T etV (2.0.16)
we let the parameter update law

f = —gew g>0 (2.0.17)

where g is an arbitrary gain, called the adaptation gain.
Another approach is the least-squares algorithm which minimizes

the integral-squared-error (ISE) e'r( E) vk - af (‘L) )

{
ISE = f (2.0.18)
0

Owing to the linearity of
obtained directly from

Tor equation, the estimate may be
concition

3 | ’
dr | = d -y | dr = .0.
5 | [Hdr | = 2[we) [WTn 00 - 30 | = 0 @2019)

so that the least-squares estimate is given by

( -1
] !

bus(t) = | [ wr) wT(x) dr t[w(f) yo(7) dr (2.0.20)

0

Plugging (2.0.14) into (2.0.20) shows that 8,5(¢t) = 6°, assuming that the
inverse in (2.0.20) exists.
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For adaptive control applications, we are interested in recursive for-
mulations such as (2.0.17), where parameters are updated continuously
on the basis of input-output data. Such an expression may be obtained
for the least-squares algorithms by defining

-1
!

P@) = j w(r) wT(r) dr (2.0.21)
0

so that

gf [P'[(t)] = w(t) wi(t) (2.0.22)

Since
d -
1) = L [pwy P

i
L [ro)] P+ P(z)-%— (ri0] o2y

it follows that

.%[p(,)] - -P) & [P 1(t)] P(1)

= - P(t)w(t) wi(t) P(t) (2.0.24)
On the other hand, (2.0.20) may be written

6us(t) = P(t) [ w(r) yolr) dr (2.0.25)
0
so that, using (2.0.24)

200 = - PO wo) w0 150) + PO W) 3y00)

it

- PO o) [ w70 bu5(t) - 3,0 ]

= P(t) w(t) ey(t) (2.0.26)

Note that the recursive algorithm (2.0.24), (2.0.26) should be
started with the correct initial conditions at some ¢ > O such that

B
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-1
o

P(tg) = | [w()w" (r)dr (2.0.27)
0
exists. In practice, the recursive least-squares algorithm is started with
arbitrary initial conditions at g = 0 so that

i) = - PO we) (070 w) - (0| 00) = 0o
P(t) = - P(t) wt) wT(t) P(t) F(0) = Py>0 (2.0.28)
It may be verified that the solution of (2.0.28) is —~ = Po) T
! T I B R
o) = | Po+ £ wi) w7 (r) dr Pobo + £ yp(ryw(r)dr| (2.0.29)

instead of (2.0.20). Since y, = 6'Tw, the parameter error is given by
-1

<l .
0(t) - 6" = | Po+ f w(r) wT(r)ﬂf Pozoo - 8" (2.0.30)
0
it ,
It follows that 8(¢) converges asymptotically to 0" if ‘[ w(r) wT(r)dr is

unbounded as ¢ - oo. In this chapter, we will study conditions that
guarantee exponential convergence of the parameter estimates to the
nominal parameter. These are called persistency of excitation conditions
and are closely related to the above condition. It is not obvious at this
point how to relate the time domain condition on the vector w to fre-
quency domain conditions on the input. This will be a goal of this
chapter.

Model Reference Identification

We now discuss another family of identification algorithms, based on the
so-called model reference approach. The algorithms have similarities to
the previous ones, and are useful to introduce adaptive control tech-
niques.

We first define a reference model transfer function

X k,
— = M(s) = (20.31)

where a,,, k,,, >0. In the time domain
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Ym(t) = = amym(t) + kpu(t) (2.0.32)
Let the input « to the model be given by
u(t) = aglt)r(t) + bo(t)ym(t) (2.0.33)

where aq(t), bo(t) are adaptive parameters and r is the input to the
plant. The motivation is that there exist nominal values of the parame-

ters, denoted ag, bg, such that the closed-loop transfer function matches
any first order transfer function. Specifically, (2.0.32) and (2.0.33) give
the closed-loop system

Ym(t) = = (@m = kmbo(t)) ym(2) + kmao(t) r(2) (2.0.34)
so that the nominal values of ao, by are
* kp . am — ap
ay = 7(; bo = km (2.0.35)

Clearly, knowledge of ag, by is equivalent to knowledge of a,, k,. We
define the following vectors

ao)] . |ao (t)
o) = [bo(t)] “ el MO [yrm(t)] (2.0.36)

and the identification error

el(t) = ym(t) - Yp(t) (2.0.37)
so that -
e\(t) = = (@nkmbo))ym(t) + kmaot)r(t) + a,y,(t) -k, r(t)
= —apeyt) + kn((aot) - ag)r(t) +,(\bo(t)‘"b5)Yp(f)
= —apme(t) + km@T@)-0")W(2) 'LW (2.0.38)
In short
et) = M [(oT(z)-o‘T)w(z)] (2.0.39)

which may be compared to the linear error equation (2.0.15). This
equation is still linear, but it involves the dynamics of the transfer func-
tion M. Can we still find update algorithms for 6(¢), based on the new

error equation? The answer is yes; but the approach is now based on the
Lyapunov function
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elz km »T -
vie;,0) = 5> 7(07—0 Y0 -6%) (2.0.40)
so that
. " T T T 7T,
V = —aue +kye (@ -0 )w+ Kk, (0" -0)6 (2.0.41)
By letting
§ = —ew (2.0.42)
it follows that
V = —auel <0 (2.0.43)

Therefore, e; and 8 are bounded. It may also be shown that ¢; -0 as
{ - oo and that 6 — 6" under further conditions on the reference input.

The resulting update law (2.0.42) is identical to the gradient algo-
rithm (2.0.17) obtained for the linear error equation (2.0.15). In this
case however, it is not the gradient algorithm for (2.0.39), due to the
presence of the transfer function . The motivation for the algorithm
lies only in the Lyapunov stability proof.

Note that the derivation requires a,, > 0 (in (2.0.43)) and k,,,> 0 (in
(2.0.40)). In general, the conditions to be satisfied by M are that

« M is stable

« Re (M (jw)) > 0 for all w=0.

These are very important conditions in adaptive control, defining strictly
positive real transfer functions. They will be discussed in greater detail
later in this chapter.

2.1 IDENTIFICATION PROBLEM

We now consider the general identification problem for single-input
single-output (SISO) linear time invariant (LTI) systems. But first, a few
definitions. A polynomial in s is called monic if the coefficient of the
highest power in s is 1 and Hurwitz if its roots lie in the open left-half
plane. Rational transfer functions are called stable if their denominator
polynomial is Hurwitz and minimum phase if their numerator polyno-
mial is Hurwitz. The relative degree of a transfer function is by
definition the difference between the degrees of the denominator and
numerator polynomials. A rational transfer function is called proper if
its relative degree is at least 0 and strictly proper if its relative degree is
at least 1.
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In this chapter, we consider the identification problem of SISO LTI
systems, given the following assumptions.

Assumptions

(A1) Plant Assumptions
The plant is a SISO LTI system, described by a transfer func-

tion
2 by -k, D) @.1.1)
F(s) dy(s)

where 7(s) and y,(s) are the Laplace transforms of ttge input

and output of the plant, respectively, and 7i,(s) and d,(s) are

monic, coprime polynomials of degrees m and n respectively.

m is unknown, but the plant is strictly proper (m <n-1).
(A2) Reference Input Assumptions

The input 7(.) is piecewise continuous and bounded on IR ,.

The objective of the identifier is to obtain estimates of k, and of the
coefficients of the polynomials 7i,(s) and d,(s) from measurements of the

input r(¢) and output y,(¢) only. Note that we do not assume that Pis
stable.

2.2 IDENTIFIER STRUCTURE

The identifier structure presented in this section is generally known as an
equation error identifier. (cf. Ljung & Soderstrom {1983]). The transfer

function P (s) can be explicitly written as

5 . n-t ... g

Vp(s) - Bis) = na,,s n‘+] o

7(s) s+ Bys + 0+ 6
where the 2n coefficients «;...«, and B;...8, are unknown. This
expression is a parameterization of the unknown plant, that is a model
in which only a finite number of parameters are to be determined. For
identification purposes, it is convenient to find an expression which
depends linearly on the unknown parameters. For example, the expres-
sion

(2.2.1)

S"Pys) = (ans"THH e+ o) F(s)

= (Bns" " B1) D) (2.2.2)

is linear in the parameters «; and 3;. However, it would require explicit
differentiations to be implemented. To avoid this problem, we
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introduce a monic nth order polynomial denoted )((s) =
"+ X, 8" "V + - 4+ N, This polynomial is assumed to be Hurwitz but
is otherwise arbitrary. Then, using (2.1.1)
NSIDs) = k)P (s) + (X(5) = dy(s)) Fols) (2.2.3)
or, with (2.2.1)
. ays" by
Vp(s) = " r(s)
A(s)
Ay =Buys" Lt (A -
n ( n 6n) A ( i ﬂl) yAp(s) (224)
A(s)

This expression is a new parameterization of the plant. Let
a'(s) = aps" '+ v = kyAys)
BUs) = M=Ba)s" '+ (=B = Ns)-dy(s)  (2.2.5)

so that the new representation of the plant can be written

Ppls) = 4B pgyy ) 5 o (2.2.6)
A(s) A(S)
The transfer function from r -y, is given by
W) %) (2.2.7)

) Ns)-b7(s)
and it is easy to verify that this transfer function is P(s) when a°(s) and
b* (s) are given by (2.2.5). Further, this choice is unique when 7,(s) and
d p(s) are coprime: indeed, suppose that there exist 4 "(s)+ 5a(s)

b (s)+5b (s), such that the transfer function was still ky,h (s)/d (s).
The following equation would then have to be satisfied

bacs) -k ﬁp( s)

ob (s) d »(5)
However, equation (2.2.8) has no solution since the degree of d,, is n,
and 7, d are coprime, while the degree of 8b is at most n — I.
State-Space Realization

A state-space realization of the foregoing representation can be found by
choosing A € R"™", b, € R" in controllable canonical form, such that

= - P(s) (2.2.8)
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[0 10 0 | 0
0 01 0
A = L. 0 b)\ =
0O 0 - | 0
Y W 1
1
§
(sT—A)'by = — j (2.2.9)
A(s) :
Sn~1
In analogy with (2.2.5), define
a* = (ay, ..., ) b* = (M -8By, ..., M- By (2.2.10)
and the vectors w{'(1), wi?(1) € R”
wih = AwlD + byr
W = Aw? + by, (2.2.11)
with initial conditions w{"(0), w{?(0). In Laplace transforms
wis) = (1 = A)TIBF(s) + (s - A) ' wiD(0)
W) = (T =87 0B(s) + (s - 4) " wP0)  (2.2.12)
With this notation, the description of the plant (2.2.6) becomes
Pp(s) = a” wis) + b wi(s) (2.2.13)

and, since the plant parameters a*, b* are constant, the same expression
is valid in the time domain

v(t) = @ wih(0) + b wdr) = 6% wy(1) (2.2.14)
where
0*" = (a*,b* )e R
wy)' 1= (W (1), W' (1)) e R (2.2.15)



56 Identification Chapter 2

Equations (2.2.10)-(2.2.14) define a realization of the new parame-
terization. The vector w, is the generalized state of the plant and has
dimension 2n. Therefore, the realization of P(s) is not minimal, but the
unobservable modes are those of A (s) and are all stable.

The vector 6° is a vector of unknown parameters related linearly to
the original plant parameters «; , 8; by (2.2.10)-(2.2.15). Knowledge of a
set of parameters is equivalent to the knowledge of the other and each
corresponds to one of the (equivalent) parameterizations. In the last
form, however, the plant output depends linearly on the unknown
parameters, so that standard identification algorithms can be used. This
plant parameterization is represented in Figure 2.1.

Yp

(sl-A" b J

A

—— (sl—/\)‘1bA

Figure 2.1: Plant Parameterization

Identifier Structure

The purpose of the identifier is to produce a recursive estimate 6(¢) of

the nominal parameter 6*. Since r and y, are available, we define the
observer

wh = AwD 4 by

W = Aw@ 4 by, (2.2.16)
to reconstruct the states of the plant. The initial conditions in (2.2.16)
are arbitrary. We also define the identifier signals
67(t) = (@T@), bT(t)) e R*
wl(t) = w'(r), w?'(1)) e R¥" (2.2.17)

By (2.2.11) and (2.2.16), the observer error w(t) ~ w,(t) decays exponen-
tially to zero, even when the plant is unstable. We note that the general-
ized state of the plant wy(¢) is such that it can be reconstructed from
available signals, without knowledge of the plant parameters.

The plant output can be written
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vpt) =87 w(t) + (1) (2.2.18)

where the signal «(f) is to remind one of the presence of an additive
exponentially decaying term, given here by

et) = 0‘T(wp(t)—w(t)) (2.2.19)

This term is due to the initial conditions in the observer. We will first
neglect the presence of the €(¢) term but later show that it does not affect
the properties of the identifier.

In analogy with the expression of the plant output, the output of
the identifier is defined to be

yi(t) = 6T()w(t) eR (2.2.20)
We also define the parameter error
(1) = 6(2)-6" e R* (2.2.21)
and the identifier error
e(t) = yi(t) - y(t) = dT(O)w(1) + 1) (2.2.22)

These signals will be used by the identification algorithm, and are
represented in Figure 2.2.

r Y,
> a(s) P
Y
A1 A1 e
(sl Il\‘) b)‘ (s1-A) b)\ 1
W . .
w(1) . w2 .
a b
Y
>

Figure 2.2: Identifier Structure

2.3 LINEAR ERROR EQUATION AND IDENTIFICATION ALGO-
RITHMS

Many identification algorithms (¢f. Eykhoff [1974], Ljung & Soderstrom
[1983]) rely on a linear expression of the form obtained above, that is
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v(t) = 67 w(t) 2.3.1)

where y,(¢), w(t) are known signals and §* is unknown. The vector w(t)
is usually called the regressor vector. With the expression of y,(f) is
associated the standard linear error equation

ei(t) = oT()W() (2.3.2)

We arbitrarily separated the identifier into an identifier structure
and an identification algorithm. The identifier structure constructs the
regressor w and other signals, related by the identifier error equation.
The identification algorithm is defined by a differential equation, called
the update law, of the form

6 = ¢ = F(yy,e1,0,w) (2.3.3)

where F is a causal operator explicitly independent of 6*, which defines
the evolution of the identifier parameter 6.

2.3.1 Gradient Algorithms
The update law

§ = -geyw g>0 (2.3.4)
defines the standard gradient algorithm. The right-hand side is propor-

tional to the gradient of the output error squared, viewed as a function
of 8, that is

%(ef(ﬂ)) - 2ew (2.3.5)

This update law can thus be seen as a steepest descent method. The

parameter g is a fixed, strictly positive gain called the adapration gain,
and it allows us to vary the rate of adaptation of the parameters. The
initial condition 6(0) is arbitrary, but it can be chosen to take any a
priori knowledge of the plant parameters into account.

An alternative to this algorithm is the normalized gradient algo-
rithm

: e w
b = ~g————— g,v>0 (2.3.6)
l+yw'w
where g and «v are constants. This update law is equivalent to the previ-
ous update law, with w replaced by w/ V| +ywTw in b = —gww'o.
The new regressor is thus a normalized form of w. The right-hand side
of the differential equation (2.3.6) is globally Lipschitz in ¢ (using
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(2.3.2)), even when w is unbounded.

When the nominal parameter 6° is known a priori to lie in a set
® ¢ IR?" (which we will assume to be closed, convex and delimited by a
smooth boundary), it is useful to modify the update law to take this
information into account. For example, the normalized gradient algo-
rithm with projection is defined by

ew

§ = ~g——— 8 € int(6)
l+yw'w :
ey w . T
= Prl-g if 8 ¢ 90 and ew'l,, <0  (2.3.7)
l+ywlw

where int© and 8@ denote the interior and boundary of ©, Pr (z) denotes
the projection of the vector z onto the hyperplane tangent to 60 at 6 and
8perp denotes the unit vector perpendicular to the hyperplane, pointing
outward.

A frequent example of projection occurs when a priori bounds

pi,pi" are known, that is
6;e[pi,p'l (2.3.8)
The update law is then modified to

6, =0 if 6 = p  and ;<0

or 6; = p and 6, >0 (2.3.9)

The gradient algorithms can be used to identify the plapt parame-
ters with the identifier structure described in Section 2.2, Usmg the nor-
malized gradient algorithm, for example, the implementation is as fol-
lows.

Identifier with Normalized Gradient Algorithm—Implementation
Assumptions
(A1)-(A2)
Data
n
Input
r(t), yp(t) e R
Output :
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(t), yi(t) e R
Internal Signals
w(t) e R*” (w(2), w®(r) e R")
0(t) e R*(a(t), b(t) e R")
yi(t), el(t) e R
Initial conditions are arbitrary.
Design Parameters
Choose
« AeR"*" b, e R" in controllable canonical form such that
det(s/ - A) = X(s) is Hurwitz.
e g,v>0.
Identifier Structure

w = Aw® 4 by r

w® = Aw® 1 by,

07 = (a7, bT) estimates of («y, . . ., Ay, M =81, ..., A =8y
wT = (w7 @7y
yi=0"w
eL=Yi—Yp
Normalized Gradient Algorithm
0~ B e w
&% ywTw
O
Comment

We lea\fe it to'the reader to check that other choices of (A, b)) are possi-
ble, with minor adjustments. Indeed, all that is required for

identification is that there exist unique a*, b* in the corresponding
parameterization. Alternate choices of (s/ — A)~ b, include
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1 T
s+a
(sI =A) by = : a>0
1
| (s + a)" |
and
b,
S+a;
(sT -A) b = aj#a;>0,b;#0
by
| (s+a,) |

2.3.2 Least-Squares Algorithms

Least-squares (LS) algorithms can be derived by several methods. One
approach was presented in the introduction. Another interesting
approach is to connect the parameter identification problem to the sto-
chastic state estimation problem of a linear time varying system. The

parameter 6* can be considered to be the unknown state of the system

6°(t) = 0 (2.3.10)

with output

yo(t) = wl(2)6*(t) (2.3.11)

Assuming that the right-hand sides of (2.3.10)-(2.3.11) are per-
turbed by zero mean white gaussian noises of spectral intensities

Q € R¥**2" and 1/g e IR, respectively, the least-squares estimator is
the so-called Kalman filter (Kalman & Bucy [1961])

0 -gPwe
P =Q-gPwwlP

Q.,8>0 (2.3.12)

Q and g are fixed design parameters of the algorithm. The update
law for @ is very similar to the gradient update law, with the presence of
the so-called correlation term we;. The matrix P is called the



62 Identification Chapter 2
covariance matrix and acts in the 6 update law as a time-varying, direc-
tional adaptation gain. The covariance update law in (2.3.12) is called
the covariance propagation equation. The initial conditions are arbitrary,
except that P(0)>0. P(0) is usually chosen to reflect the confidence in
the initial estimate 6(0).

In the identification literature, the least-squares algorithm referred
to is usually the algorithm with Q = 0, since the parameter 6" is
assumed to be constant. The covariance propagation equation is then
replaced by

dP

“oo - T
7 gPww'P  or

where g is a constant.

The new expression for P ~! shows that dP ~!/dt = 0, so that P!
may grow without bound. Then P will become arbitrarily small in some
directions and the adaptation of the parameters in those directions
becomes very slow. This so-called covariance wind-up problem can be
prevented using the least-squares with forgetting factor algorithm, defined
by

- T

7 = gww g>0 (2.3.13)

4ap = —g(-\P + PwwTP)
dt
-1
or _.—d(};t ) . g(-AP l+wnwT) X, g>0 (2.3.14)

Another possible remedy is the covariance resetting, where P is
reset to a predetermined positive definite value, whenever A ,i(P) falls
under some threshold.

The normalized least-squares algorithm is defined (cf. Goodwin &
Mayne [1987]) by

Pwe,

f = -g—o—o
& l+ywlPw g7 >0
ap _ _ PwwlP
dt l+ywlPw
d(P~h wwT
0 = 2.3.1
S? E v wI (P Ty (2.3.13)

Again g, v are fixed parameters and P(0) > 0. The same modifications
can also be made to avoid covariance wind-up.

The least-squares algorithms are somewhat more complicated to
implement but are found in practice to have faster convergence
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properties.

Identifier with Normalized LS Algorithm and Covariance Resetting—
Implementation
The algorithm is the same as for the normalized gradient algorithm,
except
Internal Signals
In addition
P([) € 1R2nx2n
Design Parameters
Choose, in addition

. ko > k| >0
Normalized LS Algorithm with Covariance Resetting
. Pwe, : PwwlP
= —fp ——— P = g YW °
g g t+ywlPw gl+7wTPw

P(0) = P(t,") = kol >0 wheret, = {t|Amin(P(t)) <k}
a

2.4 PROPERTIES OF THE IDENTIFICATION ALGORITHMS—
IDENTIFIER STABILITY

2.4.1 Gradient Algorithms
In this section, we establish properties of the gradient algorithm

b =0 = —-geyw g>0 (2.4.1)
and the normalized gradient algorithm
6 =6 = —g—l%g-i; gy>0 (242
assuming the linear error equation
ep = ¢Tw - (2.4.3)

Theorems 2.4.1-2.4.4 establish general properties of the gradient
algorithms and concern solutions of the differential equations (2.4.1)-
(2.4.2), with—el defined by (2.4.3). The properties do not require that the
vector w originates from the identifier described in Section 2.2, but only
require that w be a piecewise continuous function of time, to guarantee
the existence of the solutions. The theorems are also valid for vectors w
of any dimension, not necessarily even.
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Theorem 2.4.1 Linear Error Equation with Gradient Algorithm
Consider the linear error equation (2.4.3), together with the gradient
algorithm (2.4.1). Let w:IR, — IR?" be piecewise continuous.
Then (a) e, € L,

(b) o€ L

Proof of Theorem 2.4.1
The differential equation describing ¢ is
¢ = -gwwly

Let the Lyapunov function v = ¢7¢ so that the derivative along the tra-
jectories is given by

v o= —2g(¢pTw)? = -2ge} <0
Hence, 0 < v(¢) < v(0) for all ¢t = 0, so that v, ¢ € Loo. Since v is a
positive, monotonically decreasing function, the limit v(oo) is well-

defined and |
— 00 o0
2—3 @J;vdt=£e%dt<oo

thatise; € L,., O

Theorem 2.4.2 Linear Error Equation with Normalized Gradient Algo-
rithm

Consider the linear error equation (2.4.3) together with the normalized
gradient algorithm (2.4.2). Let w : R, — IR?" be piecewise continuous.
€y
Vi+ywTw

®) ¢eLy,bdelNL

Then (a) € L, nLoo

T
© B=—22Y  cr,nL
L+l well o ? *®
Proof of Theorem 2.4.2
Let v = ¢ ¢, so that
2 2
.. . B
l+ywTw

Hence, 0 < v(t) < v(0) for all t =20, so that v, ¢, er/Vi+ywlw,
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BelL,. Using the fact that x/l1+x <1 for all x =0, we get that
l¢| < (g/v)|¢|, and b € L_ . Since v is a positive, monctonically
decreasing function, the limit v(oo) is well defined and

oo
- [vd
!;vt<oo

implies that ¢;/V] + ywTw € L. Note that
€l Vi+ywlw
V1+ywTw 1.‘-“w’”oo

where the first term is in L, and the second in L _, so that 8 € L,.
Since

8 =

it follows that ¢ € L, O

Effect of Initial Conditions and Projection

In the derivation of the linear error equation in Section 2.2, we found
exponentially decaying terms, such that (2.4.3) is replaced by

elt) = ¢T()w() + ) (2.4.4)
where ¢() is an exponentially decaying term due to the initial conditions

in the observer.

It may also be useful, or necessary, to replace the gradient algorithms by
the algorithms with projection. The following theorem asserts that these
modifications do not affect the previous results.

Theorem 2.4.3 Effect of Initial Conditions and Projection

If the linear error equation (2.4.3) is replaced by (2.4.4) and/or the
gradient algorithms are replaced by the gradient algorithms with
projection,

Then  the conclusions of theorems 2.4.1 and 2.4.2 are valid.

Proof of Theorem 2.4.3
(a) Effect of initial conditions )
Modify the Lyapunov function to
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[0 o]

v = ¢Te + g eX(r)dr
)

Note that the additional term is bounded and tends to zero as ¢ tends to
infinity. Consider first the gradient algorithm (2.4.1), so that

—2g(d>Tw)2 - 2g(¢Tw)e - % €

v

% 2 <0 (2.4.5)

The proof can be completed as in theorem 2.4.1, noting that
e € LyNL_, and similarly for theorem 2.4.2.

(b) Effect of projection

Denote by z the right-hand side of the update law (2.4.1) or (2.4.2).
When 6 € 40 and z is directed outside 8, z is replaced by Pr(z) in the
update law. Note that it is sufficient to prove that the derivative of the
Lyapunov function on the boundary is less than or equal to its value
with the original differential equation. Therefore, denote by Zperp the
component of z perpendicular to the tangent plane at #, so that
z = Pr(z) + zp,. Since 6° € ® and © is convex, (67 -6") z,,
= ¢' 2,4, 2 0. Using the Lyapunov function v = ¢” ¢, we find that, for
the original differential equation, v = 2¢7z. For the differential equa-
tion with projection, vp, = 2¢"Pr(z) = v-2¢"" z,,, so that vp, < v,

-2g(¢Tw +

fI

The proof can again be completed as before. 0O

2.4.2 Least-Squares Algorithms

We now turn to the normalized LS algorithm with covariance resetting,
defined by the following update law

. . P W ey
¢ =0 = -g —o g,v>0 (2.4.6)
l+ywiPw
and a discontinuous covariance propagation
dP PwwTP d(P") ww’
- = —g—————  or =
dt l+ywlPw dt L+ywl(P~-H-tw
P(0) = P(4) = koI >0
where 1, = {({|Amin(P(1)) < k| <kg). (2.4.7)

This update law has similar properties as the normalized gradient update
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law, as stated in the following theorem.

Theorem 2.44 Linear Error Equation with Normalized LS Algorithm
and Covariance Resetting ,

Consider the linear error equation (2.4.3), together with the normalized
LS algorithm with covariance resetting (2.4.6)-(2.4.7).

Let w : R, — IR?*" be piecewise continuous.
e

a) —_‘l:

\Fl+7wTP W

(b) ¢ e L,¢ e LyNL_

_¢Tw

L+l well o

Then  ( e Ly,NL

(C) g = € L2 N Lw
Proof of Theorem 2.4.4

The covariance matrix P is a discontinuous function of time. Between
discontinuities, the evolution is described by the differential equation in

(2.4.7). We note that d/dt P~' > 0, so that P ~'(¢,) - P ~'(t5) = 0 for all
{1 21,20 between covariance resettings. At the resettings,
P (') = kg 'I,sothat P~'(t) = P~ '(ty) = kg 'I, forall 1 > 0.

On the other hand, due to the resetting, P(t) = kI for all t = 0, so
that

kol = P(t) = kI ki'1 =2 P Yt) =2 kg'I (2.4.8)

where we used results of Section 1.3.
Note that the interval between resettings is bounded below, since

4P D). [w|?
dt B g1+7)\min(P)|w|2

<& 1prpY (2.4.9)
Y

where we used the fact that x/1 +x <1 for all x = 0. Thus, the
differential equation governing P ! is globally Lipschitz. It also follows
that {¢,} is a set of measure zero.

Let now v = ¢/ P~ !¢, so that
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between resettings. At the points of discontinuity of P,

Vi) =v(t) = TP - PN < 0

It follows that OSy(t)Sv(O), for all ¢ 20, and, from the bounds on P,
we deduce that ¢,¢,8 € Loo. Also

oo

. . . €]
- f vdt < oo implies ———— ¢ L,
0 V1+ywlPw
Note that
7w _ o’w V1+yw P w (2.4.10)
L+l will o VieywTpw  1HIwl o o

. e
¢ = -¢ : Pw (2.4.11)

Vi+ wTPw  Vi+ ywT Pw
where the first terms in the right-hand sides of (2.4.10)-(2.4.11) are in
L, and the last terms are bounded. The conclusions follow from this
observation. [

Comments

a) Theorems 2.4.1-2.4.4 state general properties of differential equa-
tions arising from the identification algorithms described in Section 2.3.
The theorems can be directly applied to the identifier with the structure
described in Section 2.2, and the results interpreted in terms of the
parameter error ¢ and the identifier error e,.

b)  The conclusions of theorems 2.4.1-2.4.4 may appear somewhat
weak, since none of the errors involved actually converge to zero. The
reader should note however that the conclusions are valid under very
general conditions regarding the input signal w. In particular, no
assumption is made on the boundedness or on the differentiability of w.
¢)  The conclusions of theorem 2.4.2 can be interpreted in the follow-
ing way. The function §(¢) is defined by

BT (1) w(t) ey(t)
8e) = _ 4.
Trllwll, ~ T+iwi (2412

so that

lex)] = [¢T(OwO) =[O wll o +BO)| (2.4.13)

The purpose of the identification algorithms is to reduce the parameter
error ¢ to zero or at least the error e;. In (2.4.12), 8 can be interpreted
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as a normalized error, that is e, normalized by || w,|| . In (2.4.13),[6[
can be interpreted as the gain from w to ¢Tw. From theorem 2.4.2, this
gain is guaranteed to become small as ¢ — oo in an L; sense.

2.4.3 Stability of the Identifier

We are not guaranteed the convergence of the parameter error ¢ to zero.
Since only one output y, is measured to determine a vector of unknown
parameters, some additional condition on the signal w' (see Section 2.5)
must be satisfied in order to guarantee parameter convergence. In fact,
we are not even guaranteed the convergence of the identifier error e; to
zero. This can be obtained under the following additional assumption

(A3) Bounded Output Assumption
Assume that the plant is either stable or located in a control

loop such that r and y, are bounded.

Theorem 2.4.5 Stability of the Identifier
Consider the identification problem, with (A1)-(A3), the identifier struc-
ture of Section 2.2 and the gradient algorithms (2.4.1), (2.4.2) or the nor-
malized LS algorithm with covariance resetting (2.4.6), (2.4.7).
Then  the output error e € L,NL_, e; - 0 as ¢t - oo and the
parameter error q&,é) e L "
The derivative of the parameter error 6 e LN Loo and

¢'>—>Oast—>oo‘

Proof of Theorem 2.4.5

Since r and y, are bounded, it follows from (2.2.16), (2.2.17), and the
stability of A, that w and w are bounded. By theorems 2.4.1-2.4.4, ¢
and ¢ are bounded so that e, and é, are bounded. Also e¢; € L,, and
by corollary 1.2.2, e;, é; € L and e; € L, implies that e; - 0 as
t - 0o. Similar conclusions follow directly for ¢. O

Regular Signals

Theorem 2.4.5 relies on the boundedness of w, w, guaranteed by (A3). It
is of interest to relax this condition and to replace it by a weaker condi-
tion. We will present such a result using a regularity condition on the
regressor w. This condition guarantees a certain degree of smoothness
of the signal w and seems to be,fundamental in excluding pathological
signals in the course of the proofs presented in this book. In discrete
time, such a condition is not necessary, because it is automatically
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verified. The definition presented here corresponds to a definition in
Narendra, Lin, & Valavani [1980].

Definition  Regular Signals
Letz: IR, - IR" suchthatz,z ¢ L_ .
z is called regular if, for some k|, k; = 0

[2(t) < Ky z ”oo + ky forallt = 0 (2.4.14)

The class of regular signals includes bounded signals with bounded
derivatives, but also unbounded signals (e.g., e'). It typically excludes

signals with ““increasing frequency” such as sin(e'). We will also derive
some properties of regular signals in Chapter 3. Note that it will be
sufficient for (2.4.14) to hold everywhere except on a set of measure
zero. Therefore, piecewise differentiable signals can also be considered.

This definition allows us to state the following theorem, extending
the properties derived in theorems 2.4.2-2.4.4 to the case when w is reg-
ular.

Proposition 2.4.6
Let ¢, w : IR, — IR?*" be such that w,w € L, and b,b € L.
If (a) w is regular
R
b) = —2¥ <1,
L+ well o

Then B,8 € Loo,andB—»Oast - 0D.

Proof of Proposition 2.4.6

Clearly, 8 € Loo and since ﬂ,B € Loo, 8 € L, implies that 3 — 0 as
t - oo (corollary 1.2.2), we are left to show that 8 € L.
We have that

181 s |67 e |+ |07 |

L+l well o L+ well o

oTw d/d| wll ) I

Lllwill gy T+l Wl o

(2.4.15)

The first and second terms are bounded, since d),d; € Loo and w is reg-
ular. On the other hand
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d d
|Gl | = |4 sup o

IA

% |w(t)| | < I—ddT wi(t) l (2.4.16)

The regularity assumption then implies that the last term in (2.4.15) is
bounded, and hence 8 € Loo. 0

Stability of the Identifier with Unstable Plant
Proposition 2.4.6 shows that when w is possibly unbounded, but
nevertheless satisfies the regularity condition, the relative error
e/ 1+l w| ., or gain from w—¢"w tends to zero as - co.

The conclusions of proposition 2.4.6 are useful in proving stability
in adaptive control, where the boundedness of the regressor w is not
guaranteed a priori. In the identification problem, we are now allowed

to consider the case of an unstable plant with bounded input, that is, to
relax assumption (A3).

Theorem 2.4.7  Stability of the Identifier—Unstable Plant

Consider the identification problem with (Al) and (A2), the identifier
structure of Section 2.2 and the normalized gradient algorithm (2.4.2), or
the normalized LS with covariance resetting (2.4.6), (2.4.7).

o' w

Then  The normalized error 8 = —————
L+ well o

eL,NL_, g8 — 0 as
! > oo andq&,d; € Loo.

Proof of Theorem 2.4.7

It suffices to show that w is regular, to apply theorem 2.4.2 or 2.4.4 fol-
lowed by proposition 2.4.6. Combining (2.2.16)-(2.2.18), it follows that

A 0 by
W) = ) L wor+ 1) (2.4.17)
b)\a‘ A+ b)\b‘ 0

Since r is bounded by (A2), (2.4.17) shows that w is regular. 0O

2.5 PERSISTENT EXCITATION AND EXPONENTIAL PARAME-
TER CONVERGENCE

In the previous section, we derived results on the stability of the
identifiers and on the convergence of the output error ¢, = 6/ w — 9w =
¢'w to zero. We are now concerned with the convergence of the
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parameter § to its nominal value 6°, that is the convergence of the
parameter error ¢ to zero.

The convergence of the identification algorithms is related to the
asymptotic stability of the differential equation

o(t) = -gwwT)e@t) g>0 2.5.1)
which is of the form

d(t) = —A(t)(t) (2.5.2)

where 4(¢) e R¥"*?" is a positive semidefinite matrix for all z. Using
the Lyapunov function v = ¢7¢

v=-¢T(A4+47)¢

When 4(¢) is uniformly positive definite, with Apin (4 +47) = 2, then
v < -2 av, which implies that system (2.5.2) is exponentially stable with
rate «. For the original differential equation (2.5.1), such is never the
case, however, since at any instant the matrix w(z)w7(¢) is of rank 1. In
fact, any vector ¢ perpendicular to w lies in the null space of ww?’ and
results in ¢> = 0. However, since w varies with time, we can expect ¢ to

still converge to 0 if w completely spans IR?" as ¢ varies. This leads
naturally to the following definition. For consistency, the dimension of
w is assumed to be 2, but it is in fact arbitrary.

Definition Persistency of Excitation (PE)

A vector w : IR, — R?" is persistently exciting (PE) if there exist a;, ay,
& > 0 such that
to+9d
al 2 [ w@wl(ndr 2 oI foralltg>0 (2.5.3)
o
Although the matrix w(r) w7 (7) is singular for all 7, the PE condi-
tion requires that w rotates sufficiently in space that the integral of the
matrix w(r)w7(7) is uniformly positive definite over any interval of
some length é.
The condition has another interpretation, by reexpressing the PE
condition in scalar form
to+0

a2 [WI@xPdr 2 ap  forallpz0,|x] =1 (2.5.4)
o

Section 2.5 Persistent Excitation & Exponential Convergence 73

which appears as a condition on the energy of w in all directions.
With this, we establish the following convergence theorem.

Theorem 2.5.1 PE and Exponential Stability

Let w : R, — IR?" be piecewise continuous.
If w is PE
Then  (2.5.1) is globally exponentially stable

Comments

The proof of theorem 2.5.1 can be found in various places in the litera-
ture (Sondhi & Mitra [1976], Morgan & Narendra [1977a&b], Anderson
[1977], Kreisselmeier [1977]). The proof by Anderson has the advantage
of leading to interesting interpretations, while those by Sondhi & Mitra
and Kreisselmeier give estimates of the convergence rates.

The idea of the proof of exponential stability by Anderson [1977] is
to note that the PE condition is a UCO condition on the system

6*(t) = 0
) = wi@)e' () (2.5.5)

which is the system described earlier in the context of the least-squares
identification algorithms (cf. (2.3.10), (2.3.11)). We recall that the
identification problem is equivalent to the state estimation problem for
the system described by (2.5.5). We now find that the persistency of
excitation condition, which turns out to be an identifiability condition, is
equivalent to a uniform complete observability condition on system
(2.5.5).

The proof of theorem 2.5.1 uses the following lemma by Anderson
& Moore [1969], which states that the UCO of the system {C, 4] is
equivalent to the UCO of the system with output injection [C, 4 + KC].
The proof of the lemma is given in the Appendix. It is an alternate
proof to the original proof by Anderson & Moore and relates the eigen-
values of the associated observability grammians, thereby leading to esti-
mates of the convergence rates in the proof of theorem 2.5.1 given after-
ward.

Lemma 2.5.2 Uniform Complete Observability Under Output Injection
Assume that, for all § > 0, there exists k; > 0 such that, for all 5 = 0

to+6 !

[ HK@2dr < ks (2.5.6)
o
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Then  the system [C, 4] is uniformly completely observable if and
only if the system [C, A + KC] is uniformly completely observ-
able.

Moreover, if the observability grammian of the system C
satisfies

B2 = N(tg,t0+08) 2 81

then the observability grammian of the system [4 + KC\C

satisfies these inequalities with identical § and

By = B1/(1+VksB,)* (2.5.7)
By = Brexp(ksB,) (2.5.8)

Proof of Lemma 2.5.2 in Appendix.

Proof of Theorem 2.5.1

Let v = ¢7 ¢, so that v
(2.5.1). Forallt;=0

o+ o+8

fvdf -2g f(wT(T)qs(T))de (2.5.9)
o

o

By the PE assumption, the system [0)w7(z)] is UCO. U output
injection with K(f) = - gw(t), the sysiem becomes [Zgw(t)wT(¢?)

wT(1)], with

]

-2¢(wT¢)? <0 along the trajectories of

lo+6

[ lew(r)| 2dr
to

[

ks

o+

gitr jw(f)wT(f)df < 2ng?B, (2.5.10)

to

]

where 27 is the dimension of w. By lemma 2.5.2, the system with out-
put injection is UCO. Therefore, for all £y = 0

to+d

. - 28p
pdr £ ———=1 1 4(10)]? (2.5.11)
th; (1+V2ngp,)? | 9000

Exponential convergence then follows from theorem 1.5.2. O
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Exponential Convergence of the Identifier
Theorem 2.5.1 can be applied to the identification problem as follows.

Theorem 2.5.3 Exponential Convergence of the Identifier

Consider the identification problem with assumptions (Al)-(A3), the

identifier structure of Section 2.2 and the gradient algorithms (2.4.1) or

(2.4.2), or the normalized LS algorithm with covariance resetting (2.4.6),

2.4.7).

If w is PE

Then  the identifier parameter 6 converges to the nominal parameter
6* exponentially fast.

Proof of Theorem 2.5.3

This theorem follows directly from theorem 2.5.1. Note that when w is
bounded, w PE is equivalent to w/V| + y wTy PE, so that the exponen-
tial convergence is guaranteed for both gradient update laws. The
bounds on P obtained in the proof of theorem 2.4.4 allow us to extend
the proof of exponential convergence to the LS algorithm. O

Exponential Convergence Rates

Estimates of the convergence rates can be found from the results in the
proof of theorem 2.5.1. For the standard gradient algorithm (2.4.1), for
example, the convergence rate is given by

1
1
a = '-2-3'111 | 2ga; (2.5.12)

) (1 +V2nga, )?

where g is the adaptation gain, «;, «;, and § come from the PE
definition (2.5.3) and # is the order of the plant. The influence of some
design parameters can be studied with this relationship. The constants
ay, a; and & depend in a complex manner on the input signal r and on
the plant being identified. However, if r is multiplied by 2, then «y, a,
are multiplied by 4. In the limiting case when the adaptation gain g or
the reference input r is made small, the rate of convergence a - g «/6.
In this case, the convergence rate is proportional to the adaptation gain
g and to the lower bound in the PE condition. Through the PE condi-
tion, it is also proportional to the square of the amplitude of the refer-
ence input r. This result will be found again in Chapter 4, using averag-
ing techniques.



76 Identification Chapter 2

When the adaptation gain and reference input get sufficiently large,
this approximation is no longer valid and (2.5.12) shows that above
some level, the convergence rate estimate saturates and even decreases
(cf. Sondhi & Mitra [1976]).

It is also possible to show that the presence of the exponentially
decaying terms due to initial conditions in the observer do not affect the
exponential stability of the system. The rate of convergence will, how-
ever, be as found previously only if the rate of decay of the transients is
faster than the rate of convergence of the algorithm (cf. Kreisselmeier
[1977]).

2.6 MODEL REFERENCE IDENTIFIERS—SPR ERROR EQUA-
TION

2.6.1 Model Reference Identifiers

In Section 2.2, we presented an identifier structure which led to a linear
error equation. This structure was based on a convenient reparametriza-
tion of the plant. It is worth pointing out that there exist several ways to
reparametrize the plant and many error equations that may be used for
identification. The scheme discussed in Sections 2.2-2.3 is generally
known as an equation error identifier. Landau [1979] discussed an
interesting alternative called the output error approach. The resulting
scheme has significant advantages in terms of noise bias, although its sta-
bility may only be guaranteed from prior knowledge about the plant.
Another approach, which we will call the model reference approach (cf.
Luders & Narendra [1973]) is discussed now. We start from an arbitrary
reference model, with transfer function M satisfying the following condi-
tions
(A3) Reference Model Assumptions

The reference model is a SISO LTI system, described by a

transfer function

H(s) = Kyl 2.6.1)
dm(s)
where A,,(s), (3m(s) are monic, coprime polynomials of degrees /
and k < n, respectively. Assume that the reference model is
strictly proper, but that its relative degree is no greater than the
relative degree of the plant, that is | Sk -/ <n-m. The
reference model is stable, i.e. 3,,, is Hurwitz.

A simple choice of M is 1/s+ 1. As previously, the plant is assumed to
satisfy assumptions (A1) and (A2) (cf. Section 2.1).
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Consider now the representation of the plant of Figure 2.3.

T
——— ]

Yo

*

>>]92
"
=z>

»lo2

Figure 2.3: Model Reference Reparameterization

Although we will have to show (see proposition 2.6.1) that the plant can
indeed be represented this way, we may already interpret it as being
obtained by modifying the reference model through feedback and feed-
forward action, so as to match the plant transfer function. Alternatively,
we might interpret this structure as a more general parametrization of
the plant than the one in Figure 2.1. In that case, the model transfer
function was simply the identity.

The polynomial X is a monic, Hurwitz polynomial of degree n - 1.
It serves a similar purpose in Section 2.2, and although the degree is
now n — 1, instead of n in Section 2.2, the following derivations can also
be carried out with a degree equal to n, with only minor adjustments
(the reference model may then be assumed to be proper and not strictly

proper). We will have to require that the zeros of ):(s) contain those of
Aim(s) and therefore we write

Ns) = Am(S)Ao(s) (2.6.2)

where X o(s) is a monic, Hurwitz polynomial of degree n -1/ - 1.

The polynomials a*(s), b*(s) in Figure 2.3 have degrees at most
n -1 and serve similar purposes as before. Therefore, we start with the
following proposition.

Proposition 2.6.1

There exist unique @°, 5* such that the transfer function from r — y, in
Figure 2.3 is P (s).

Proof of Pro;)osition 2.6.1
Existence
The transfer function from r — y,’'in Figure 2.3 is given by
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Kin Aim
Y _ @ dy _ kb
F Nk Aim b Ndy - kyfimb®
m - ~
d, X\
k,,a"
= (2.6.3)
Nodm—knb’
This transfer function will be equal to 13(5) if and only if
. A . k., .~ 5*
Nodm= kmb* = 24,2 (2.6.4)

~

k
P fip

The problem is therefore to find polynomials 4°, b* of degrees at most
n ~ 1 that satisfy (2.6.4).

A solution can be found by inspection. Divide )(0 c?,,, by c?p: denote
by § the quotient of degree k -/ ~ 1 and let k,,b* be the remainder of

degree n — 1. In other words, let
Nodm = Gdy + kpb® (2.6.5)

This defines b * appropriately. Equality (2.6.4) is satisfied if 4" is defined
by

at = —k—”-;— qn, (2.6.6)

The degree of the polynomial in the right-hand side is m+k -/ -1,
which is at most n -~ 1 by assumption (A3), so that the degree require-
ments are satisfied.

Uniqueness
Assume that there exist *+6d, b*+6b satisfying
Nodm -k (b* + 86y = —m g (2+0d) (2.6.7)
ky 7]
14
Subtracting (2.6.4) from (2.6.7), we find that

= = —k,,?il = -P (2.6.8)
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Recall that 7,, c?p are assumed to be coprime, while the degree of 3,, and
5b are n and at most n - 1, respectively. Therefore, equation (2.6.8)
cannot have any solution. 0O

Identifier Structure
The identifier structure is obtained in a similar way as in Section 2.2.
Welet A ¢ R"-1x7-1 p e IR*!in controllable canonical form such

that det (s7 - A) = A(s) and

T -A)'b = — j (2.6.9)

):(s)

sn—2

Given any plant and model transfer functions satisfying (Al) and (A3),
we showed that there exist unique polynomials @*(s), b *(s). We now let
a$, b € Randa®,b* € R""! such that

GO g5 v (sl -2 b,

A(s)

bX) | pg v b -8 by (2.6.10)
A(s)

We define the observer through
Wil = Aw® 4 byr
wd = AwD + by, (2.6.11)

where w(),w® ¢ IR"~! and the initial conditions are arbitrary. The
regressor vector is now

W) = [r@), w0, 5,0, WO | e RY @6.12)
and the nominal parameter is
9*" = [aa,a",bg,b"] e R (2.6.13)

Using proposition 2.6.1, we find that any plant can be represented
uniquely as

yplt) = M;[e" w(t)] (2.6.14)
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Rigorously, one should add an exponentially decaying term due to the
initial conditions in the observer and in the reference model transfer
function, but we will neglect this term for simplicity.

In similarity with (2.6.14), the identifier output is defined to be

yit) == M (o) + aT@O W) + bo(t)3,0)
+ bT(t)w(Z)(t)]
=M [()T(t)w(t)] (2.6.15)

where

67(t) := [ao(t),aT(t),bo(t),bT(t)] e R (2.6.16)
is the vector of adaptive parameters. We define the parameter error

¢(t) = 6(1)-0° (2.6.17)
so that the identifier error

ei(t) = yit)-y(t) (2.6.18)

is also given, for the purpose of the analysis, by

et) = M [6T0w) (2.6.19)

The error equation is linear in the paramcter error, but it now

involves the dynamics of the transfer function M. We will show in the
next section that the same gradient algorithm as used previously can still
be used for identification, provided that the following additional
assumption is satisfied.

(Ad) Positive Real Model
M is strictly positive real.

We will define and discuss this assumption in the next section. The
overall identifier structure is represented in Figure 2.4 and we summar-
ize the implementation of the algorithm hereafter.

Model Reference Identifier—Implementation
Assumptions

(A1)-(A4)
Data

n, upper bound on n - m (e.g., n)
Input
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Figure 2;4: Model Reference Identifier Structure

r(t), yp(t) e R
Output
6(t), yi(t) e R
Internal Signals
w(t) e R [wD(), wP() e R"™1]

8(t) e R [ag(t) e R, a(t) € R" !, bot) € R,b(t) e R"]

yi(t), ex(t) e R
Initial conditions are arbitrary.
Design Parameters
o M satisfying (A3)-(A4)
¢« AeR*"-!xn-1 p e R"~!in controllable canonical form such
that det(s/ ~ A) is Hurwitz, and contains the zeros of 7,(s).
e g>0
Identifier Structure
w = Aw® 4 byr

w® = Aw?+ by,

0T = [ao,aT,bo,bT]

wl = [r,w y,, W@

yi = M(@0Tw) ,
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Gradient Algorithm

0 = —gew
a

Comments

The model reference identifier is an alternative to the equation error
scheme discussed previously. It may result in savings in computations.
Indeed, the state variable filters are of order n - 1, instead of n previ-
ously. If the transfer function M is of order 1, the realization requires
one less state. The presence of M , however, precludes the use of the
least-squares algorithms, which are usually faster. We will also show in

Chapter 4 how the transfer function M influences the convergence pro-
perties of the gradient algorithm.

2.6.2 Strictly Positive Real Error Equation and Identification Algorithms

In Section 2.6.1, we encountered a more general error equation, which
we will call the strictly positive real (SPR) error equation

et) = &t [oT0m0))

where M is a strictly positive real transfer function. This error equation
is still linear, but it now involves additional dynamics contained in M.
In this section, we will establish general properties involving this error
equation. For uniformity with previous discussions, we assume that
w: R, - IR*" but the dimension of w is in fact completely arbitrary.

The definitions of positive real (PR) and strictly positive real (SPR)
functions originate from network theory. A rational transfer function is
the driving point impedance of a passive network if and only if it is PR.
Similarly, it is the driving point impedance of a dissipative network if
and only if it is SPR. The following definitions are deduced from these
properties.

Definition  Positive Real (PR) and Strictly Positive Real (SPR) Func-
tions

A rational function M (s) of the complex variable s = ¢+ jw is positive
real (PR), if M(s) € R for all ¢ € R and Re(M (o + jw)) = 0 for all

>0, w2 0. Itis strictly positive real (SPR) if, for some ¢ > 0, M (s - ¢)
is PR.

It may be shown (cf. Ioannou & Tao [1987]) that a strictly proper
transfer function M (s) is SPR if and only if
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« M(s) is stable
« Re(M(jo)p>0, for all w = 0
¢ lim w?Re(M(jo)p0

w - QO
For example, the transfer function

s+¢
(s+a)is+b)

is SPR if and only if a>0,b>0,a+ b >c>0.

SPR transfer functions form a rather restricted class. In particular,
an SPR transfer function must be minimum phase and its phase may
never exceed 90°. An important lemma concerning SPR transfer func-
tions is the Kalman-Yacubovitch-Popov lemma given next.

M(s) =

Lemma 2.6.2 Minimal Realization of an SPR Transfer Function

Let [4,b,c7] be a minimal realization of a strictly proper, stable,
rational transfer function M (s). Then, the following statements are
equivalent

(a) M(s) is SPR

(b) There exist symmetric positive definite matrices P, Q, such that
PA +ATP = -Q
Ph = ¢ (2.6.20)

Proof of Lemma 2.6.2 cf. Anderson & Vongpanitlerd [1973].

SPR Error Equation with Gradient Algorithm
A remarkable fact about SPR transfer functions is that the gradient
update law

o(t) = 6(t) = —-ge(t)w(t) g>0 (2.6.21)

has similar properties when e; is defined by the SPR error equation
(2.6.19), and when e, is defined by the linear error equation (2.4.3).
Note that in the case of the SPR error equation, the algorithm is not the
true gradient anymore, although we will keep using this terminology for
the similarity.

Using lemma 2.6.2, a state-space realization of M (s) with state e,
can be obtained so that

em(t) = Aen(t) + boT (t)w(t)
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eit) = cT(t)en(t)

(1) = -gcleq(t)w(t) g>0 (2.6.22)
N
(&) -

Theorem 2.6.3 SPR Error Equation with Gradient Algorithm

Let w: IR, - IR¥ be piecewise continuous. Consider the SPR error
equation (2.6.19) with M (s) SPR, together with the gradient update law
(2.6.21). Equivalently, consider the state-space realization (2.6.22)
where [4 , b, ¢T ] satisfy the conditions of lemma 2.6.2.

Then

(a) em, €1 € Ly

®  emend e Ly

Proof of Theorem 2.6.3

Let P, Q be as in lemma 2.6.2 and v = gel Pe,, + ¢T¢. Along the tra-
jectories of (2.6.22)

v

i

gel PAe,, + gel Pbo™w + gel AT Pe,
+ go¢TwbT Pe,, —2gcTe, ¢Tw

-geh Qey < 0 (2.6.23)

where we used (2.6.20). The conclusions follow as in theorem 2.4.1,
since P and Q are positive definite. O

]

Modified SPR Error Equation

The nprmalized gradient update law presented for the linear error equa-
tion is not usually applied to the SPR error equation. Instead, a
modified SPR error equation is considered

elt) = M[d)T(t)w(t)—wa(t)w(t)e,(t)] v>0  (2.624)

wl?crc v is a constant. The same gradient algorithm may be applied with
this error equation, so that in state-space form

émt) = Aey(t) + b [¢T(t)w(t)—va(t)w(t)cTem(t)]
ei(t) = cTen(t)
o(t) = -gclen(t)w(t) g.y>0 (2.6.25)
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Theorem 2.6.4 Modified SPR Error Equation with Gradient Algorithm

Let w : R, — IR?" be piecewise continuous. Consider the modified SPR

error equation (2.6.24) with M(s) SPR, together with the gradient
update law (2.6.21). Equivalently, consider the state-space realization

(2.6.25), where [4 , b, ¢T] satisfy the conditions of lemma 2.6.2.
Then

(a) emr €1, 0 € Ly
(b) em €1, 9 € L

Proof of Theorem 2.6.4

Let P, Q be as in lemma 2.6.2 and v = gel Pey, + ¢7¢. Along the trajec-
tories of (2.6.25)

y = -gelQen-2gv(ew) (ew) < 0 (2.6.26)

Again, it follows that e, , e, ¢ are bounded, and e,,, ¢; € L,. More-
over, it also follows now that e;w € Lj,sothat¢ € L,. O

2.6.3 Exponential Convergence of the Gradient Algorithms with SPR
Error Equations

As stated in the following theorem, the gradient algorithm is also
exponentially convergent with the SPR error equations, under the PE
condition.

Theorem 2.6.5 Exponential Convergence of the Gradient Algorithms with
SPR Error Equations :

Let w: R, — IR?". Let [4, b, 7] satisfy the conditions of lemma 2.6.2.
If wisPEand w, W € Loo
Then  (2.6.22) and (2.6.25) are globally exponentially stable.

The proof given hereafter is similar to the proof by Anderson
[1977] (with some significant differences however).. The main condition
for exponential convergence is the PE condition, as required previously,
and again, the main idea is to interpret the condition as a UCO condi-
tion. The additional boundedness requirement on W guarantees that PE
is not lost through the transfer function M (cf. lemma 2.6.7 hereafter).
It is sufficient that the boundedness conditions hold almost everywhere,
so that piecewise differentiable signals may be considered.

B
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Auxiliary Lemmas on PE Signals

The following auxiliary lemmas will be useful in proving the theorem.
Note that the sum of two PE signals is not necessarily PE. On the other
hand, an L, signal is necessarily not PE. Lemma 2.6.6 asserts that PE is
not altered by the addition of a signal belonging to L,. In particular,
this implies that terms due to initial conditions do not affect PE. Again,
we assume the dimension of the vectors to be 2n, for uniformity, but the
dimension is in fact arbitrary.

Lemma 2.6.6 PE and L, Signals
Let w, e : R, — IR?" be piecewise continuous.
If w is PE
e € L2
Then w+ eis PE.
Proof of Lemma 2.6.6 in the Appendix.

Lemma 2.6.7 shows that PE is not lost if the signal is filtered by a
stable, minimum phase transfer function, provided that the signal is
sufficiently smooth.

Lemma 2.6.7 PE Through LTI Systems
Let w: R, — R?".
If wisPEandw, w € L_
H is a stable, minimum phase, rational transfer function
Then  H(w) is PE.
Proof of Lemma 2.6.7 in the Appendix.
We now prove theorem 2.6.5.

Proof of Theorem 2.6.5

As previously, let v = gel, Pe,, + ¢T¢, so that for both SPR error equa-
tions

to+3d lo+d

[vdr < -g [ el Qendr

o 0
H+8

f etdr <0 (2.6.27)

o

)\min(Q)
lc|?

By theorem 1.5.2, exponential convergence will be guaranteed if, for
some a3z > 0

s -8
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lo+d
[ etr)dr = a3 (em(to)]® + [4(00)]*) (2.6.28)
o
for all ¢, e, (t0), ¢(t0).

Derivation of 2.6.28: This condition can be interpreted as a UCO condi-
tion on the system

bm = Aey + bpTw
6 = —gclenw
e, = cley, (2.6.29)

An additional term - by wiwcTe,, is added in the differential equation
governing e,, in the case of the modified SPR error equation. Using
lemma 2.5.2 about UCO under output injection, we find that inequality
(2.6.28) will be satisfied if the following system

bm = Aey + bpTw
¢ =0
e, = cley (2.6.30)
is UCO. For this, we let
0 bywTw
K = or K = (2.6.31)
gw aw

for the basic SPR and modified SPR error equations, respectively. The
condition on K in lemma 2.5.3 is satisfied, since w is bounded.
We are thus left to show that system (2.6.30) is UCO, i.e. that

4
Tt e (10) + cheA("’)b wl(r)dr ¢(to)
to

x1(1) + xx(2) (2.6.32)

satisfies, for some 8;, 8,,6 > 0

B2 (1 emtto) ? + 1 9010)1?]
o+d

> f et (r)dr
to

ey(t)
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> 8, [lenttol + 19(t0)1? (2.6.33)

for all ¢y, ey (Lo), d(to)-
Derivation of 2.6.33: By assumption, w is PE and w, w € Loo . There-
fore, using lemma 2.6.7, we have that, for all ¢, > 0, the signal

t
wilt) = [cTe? =D bw(r)dr (2.6.34)
o

is PE. This means that, for some a;, a3, 0 > 0

tiy+o

a |80 2 [ x3(r)dr 2 ar|e(eo)l? (2.6.35)
f

for all t; = 1o = 0 and ¢(fp).

On the other hand, since A is stable, there exist vy, v > 0, such
that
@ -—yy Mo
xlz(T)dT < 'Yllem(to)lze 2
tot+tma

(2.6.36)

for all ¢y, e,(ty) and an arbitrary integer m > 0 to be defined later.
Since [4 Jc”] is observable, there exists y3(m o) > 0, with v3(m o)
increasing With m ¢ such that

totmeo

[ xt@)dr 2 vimo)|en(to)l? (2.6.37)

fo
for all ¢y, e,,(¢g) and m > 0.
Let n > 0 be another integer to be defined and let 6 = (m +n)o.

Using the tmeagle-ineguality Fo ¢ b [ Y 4 (- b n »w &¥1. Bt

tg+0 o+ mo lg+mo

felz(T)dT Zlf xi(r)dr - f x3(r)dr
1’0

ty ty

lo+0 tg+é
+£f x3(r)dr - f x{(r)dr
lg+tmao to+meo

> bys(m o) | en(to)] 2 = may| ¢(to)]?

%
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nay [(0) 2 = vie 2" emlto) 2 (2.6.38)
1

Let m be large enough to get

d ymo) - vie " 2 yyma)/ (2.6.39)
and n suﬂicient'l‘;large to obtain /‘,
A —may 2 o (2.6.40)
Further, define L
By = min (ar, v3(m o)/ (2.6.41)

The lower inequality in (2.6.33) follows from (2.6.38), with 8, as defined,
while the upper inequality is easily found to be valid with

B, = max (v, (m+n)a,) (2.6.42)
0O

Comments

a) Although the proof of theorem 2.6.5 is somewhat long and tedious, it
has some interesting features. First, it relies on the same basic idea as
the proof of exponential convergence for the linear error equation (cf.
theorem 2.5.1). It interprets the condition for exponential convergence
as a uniform complete observability condition. Then, it uses lemma
2.5.2 concerning UCO under output injection to transform the UCO
condition to a UCO condition on a similar system, but where the vector
¢ is constant (cf. (2.6.30)). The UCO condition leads then to a PE con-
dition on a vector wy, which is a filtered version of w, through the LTI
system M (s).

b) The steps of the proof can be followed to obtain guaranteed rates of
exponential convergence. Although such rates would be useful to the
designer, the expression one obtains is quite complex and examination
of the proof leaves little hope that the estimate would be tight. A more
successful approach is found in Chapter 4, using averaging techniques.

¢) The results presented in this section are very general. They do not
rely on the structure of the identifier, but only on the SPR error equa-
tion (2.6.19). We leave it to the reader to specialize these results and
obtain stability and convergence properties of the model reference
identifier of Section 2.6.1.
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2.7 Frequency Domain Conditions for Parameter Convergence

Theorems 2.5.3 and 2.6.5 give a condition on the regressor vector w,
namely that w be PE, to guarantee exponential convergence of the
parameter error. The difficulty with the PE condition is that it is not an
explicit condition on the reference input r. In this section, we give fre-
quency domain conditions on the input r to guarantee that w is PE.

The result of this section will make precise the following intuitive
argument; assume that the parameter vector does converge (but not
necessarily to the nominal value). Then, the plant loop is “asymptoti-
cally time-invariant.” If the reference input contains frequencies wy, . . .
, wk, we expect that y, and y; will too. Since y; - y, as ¢t — oo, the
asymptotic identifier transfer function must match the plant transfer
function at s = jwy, ..., jwg. If k is large enough, this will imply that
the asymptotic identifier transfer function is precisely the plant transfer
function and, therefore, that the parameter error converges to zero.
Thus, we will show that the reference signal must be “rich enough,” that
is, “contains enough frequencies,” for the parameter error to converge to
zero. Roughly speaking, we will show

A reference input r results in parameter error convergence to

zero unless its spectrum is concentrated on k < 2n points,

where 2n is the number of unknown parameters in the adap-

tive scheme.

We will also discuss partial parameter convergence when the input is not
sufficiently rich. We will use the results of generalized harmonic analysis
developed in Section 1.6 and restrict our attention to stationary refer-
ence signals.

2.7.1 Parameter Convergence

From the definition of the regressor w in (2.2.16), we see that w is the
output of a LTI system with input r and transfer function

(sT —=A) " 'b,

Ho$) = (51— 0)- 15, B(s)

(2.7.1)

We will assume that the input r is stationary and that P is stable.
Then, by the linear filter lemma (proposition 1.6.2), it follows that w is
also stationary, that is has an autocovariance. For stationary signals,
persistency of excitation is directly related to the positive definiteness of
the autocovariance, as stated in the following proposition. Note that
R, (0) is a symmetric positive semidefinite matrix.
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Proposition 2.7.1 PE and Autocovariance
Let w(z) € IR?" be stationary.
(a) w is PE if and only if (b) R, (0) > 0.

Proof of Proposition 2.7.1

(a) implies (b)

From the PE condition on w, we have that for all ¢ € IR?" and for any
positive integer k

to+ ks
L T(e)eldr = SL|c)? 2.7.2
ka,fo(w(”c)d“a'cl (2.7.2)

Hence, forall 7 =>4

to+ T

1 T 2 T-6 a1, 2
T :jo Wi(r)e)ldr 2 —== —|c| (2.7.3)
Since w has an autocovariance
to+ T
lim + [ W(r)eldr = cT R, (0)¢ (2.7.4)
T —-co T I

Combining (2.7.3) and (2.7.4) yields that R,,(0) = % 1>0.

(b) implies (a)
From the definition of autocovariance, for all ¢ > 0, there exists § such
that

to+d

|+ [ 0T @erdr-cTR,©Oc | < (2.7.5)
Lo
Therefore
o+
= [ @ dr = Amin(Ry (O] - ¢ (2.7.6)
fo

which implies PE for ¢ sufficiently small. 0O

We mady relate the PE condition to the frequency content of w
through the formula

Ry(0) = [ S (dw) 2.7.7)

where S,, (dw) is the spectral measure of w. In turn, using the linear



92 Identification ‘ Chapter 2

filter lemma (proposition 1.6.2) and (2.7.7), we see that

R, (0) = [Hy,(jo)Hy\(jo) S, (dw) (2.7.8)

The expression (2.7.8) allows us to relate the frequency content of r to
the persistency of excitation of w. This leads us to the following
definition.

Definition Sufficient Richness of Order k

A stationary signal r : R, — R is called sufficiently rich of order k, if the

support of the spectral density of r, namely, S, (dw) contains at least k
points.

Comment

Note that a single sinusoid in the input contributes 2 points to the spec-
trum: at +wp and at - wy. On the other hand, a DC signal contributes
only one point in the support of the spectral density.

Theorem 2.7.2 PE and Sufficient Richness

Let w(f) € IR*" be the output of a stable LTI system with transfer func-
tion H,,(s) and stationary input r(¢). Assume that H,,(jo), . ..,
ﬁw,(jwz,,), are linearly independent on C2" for all w;, wy, . . .,
Wy, € R.

(a) w is PE if and only if (b) r is sufficiently rich of order 2n.

Proof of Theorem 2.7.2

By proposition 2.7.1, (a) is equivalent to R,,(0)>0.

(a) implies (b)

We prove this by contradiction. Assume that r is not sufficiently rich of

order 2n, that is the support of S,(dw) is w;, . . ., w, with k < 2n.
Then, from (2.7.8), it follows that

k
Ru(0) = X Hy (o) Hir (o)) Sy ({w; ) (2.7.9)
i=1

The right hand side of (2.7.9) is the sum of k dyads, so that the rank of
R, (0) is at most k < 2n, contradicting the PE of w.
(b) implies (a)
We also prove this by contradiction. If w is not PE, there exists ¢ ¢ R?"
such that
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¢"R,(0)c = 0 (2.7.10)
Using (2.7.8), we see that (2.7.10) implies that
[IHT (jo)e| S, (dw) = 0 @.7.11)
Since S, (dw) is a continuous, positive measure, we may conclude that
I?,f,(jw)c =0 for all w € support S, (dw) (2.7.12)
Since the support of S, (dw) has at least 2n points, say w, . .., wy,, we

have that

HL, Gupe = 0 i=1,...,2n (2.7.13)

contradicting the hypothesis of linear independence of ﬁw,( Jw;) for
i=1,...,2n. 0O

We saw that sufficient richness of order 2n in the reference input
translates to w PE, provided that the I?w,( Jjw;) are independent for every
set of 2n w;’s. It remains to be verified that this property holds for the
H,,(s) given in (2.7.1).

Theorem 2.7.3 Exponential Parameter Convergence and Sufficient Rich-
ness

Consider the identification problem of Section 2.1, with assumptions

(Al) and (A2) and P stable, the identifier structure of Section 2.2 and
the gradient algorithms (2.4.1) or (2.4.2), or the normalized LS algorithm
with covariance resetting (2.4.6)—(2.4.7).

If r is stationary and sufficiently rich of order 2n
Then  the identifier parameter § converges to the nominal parameter
6* exponentially fast.

Proof of Theorem 2.7.3

Using theorems 2.5.3 and 2.7.2, we are left to show that, for every w;, . .
., wy, € IR, the vectors I;’w,(jw,-) (with I?w, defined in (2.7.1)) are
linearly independent in C 2"

We show the result by contradiction. Assume that there existed w,
., wyy such that

HI, (jw)ec = 0 (2.7.14)

B

for some ce €2" and for all i =1, ..., 2n. Using the fact that
(A, by) are in controllable canonical form and that 13(s) = kpiip(s)/dy(s),
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(2.7.14) becomes
. . oNn- Ay (jw;)
O O 0 2 L Al
dp(.]wi)
ok, 291 M c =0 (2715
dp(j‘-'-’i) dp(]wi)
fori =1,..., 2n, that is
[dy(s), sdy(s), ..., s"~1dy(s), kyip(s),
kyship(s), ..., s" YkA(s)]c = 0 (2.7.16)
for s = jw;, . .., jwy, Equation (2.7.16) may be written more com-
pactly as
¢D(s)dy(s) + sk, Aipls) = 0 (2.7.17)
fors = jw, ..., jwy,, where
¢Ms) = ¢+ cps+ o+ cpst!
and
¢s) = Cnsl * CnyaS + - + 03821 (2.7.18)

The polynomial on the left-hand side of (2.7.17) is of degree at
most 2n ~ 1. Since it vanishes at 2n points, it must be identically zero.
Consequently, we have

ko) eWs) for all s (2.7.19)

dy(s) &% (s)
By assumption, J,,(s) is of degree n and 7,(s), d,(s) are coprime. There-
fore, (2.7.19) cannot be satisfied since the degree of ¥ is at most n - 1.
This establishes the contradiction. 0O

Comments
It would appear that the developments of this section would enable us to
give an explicit expression for the rate of exponential convergence; it is
in fact possible to carry out this program rigorously when the rate of
adaptation is slow (see Chapter 4 for a further and more detailed
description of this point).

If w is not PE, then the parameter error need not converge to zero.
In this case, S, is concentrated on k < 2n frequencies w;, . . ., w.
Intuition suggests that although 6 need not converge to 6° it should
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converge to the set of §’s for which the identifier transfer function

maiches the plant transfer function at the frequencies s = jo;, ..., jw.
This is indeed the case.

2.7.2 Partial Parameter Convergence

We now consider the case when the spectrum S, (dw) is concentrated on
k < 2n points. Before stating the theorem, let us discuss the idea infor-
mally. From the structure of the identifier, we see that the plant output
is given by

v, = 6 H,,(r) (2.7.20)
and the identifier output by
vi = 0T()H,,, (r) (2.7.21)
Consequently, if the identifier output matches the plant output at
§ = jwp, ..., jw, the asymptotic value of § must satisfy
[ A& ] [ & . ]
er(]wl)T er(]“’l)r
0 = . 6" (2.7.22)
ﬁwr(j"-’k)TJ ﬁwr(jwk)TJ

Let us then call @, the set of 6’s, which satisfy (2.7.22). Clearly, 6* ¢ ©
and

(I-}wr(jwl)r.

©® = 6+ null space . (2.7.23)

gwr (jwk)r
The k row vectors f}'w,(jwi)T are linearly independent. Consequently, 6
has dimension 2n - k.

In terms of the parameter error vector ¢ = 6-6% 0 has the simple
description

0e® = R,(0)¢p = 0 (2.7.24)

We leave the verification of this fact to the reader, recalling that
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k
R,(0) = 2 Hy,(Jo))Hyr(Juwi) Sy ({w; ) (2.7.25)
i=1
Proceeding more rigorously, we have the following theorem.

Theorem 2.7.4 Partial Convergence Theorem

Consider the identification problem of Section 2.1, with assumptions
(A1)-(A2) and P stable, the identifier structure of Section 2.2 and the
gradient algorithms (2.4.1) or (2.4.2), or the normalized LS algorithm
with covariance resetting (2.4.6)-(2.4.7).

If r is stationary
Then lim R,(0)¢(t) =0
{ - Q0

Proof of Theorem 2.7.4

The proof relies on the fact, proved in theorem 2.4.5, that the output
error ¢, = ¢’ w— 0 as t - oo, and so does the derivative of the
parameter error ¢. Since ¢ and w are bounded, let k be such that
| #(2)] , |w(t)] <k, forallt 2 0.

We will show that, for all ¢ > 0, there exists 7; = 0 such that, for all
21, $T(t)R,(0)¢(t) < e. This means that ¢7(t) R, (0) ¢(¢) converges
to zero as ¢ — oo and since R, (0) is symmetric positive definite, it also
implies that | R, (0) ¢(¢)| tends to zero as t — co.

Since w has an autocovariance, for T large enough

o+ T
1 T €
R,O0) - ¢ £ wrywT(r)dr | < ETA] (2.7.26)
for all ¢ = 0 and therefore
o+ T
|87 Ru@ o) - 6T [ wweYdro0) | s £ @7.2)

fo

From the fact that ¢ — 0 as { - oo (cf. theorem 2.4.5) and
¢"w — 0 as ¢t — oo, we find that there exists ¢, such that, for all ¢ > ¢,

87w S 5 (2.7.28)

and
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N €

D =< 2.7.29

160 < 57 (2.7.29)

From (2.7.29), we have that |¢(r) - ¢(t)| < e(r—-t)/6k3T for all
7 2t 2 t;. Together with the boundedness of ¢ and w, this implies that,
fort 2 ¢,

t+T t+T

|67 | & [ e wTerar | o) - & [ 67 wie) w7 0tr) ] ar
t t

t+T

= |5 [ 7@ 6@ - 660 W) (6(0)+ () dr
{

< = 2.7.30
3 ( )

Using (2.7.28), we have that, for ¢ = ¢,
t+T

|+ [ o"owowT e | < £ @73
t
Now, combining (2.7.27), (2.7.30) and (2.7.31), we have that, for ¢ = ¢,
T ()R, (0)9(r) < (2.7.32)

which completes the proof of the theorem. 0O

Comments

The proof relies on the fact that for both the identification schemes dis-
cussed the parameter error eventually becomes orthogonal to the regressor
w, and the updating slows down. These are very common properties of
identification schemes.

While the 2n -k dimensional set © to which 6(¢) converges
depends only on the frequencies w;, . . ., w; and not on the average
powers S,({w;}), ..., S;({wr}) contained in the reference signal at
those frequencies, the rate of convergence of 8 to © depends on both.

As opposed to the proof of theorem 2.7.3, the proof of theorem
2.7.4 does not rely on theorem 2.5.3 relating PE and exponential conver-
gence. If w is PE and R, (0) >0, the proof of theorem 2.7.4 is an alter-
nate proof of the parameter convergence results of Section 2.5, with the
additional assumption of stationarity of the reference input r(¢).
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2.8 CONCLUSIONS

In this chapter, we derived a simple identification scheme for SISO LTI
plants. The scheme involved a generic linear error equation, relating the
identifier error, the regressor and the parameter error. Several gradient
and least-squares algorithms were reviewed and common properties were
established, that are valid under general conditions. It was shown that
for any of these algorithms and provided that the regressor was a
bounded function of time, the identifier error converged to zero as ¢
approached infinity. The parameter error was also guaranteed to remain
bounded. When the regressor was not bounded, but satisfied a regularity
condition, then it was shown that a normalized error still converged to
zero.

The exponential convergence of the parameter error to its nominal
value followed from a persistency of excitation condition on the regres-
sor. Guaranteed rates of exponential convergence were also obtained
and showed the influence of various design parameters. In particular,
the reference input was found to be a dominant factor influencing the
parameter convergence.

The stability and convergence properties were further extended to
strictly positive real error equations. Although more complex to analyze,
the SPR error equation was found to have similar stability and conver-
gence properties. In particular, PE appeared as a fundamental condition
to guarantee exponential parameter convergence.

Finally, the PE conditions were transformed into conditions on the
input. We assumed stationarity of the input, so that a frequency-domain
analysis could be carried out. It was shown that parameter convergence
was guaranteed, if the input contained the same number of spectral com-
ponents as there were unknown parameters. If the input was a sum of
sinusoids, for example, their number should be greater than or equal to
the order of the plant.

CHAPTER 3
ADAPTIVE CONTROL

3.0 INTRODUCTION

In this chapter, we derive and analyze algorithms for adaptive control.
Our attention is focused on model reference adaptive control. Then, the
objective is to design an adaptive controller such that the behavior of
the controlled plant remains close to the behavior of a desirable model,
despite uncertainties or variations in the plant parameters. More for-
mally, a reference model M is given, with input r(¢) and output y,(?).
The unknown plant P has input u(¢) and output y,(t). The control
objective is to design u(f) such that y,(z) asymptotically tracks y,(¢),
with all generated signals remaining bounded.

We will consider linear time invariant systems of arbitrary order,
and establish the stability and convergence properties of the adaptive
algorithms. In this section however, we start with an informal discus-
sion for a first order system with two unknown parameters. This will
allow us to introduce the algorithms and the stability results in a simpler
context.

Consider a first order single-input single-output (SISO) linear time
invariant (LTI) plant with transfer function

p - L

= (3.0.1)
s+ a

3

where k, and a, are unknown. The reference model is a stable SISO
LTI system of identical order

99
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N kp,
M = (3.0.2)
S+ apy

where k,, and a,, >0 are arbitrarily chosen by the designer. In the time
domain, the plant is described by

Vlt) = = ap yy(t) + Ky u(t) (3.0.3)
and the reference model by
).)m(t) = - a4y ym(t) + km r(t) (304)

The next steps are similar to those followed for model reference
identification in Section 2.0. Let the control input be given by

u(t) = co(t) r(z) + do(t) yp(t) (3.0.5)
the motivation being that there exist nominal parameter values
. Km . a, - ap
co = e—— do TE mtr— (3.0.6)
kl’ kP

such that the closed-loop transfer function matches the reference model
transfer function. Specifically, (3.0.3) and (3.0.5) yield

Vp(t) = = ap yp(t) + kp (colt) r(r) + do(t) yp(t) )
- (ap = ky do(1) ) yp(t) + ky co(t) r(2) (3.0.7)

which becomes

Yp(t)

[}

= Yp(t) + kpy (1) (3.0.8)

when ¢q(t) = ¢g, do(t) = dg.
For the analysis, it is convenient to introduce an error formulation.
Define the output error

€ = Vp = Vm (309)

and the parameier error
[ o(1) ] colt) - ¢o
I CYO) Ry PP
Subtracting (3.0.4) from (3.0.7)

(3.0.10)

ey = ‘am(}’p—_Vm)+(am—ap+kpd0)yp+kpc0r—kmr

Section 3.0 Introduction 101

- aneo+k [(Co - ¢o)r + (do - da)J’p]

- am €y + kp(d’rr + ¢y yp) (301 1)

We may represent (3.0.11) in compact form as

k N
€y = 5 +pam }/(d’rr +¢y yp)

k, - -
= Z MG+ b, 3) = = M 60+ 6,7 (3.0.12)

Although this notation will be very convenient in this book, we caution
the reader that it mixes time domain operations (¢,r + ¢, ¥p) and filter-
ing by the LTI operator M.

Equation (3.0.12) is of the form of the SPR error equation of
Chapter 2. Therefore, we tentatively choose the update laws

Co = —gegr
dy = -geyy, g>0 (3.0.13)

assuming that k,/k, >0 and that M is SPR. The first condition
requires prior knowledge about the plant (sign of the high frequency gain
ky), while the second condition restricts the class of models which may
be chosen,

Note that there is a significant difference with the model reference
identification case, namely that the signal ¥, which appears in (3.0.12) is
not exogeneous, but is itself a function of e;. However, the stability
proof proceeds along exactly the same lines. First assume that r is
bounded, so that y,, is also bounded. The adaptive system is described
by (3.0.3)-(3.0.5) and (3.0.13). Alternatively, the error formulation is

éo = ~-Qa,é€y+ kp(¢rr + d)y € t+ ¢y y’")
¢y = —get - geom (3.0.14)

In this represéntation, the right-hand sides only contain states (eq, ¢,, é,)
and exogeneous signals (7, y,,). Consider then the Lyapunov function
?

et
v(eO) &rs ¢y) =

kP 2 2
5 5 @) (3.0.15)
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so that, along the trajections of (3.0.14)
V= —ane} +k,d.eqr+k,b,e8 +k, by €0 Ym
- kp o, egr - kp ¢y eg - kp ¢y €0 Ym

= - qay eg <0 . (3.0.16)
It follows that the adaptive system is stable (in the sense of Lyapunov)
and that, for all initial conditions, ey, ¢, and ¢, are bounded. From
(3.0.14), €4 is also bounded. Since v is monotonically decreasing and
bounded below, limv(t) as ¢{—> oo exists, so that eye L,. Since

epe LN Loo, and ép € Loo, it follows that eg — 0 as ¢ — oo.

The above approach is elegant, and relatively simple. However, it
is not straightforward to extend it to the case when the relative degree of
the plant is greater than 1. Further, it places restrictions on the refer-
ence model which are in fact not necessary. We now discuss an alter-
nate approach which we will call the input error approach. The resulting
scheme is slightly more complex for this first order example, but has
significant advantages, which will be discussed later.

Instead of using eq in the ~daptation procedure, we use the error
ey = Ccoyp +do M(y,) - M(u) (3.0.17)

The motivation behind this choice will be made clear from the analysis.
Equation (3.0.17) determines how e, is calculated in the implementation
(as (3.0.9) in the output error scheme). For the derivation of the adapta-
tion scheme and for the analysis, we relate e, to the parameter error (as
(3.0.12) in the output error scheme). First note that

- km — km s+a, Kk
T s+am k, S+ay s+a,
_km kK km @, -an k,
 ky, s+a, k, sS+a, s+a,
Km - A
=_'"p+.‘.1£_.a_'"Mp
kp kl’
= coP+dyMP (3.0.18)

where we used (3.0.6). Therefore, applying (3.0.18) to the signal u
M@u) = cgy, + ds M(y,) (3.0.19)
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and with (3.0.17)

(co - €0 )vp + (do - dg) M(y,)

b Vp + &y M(y,) (3.0.20)

Equation (3.0.20) is of the form of the /inear error equation studied in
Chapter 2. Therefore, we may now use any of the identification algo-
rithms, including the least-squares algorithms. No condition is posed on
the reference model by the identification/adaptation algorithm. Proving
stability is however more difficult, and is not addressed in this introduc-
tion.

The algorithms described above are both direct algorithms, for
which update laws are designed to directly update the controller parame-
ters co and dy. An alternate approach is the indirect approach. Using
any of the procedures discussed in Chapter 2, we may design a recursive
identifier to provide estimates of the plant parameters k, and a,. If k,
and g, were known, the equations in (3.0.6) would determine the nomi-

5]

nal controller parameters ¢y and dy. In an indirect approach, one
replaces k, and a, in (3.0.6) by their estimates, thereby defining ¢, and
do. This is a very intuitive approach to adaptive control which we will
also discuss in this chapter.

After extending the above algorithms to more general schemes for
plants of arbitrary order, we will study the stability and convergence pro-
perties of the adaptive systems. Unfortunately, the simple Lyapunov
stability proof presented for the output error scheme does not extend to
the general case, or to the other schemes. Instead, we will use tools from
functional analysis, together with a set of standard lemmas which we will
first derive. The global stability of the adaptive control schemes will be
established. Conditions for parameter convergence will also follow,
together with input signal conditions similar to those encountered in
Chapter 2 for identification.

3.1 MODEL REFERENCE ADAPTIVE CONTROL PROBLEM

We now turn to the general model reference adaptive control problem
considered in this chapter. The following assumptions will be in effect.

Assumptions -

(A1) Plant Assumptions
The plant is a single-input, single-output (SISO), linear time-
invariant (LTI) system, described by a transfer function
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28 by - g, 2o (3.1.1)
u(s) dp(s)

where 7,(s), a7,,(s) are monic, coprime polynomials of degree m
and n, respectively. The plant is strictly proper and minimum
phase. The sign of the so-called high-frequency gain k, is
known and, without loss of generality, we will assume k,> 0.
(A2) Reference Model Assumptions
The reference model is described by
ym(s) = M(S) - km 7m(s)
F(s) dm(s)
where 7,,(s), a7,,,(s) are monic, coprime polynomials of degree
m and n respectively (that is, the same degrees as the
corresponding plant polynomials). The reference model is
stable, minimum phase and k,, > 0.
(A3) Reference Input Assumptions
The reference input r(.) is piecewise continuous and bounded
onlR,.

(3.1.2)

Note that 13(3) is assumed to be minimum phase, but is not assumed to
be stable.

3.2 CONTROLLER STRUCTURE

To achieve the control objective, we consider the controller structure
shown in Figure 3.1.

%
r u A Yp
— + -[ » P(s) -

&si s

| s/ Ais)l

Figure 3.1: Controller Structure

By inspection of the figure, we see that

U = cor+ —c:-(ﬂ(u) + i{ﬁl p) (3.2.1)
A(s) A(s)
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where ¢g is a scalar, ¢(s), 3(3) and ):(s) are polynomials of degrees
n—-2,n-1and n -1, respectively. From (3.2.1),

u = —— (cor + ? ) (3.2.2)

¢
which is shown in Figure 3.2.

c v
r : NEW I u ’p
—_— B— /3-8 > -

o>

Figure 3.2: Controller Structure—Equivalent Form

Since

n
Yy = k,,—;i(u) (3.2.3)
dp
the transfer function from r to y, is

To _ __CokpMy (3.2.4)
F \-0¢)d,-k,h,d
Note that the derivation of (3.2.4) relies on the cancellation of
polynomials >:(s). Physically, this would correspond to the exact cancel-
lation of modes of E(s)/): (s) and d (s)/ x (s). For numerical considera-
tions, we will therefore require that x (s) is a Hurwitz polynomial.

The following proposition indicates that the controller structure is
adequate to;achieve the control objective, that is, that it is possible to

make the transfer function from r to y, equal to M (s). For this, it is

clear from (3.2.4) that x (s) must contain the zeros of 7,,(s), so that we
write

N X(s) = No(s)Am(s) (3.2.5)

where X 0(s) is an arbitrary Hurwitz polynomial of degree n - m - 1,

5
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Proposition 3.2.1 Matching Equality

There exist unique c§, ¢(s), d*(s) such that the transfer function from
r—y,is M(s).

Proof of Proposition 3.2.1
1. Existence

The transfer function from r to y, is M if and only if the following
maltching equality is satisfied

. . ,. k, - .
(A-8%d,~k,h,d"* = 'k—”x Aydy, (3.2.6)
The solution can be found by inspection. Divide Xofim by d,, let g be
the quotient (of degree n—m - 1) and - k,d"* the remainder (of degree

n-1). Thusd" is given by
4 1

d* = < (§d,-Nody) (3.2.7)
kp
Let ¢* (of degree n - 2), ¢§ be given by
&' = X-g#, (3.2.8)
. km
@ = (3.2.9)

Equations (3.2.7)~(3.2.9) define a solution to (3.2.6), as can easily be
seen by substituting ¢g, ¢* and * in (3.2.6).
2. Uniqueness

Assume that there exist cg = c§ +0cq, ¢ = ¢*+86,d =d*+6d satisfy-
ing (3.2.6). The following equality must then be satisfied

- N k, - -
8éd, + k,A,6d = -acok—” XoAydp (3.2.10)
m

Recall that Jp, fp, Xo and Jm have degrees n, m, n-m -1 and n,
respectively, with m < n -1, and 8¢ and 6d have degrees at most n - 2
and n - 1. Consequently, the right-hand side is a polynomial of degree
2n -1 and the left-hand side is a polynomial of degree at most 2n - 2.

No solution exists unless dco = 0, so that ¢§ is unique. Let, then,
dco = 0, so that (3.2.10) becomes
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3¢ .l o p (3.2.11)
od d,

This equation has no solution since #,, d, are coprime, so that ¢* and
d are also unique. 0O

Comments

a)  The coprimeness of 7,, 5',, is only necessary to guarantee a unigue
solution. If this assumption is not satisfied, a solution can still be found
using (3.2.7)—(3.2.9). Equation (3.2.11) characterizes the set of solutions
in this case,

b)  Using (3.2.2), the controller structure can be expressed as in Figure

3.2, with a forward block /X -¢ and a feedback block d/X. When
matching with the model occurs, (3.2.7), (3.2.8) show that the compensa-
tor becomes

(3.2.12)

and

- = —=—7" (3.2.13)

Thus the forward block actually cancels the zeros of P and replaces them
by the zeros of M.

¢) The transfer function from r to ¥y is of order n, while the plant
and controller have 3n -2 states. It can be checked (see Section 3.5)
that the 2n -2 extra modes are those of X, X, and fi,. The modes

corresponding to )\ )\0 are stable by choice and those of 71, are stable by
assumption (Al).

d)  The structure of the controller is not unique. In particular, it is
equivalent to the familiar structure found, for example, in Callier &
Desoer [1982], p. 164, and represented in Figure 3.3. The polynomials
found in this case are related to the previous ones through

Ay = co\ d, = X-¢ Ap = -d (3.2.14)
The motivation in using the previous controller structure is to obtain an
expression that is /inear in the unknown parameters. These parameters
are the coefficients of the polynomlals ¢, d and the gain ¢y, The expres-
sion in (3.2.1) shows that the control signal is the sum of the parameters
multiplied by known or reconstructible signals.
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Figure 3.3;: Alternate Controller Structure

State-Space Representation
To make this more precise, we consider a state-space representation of
the controller. Choose A € R"~!*"-! and b, e R""!, such that

(A, b)) is in controllable canonical form as in (2.2.9) and det
(s = A) = X(s). It follows that

1

X (s)
sn—2

(sI -A)"'b, = (3.2.15)

Let ¢ € R""! be the vector of coefficients of the polynomial &(s), so
that

6 L T -a)-Th, (3.2.16)
A(s)
Consequently, this transfer function can be realized by

W = AW + bu
£ w) = cTwh (3.2.17)
A

where the state w() € IR”"! and the initial condition w('(0) is arbi-
trary. Similarly, there exist dg € IR and d € R"~!, such that

C{(S) = do+dT(sI-A)"'by (3.2.18)
A(s)

and
WD = Aw® + by,
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-

4 Op) = doy, +dTw? (3.2.19)
A

where the state w® e IR"~! and the initial condition w®(0) is arbi-
trary. The controller can be represented as in Figure 3.4, with

%

-

y

(si-n Yo

A

(2)

Figure 3.4: Controller Structure—Adaptive Form

u = cor +c"wl +dgy, + d"w®
= 0Tw (3.2.20)
where
07 = (co,07) i= (co,cT,dg,dT) € R™  (3.2.21)

is the vector of controller parameters and

wle= (r,wTy=(r,wh,y,,w®) e R (3.2.22)

is a vector of signals that can be obtained without knowledge of the

plant parameters. Note the definitions of # and # which correspond to
the vectors # and w with their first components removed.

In analogy to the previous definitions, we let
0" = (c3,0°") = (c§,c*,d3,d") € R¥ (3.2.23)

be the vector of nominal controller parameters that achieves a matching

of the transfer function r -y, to the model transfer function M. We
also define the parameter errors

¢ = 0-0 e R $:=0-0" ¢ R¥”-! (3.2.24)
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The linear dependence of ¥ on the parameters is clear in (3.2.20).
In the sequel, we will consider adaptive control algorithms and the

parameter § will be a function of time. Similarly, ¢(s), c?(s) will be poly-

nomials in s whose coefficients vary with time. Equations (3.2.17) and
(3.2.19) give a meaning to (3.2.1) in that case.

3.3 ADAPTIVE CONTROL SCHEMES

In Section 3.2, we showed how a controller can be designed to achieve
tracking of the reference output y,, by the plant output Vp» When the
plant transfer function is known, We now consider the case when the
plant is unknown and the control parameters are updated recursively
using an identifier. Several approaches are possible. In an indirect
adaptive control scheme, the plant parameters (i.e.,, k, and the

coefficients of 7,(s), (ip(s)) are identified using a recursive identification
scheme, such as those described in Chapter 2. The estimates are then
used to compute the control parameters through (3.2.7)-(3.2.9).

In a direct adaptive control scheme, an identification scheme is
designed that directly identifies the controller parameters ¢g, ¢, dy and
d. A typical procedure is to derive an identifier error signal which
depends linearly on the parameter error ¢. The output error
eo(t) = yu(t) —ym(t) is the basis for output error adaptive control
schemes such as those of Narendra & Valavani [1978], Narendra, Lin, &
Valavani [1980], and Morse [1980]. An output error direct adaptive
control scheme and an indirect adaptive control scheme will be
described in Sections 3.3.2 and 3,3.3, but we will first turn to an input
error direct adaptive control scheme in Section 3.3.1 (this scheme is dis-
cussed in Bodson [1986] and Bodson & Sastry [1987)).

Note that we made the distinction between controller and
identifier, even in the case of direct adaptive control. The controller is
by definition the system that determines the value of the control input,
using some controller parameters as in a nonadaptive context. The
identifier obtains estimates of these parameters—directly or indirectly.

As in Chapter 2, we also make the distinction, within the identifier,
between the identifier structure and the identification algorithm. The
identifier structure constructs signals which are related by some error
equation and are to be used by the identification algorithm. The
identification algorithm defines the evolution of the identifier parame-
ters, from which the controller parameters depend. Given an identifier
structure with linear error equation for example, several identification
algorithms exist from which we can choose (cf. Section 2.3).

Although we make the distinction between controller and identifier,
we will see that, for efficiency, some internal signals will be shared by
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3.3.1 Input Error Direct Adaptive Control

Define
rp = M7y, = M7'P ) (3.3.1)
and let the input error e; be defined by
e = rp—r
= M7 ', —ym) = M () (3.3.2)

where eg =y, - y,, is the output error.

By definition, an input error adaptive control scheme is a scheme
based on this error, or a modification of it.

Input Error and Linear Error Equation

The interest of the input error in (3.3.2) is to lead to a linear error equa-

tion such as studied in Section 2.3 in the context of identification. We

first present an intuitive derivation of this linear error equation.
Consider the matching equality (3.2.6), and divide both sides by

Nd,. Using (3.2.5)

-~

- iy d4° k,h, d
- S kel gl (33.3)
A d, \ dp ki
With the definitions of 2 and M, (3.3.3) becomes
1 - @b o aarth (3.3.4)
A A

We may interpret this last equality as an equality of two polynomial
ratios, but also as an equality of two LTI system transfer functions.
Applying both transfer functions to the signal u, we have
é«t d‘o
= (W) - =
A A
Now, we recall that W € IR?" - [ is given by

- (I - A) " 'by(u)

w:

u - 0p) = c§M ') (3.3.5)

Y (3.3.6)
(ST - A)" ' ()

so that, with (3.3.5)



112 Adaptive Control Chapter 3

75 = Ly L,
A A
= u~-cy M (y,) (3.3.7)
The control input is given by (3.2.20)
u = 6Tw = c0r+0_Tﬁ? (3.3.8)

so that

ol — T — « 3 -1
6w = cor+ 80" w-coM™ (y,)

co(r=M'p)) + 87 W + (co- ) M ™" (1)

= —cog + 07 W + (co-cf) M~ (y,) (3.3.9)
We now define the signal
2T = (1, w7y = (M), % T) € R™ (3.3.10)

so that (3.3.9) becomes
¢ = Tz (3.3.11)
Co

This equation is of the form of the linear error equation studied in Sec-
tion 2.3 (the gain 1/¢, being known may be merged either with ¢; or z,
as will be seen later). It could thus be used to derive an identification
procedure to identify the parameter § directly. As presented, however,
the scheme and its derivation show several problems:

a)  Since the relative degree of M is at least 1, its inverse is not
proper. Although M- 1) is well defined, provided that the argument is
sufficiently smooth, the gain of the operator M'is arbitrarily large at
high frequencies. Therefore, due to the presence of measurement noise,
the use of M ™' is not desirable in practice. Although we will use
M- ') in the analysis, we will consider it not implementable, so that T
and ¢; are not available,

b)  The derivation of the error equation (3.3.11) relies on (3.3.8) being
satisfied at all times. Although this is not a crucial problem, we will dis-
cuss the advantages of avoiding it.

¢) We were somewhat careless with initial conditions, going from
(3.3.4) to (3.3.5), since P may be unstable.
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We now derive a modified input error, leading to a scheme that
does not have the above disadvantages a) and b), and resolve the techni-
cal question in c).

Fundamental Identity

Since M is minimum phase with relative degree n — m, for any stable,
minimum phase transfer function L ~! of relative degree n - m, the
transfer function M L has a proper and stable inverse. For example, we

can let L be a Hurwitz polynomial of degree n ~ m. The signal Lt (rp)
is available since

LY, = ML) ' () (3.3.12)

where (A:Il:)“ !'is a proper, stable transfer function.

Divide both sides of (3.2.6) by Xc?pl: so that it becomes, using
(3.2.5) and the definitions of P and M,

-

L4

-~

A

Consider (3.3.13) as an equality of two transfer functions. The right-
hand side is a stable transfer function, while the left-hand side is possi-

bly unstable (since P is not assumed to be stable).

To transform (3.3.13) into an equality in the time domain, care
must be taken of the effect of the initial conditions related to the

unstable modes of P. These will be unobservable or uncontrollable,
depending on the realization of the transfer function. If the left-hand

side is realized by P followed by

»

1 &

-~

+cyMLY Y|P = L-'-L

(3.3.13)

P

L'Id

-

L]

+ ey (ML)~!

the unstable modes of P will be controllable and, therefore, unobserv-
able.

The operator equality (3.3.13) can then be transformed to a signal
equality by applying both operators to #, so that

d’“t ) A . . Et

- Op)+ (ML) ' (y,) = L~ '(u)-L I-AT(u)+e(l) (3.3.14)
where ¢(¢) reminds us of the presence of exponentially decaying terms
due to initial conditions. These are decaying because the transfer func-
tions are stable and the unstable modes are unobservable. Therefore,

ﬁ_l
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(3.3.14) is valid for arbitrary initial conditions in the realizations of
L-',X,and (ML) ".
Since 8 * is constant, 8 * L ~' (W ) is given by

§ L \w) = L '@"'w)

-
~% *

c

P w2 (y,,)]
A A

L~ '(u) - cy(ML) '(y,) + e1)

| where we used (3.3.14). Define now

(3.3.19)

VL [i-'(r,,),i"(wT)] = [(Mi)-‘(y,,),i“(wT)] e R” (3.3.16)
so that (3.3.15) can be written
L ') = 0% v Zet) (3.3.17)

where 8° is defined in (3.2.7)~(3.2.9), with (3.2.23). Equation (3.3.17) is
essential to subsequent derivations, so that we summarize the result in
the following proposition.

Proposition 3.3.1 Fundamental Identity

Let P and M satisfy assumptions (A1) and (A2). Let L ~! be any stable,

‘ minimum phase transfer function of relative degree n - m. Let v and w
be as defined by (3.3.16) and (3.3.6), with arbitrary initial conditions in

~ the realizations of the transfer functions. Let 6* be defined by (3.2.7)-
( (3.2.9), with (3.2.23).

Then for all piecewise continuousue L, (3.3.17) is satisfied.

Input Error Identifier Structure

Equation (3.3.17) is of the form studied in Section 2.3 for recursive

identification. Both the signal L “Hu) and v are available from meas-

urements, and the expression is linear in the unknown parameter 6*.
Therefore, we define the modified input error to be

e, = 0Ty — L™ '(u)

so that, using (3.3.17)

(3.3.18)

e, = ¢Tv 4+ et) (3.3.19)
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which is of the form of the linear error equation studied in Section 2.3.
Although we considered the input error ¢; not to be available, because it
would require the realization of a nonproper transfer function, the

approximate input error e,, and the signal v are available, given these
considerations.

We also observed in Chapter 2 that standard properties of the
identification algorithms are not affected by the «(¢) term. For simpli-
city, we will omit this term in subsequent derivations. We now consider
the practical implementation of the algorithm, with the required assump-
tions.

Assumptions

The algorithm relies on assumptions (A1)-(A3) and the following addi-
tional assumption.

(A9) Bound on the High-Frequency Gain
Assume that an upper bound on k, is known, that is, that
k, < k max for some k .

The structure of the controller and identifier is shown in Figure 3.5,
while the complete algorithm is summarized hereafter. The need for
assumption (A4), and for the projection of ¢y, will be discussed later, in
connection with alternate schemes. It will be more obvious from the
proof of stability of the algorithm in Section 3.7.

Input Error Direct Adaptive Control Algorithm—Implementation
Assumptions
(A1)-(A4)
Data
h y m ) kmax
Input
r(t), y(t) € R
Output
u(t) e R
Internal Signals
w(t) e R¥ [wi(), wP(t) e R" ]
8(1) e R™ [co(t), doft) e R, c(t), d(1) e R" "]
v(t)e R, ey(t) e R

Initial conditions are arbitrary, except ¢g(0) = € min = Kim/K max > 0.
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o>

Chapter 3

y

(sl-A)" b

A

w2

ez

Figure 3.5: Controller and Input Error Identifier Structures

Design Parameters
Choose

« M (e kp, Ap,d,) satisfying (A2).

« A e RTD"-1 b e R"-!in controllable canonical form,

such that det (s/ - A) is Hurwitz and contains the zeros of Ap(s).

| .. .
* L "' stable, minimum phase transfer function of relative degree

n-m.
* g,v>0.
Controller Structure

W(l) = AW“) + b)\u

W = Aw® 4oy
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07 = (co,cT,dy,dT)
wlh = (r,wD,y,, w®)
u = 60"w
Identifier Structure
v = L) '), L), LNy, L))
ey =0"v-L \u)
Normalized Gradient Algorithm with Projection

é erv
- F L+yvTy
if cg = cmin and ¢g<0 |, then set ¢y = 0.
O
Comments

Adaptive Observer

The signal generators for w!") and w®® ((3.2.17) and (3.2.19)) are almost
identical to those used in Chapter 2 for identification of the plant
parameters (their dimensions are now »n - | instead of n previously).
They are shared by the controller and the identifier. The signal genera-

tors (sometimes called state-variable filters) for w) and w® form a gen-
eralized observer, reconstructing the states of the plant in a specific
parameterization. This parameterization has the characteristic of allow-
ing the reconstruction of the states without knowledge of the parameters.
The states are used for the state feedback of the controller to the input
in a certainty equivalence manner, meaning that the parameters used for
feedback are the current estimates multiplying the states as if they were
the true parameters. The identifier with the generalized observer is
sometimes called an adaptive observer since it provides at the same time
estimates of the states and of the parameters.

Separation of Identification and Control

Although we have derived a direct adaptive control scheme, the
identifier and the controller can be distinguished. The gains ¢, ¢, d,
and 4 serving to generate u are associated with the controller, while
those used to compute e, are associated with the identifier. In fact, it is
not necessary that these be identical for the identifier error to be as
defined in (3.3.19). This is because (3.3.19) was derived using the fun-
damental identity (3.3.17), which is valid no matter how u is actually
computed. In other words, the identifier can be used off-line, without
actually updating the controller parameters if necessary. This is also
useful, for example, in case of input saturation (cf. Goodwin & Mayne
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[1987]). If the actual input to the LTI plant is different from the com-

puted input u = 67w (due to actuator saturation, for example), the
identifier will still have consistent input signals, provided that the signal
u entering the identifier is the actual input entering the LTI plant.

3.3.2 Output Error Direct Adavotive Control

An output error scheme is based on the output error ¢g = y, - y,,. Note
that by applying M L to both sides of (3.3.17), we find

M) = ciy,+ M(6*'%) (3.3.20)

As before, the control input u is set equal to u = 7 w, but now,
this equality is used to derive the identifier error equation
l “ ~ul — ~
€ = Yp-Ym = — M(u-0""%)-M()
€o

= LM ((co-ciyr + (@T-T")W)
€5
= L Ar(eTw) (3.3.21)
€6
which has the form of the basic strictly positive real (SPR) error equa-
tion of Chapter 2. The gradient identification algorithms of Section 2.6
can therefore be used, provided that A is SPR. However, since this
requires M to have relative degree at most 1, this scheme does not work
for plants with relative degree greater than 1.
The approach can however be saved by modifying the scheme, as
for example in Narendra, Lin, & Valavani [1980]. We now review their
scheme for the case when the high-frequency gain k, is known, and we

let ¢ = ¢g.

The controller structure of the output error scheme is identical to
the controller structure of the input error scheme, while the identifier
structure is different. It relies on the identifier error

el = L ML(GTT-v7Tve,) (3.3.22)
o

which is now of the form of the modified SPR error equation of Chapter

2. As previously, v is identical to v, but with the first component
removed. Practically, (3.3.22) is not implemented as such. Instead, we
use (3.3.17) to obtain
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e = L ME@TT -L ')+ SML) ') - v 7TV )

o

vy - L M)+ L ME@TL W) - 47T Te)  (3329)

o Co

. . ~T —
As before, the control signal is set equal to u = 0Tw = cor+ 6'w,
and the equality is used to derive the error equation for the identifier

Yy = M) - - M@T®)+ S ME@ETL T ®) - 17T T e))
co €6

1

€y

Yo = Ym - A= ML ((L'8T - GTL ")) + 777V er) (33.24)
€5 .

Again, the identifier error involves the output error € = Vp = Vm- Thc=7

additional term, which appeared starting with the work of Monopoli

[1974]), is denoted

Vo = L ML(EET - GTL @) + v T e)  (3.3.29)
c6
and the resulting error e; = Y, — ¥ — Y, is called the augmented error, in
contrast to the original output error €y = Yp = Ym-

The error (3.3.22) is of the form of the modified SPR error equa-
tion of Chapter 2 provided that ML is a strictly positive real. tran§fer
function. If this condition is satisfied, the properties of the identifier
will follow and are the basis of the stability proof of Section 3.7.

Assumptions '
The algorithm relies on assumptions (A1)-(A3) and the following
assumption.
(AS5) High-Frequency Gain and SPR Assumptions R
Assume that k, is known and that there exists L~ !, a stable,
minimum phase transfer function of relative degree n-m - 1,
such that ML is SPR.
The practical implementation of the algorithm is summarized hereafter.

Output Error Direct Adaptive Control Algorithm—Implementation

Assumptions
(A1)~(A3), (A5) :
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Data
n,m,k,
Input

r(t), y(t) € R
Qutput

u(t) e R

Internal Signals
w(t)e R [wD(1), wP() e R" 1]
0(t)e R 1 [(c(t),d(t) e R""!, dy(t) € IR]
v(t)e R¥”"-!

e(t), ya(t), ym(t) e R

Initial conditions are arbitrary.
Design Parameters

Choose

« M (i kp, Ap, dp) satisfying (A2) and (AS).

« A e R*-'*"-1 b e IR""! in controllable canonical form,
such that det (s/ — A) is Hurwitz, and contains the zeros of 7,,(s).

« L ! stable, minimum phase transfer function of relative degree
n-m -1, such that ML is SPR.

¢« g,v>0.
Controller Structure

wh = Awh 4 b

w® = Aw® 1+ by,

é—T = (CT, dO’ dT)
W= (w7, W)
co =kn/k,>0

u=clr+0’w

Identifier Structure
7T =LY (w)
Ym = M(r)
Va= S MLL @) -GTL T (F) -7 Tey)
Co
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€1 =Yp—VYm—Va
Gradient Algorithm

6 = -gev
O

Differences Between Input and Output Error

Traditionally, the starting point in the derivation of model reference
adaptive control schemes has been the output error eg = y, — yp,. Using
the error between the plant and the reference model to update controller
parameters is intuitive. However, stability proofs suggest that SPR con-
ditions must be satisfied by the model and that an augmented error
should be used when the relative degree of the plant is greater than 1.
The derivation of the input error scheme shows that model reference
adaptive control can in fact be achieved without formally involving the
output error and without SPR conditions on the reference model.

Important differences should be noted between the input and out-
put error schemes. The first is that the derivation of the equation error
(3.3.24) from (3.3.22) relies on the input signal u being equal to the

computed value u = 87 w, at all times. If the input saturates, updates of
the identifier will be erroneous. When the input error scheme is used,
this problem can be avoided, provided that the actual input entering the
LTI plant is available and used in the identifier. This is because (3.3.19)
is based on (3.3.17) and does not assume any particular value of u. If
needed, the parameters used for identification and control can also be
separated, and the identifier can be used “off-line.”

A second difference appears between the input and output error
schemes when the high-frequency gain k, is unknown, and the relative
degree of the plant is greater than 1. The error e, derived in (3.3.22) is

not implementable if ¢§ is unknown. Although an SPR error equation
can still be obtained in the unknown high-frequency gain case, the solu-
tion proposed by Morse [1980] (and also Narendra, Lin, & Valavani
[1980]) requires an overparameterization of the identifier which excludes
the possibility of asymptotic stability even when persistency of excitation
(PE) conditions are satisfied (cf. Boyd & Sastry {1986], Anderson, Dasg-
upta, & Tsoi [1985]). In view of the recent examples due to Rohrs, and
the connections between exponential convergence and robustness (see
Chapter 5), this appears to be a major drawback of the algorithm.

Another advantage of the input error scheme is to lead to a linear
error equation for which other identification algorithms, such as the
least-squares algorithm, are available. These algorithms are an advanta-
geous alternative to the gradient algorithm. Further, it was shown
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recently that there are advantages of the input error scheme in terms of
robustness to unmodeled dynamics (cf. Bodson [1988]).

In some cases, the input error scheme requires more computations.
This is because the observers for w), w?) are on order n, instead of

n - 1 for the output error scheme. Also, the filter L~ is one order
higher. When the relative degree is 1, significant simplifications arise in
the output error scheme, as discussed now,

Qutput Error Direct Adaptive Control—The Relative Degree 1 Case

The condition that ML be SPR is considerably stronger than the condi-
tion that ML simply be invertible (as required by the input error scheme
and guaranteed by (A2)). The relative degree of L- ! however, is only
required to be n - m - 1, as compared to n — m for proper invertibility.
In the case when the relative degree n — m of the niodel and of the plant

is1,L"'is unnecessary along with the additional signal y,. The output
error direct adaptive control scheme then has a much simpler form, in
which the error equation used for identification involves the output error

ey = ¥, — Ym only. The simplicity of this scheme makes it attractive in
that case. We assume therefore the following:

(A6) Relative Degree 1 and SPR Assumptions
n-m=1,M is SPR.

Output Error Direct Adaptive Control Algorithm, Relative Degree 1—
Implementation

Assumptions
(A1)-(A3), (A6)
Data
n,k,
Input
r(t), »(t) € R
Output
u(t) e R
Internal Signals
w(t) e R* [wi(r), w@(t) e R" 1)
8(t) € R*" [co(t), do(t) e R, c(t), d(t) e R"™ ']
ym(t), eo(t) e R
Initial conditions are arbitrary.
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Design Parameters
Choose
« M (i ky, Aip, dn) satisfying (A2) and (A6).
« A e Ri-!xn-1 p e R*1in controllable canonical form
and such that det (s]—=A) = Ai(s).
.« g>0.
Controller Structure
W = Aw + byu
w® = Aw@ + by,
67 = (¢, cT,dg,d")

wl = (r, wh, y,, w)

u=06"w
Identifier Structure
Ym = M(r)
€0 =Yp—Vm
Gradient Algorithm
6 = — gegw
O
Comment

The identifier error equation is (3.3.24) and is the basic SPR error equa-
tion of Chapter 2. The high-frequency gain k, (and consequently co) can
be assumed to be unknown, but the sign of k, must still be known to

ensure that ¢y >0, so that (1/¢§ )M is SPR.

3.3.3 Indirect Adaptive Control
In the indirect adaptive control scheme presented in this section, esti-
mates of the plant parameters k,, A,, and c?,, are obtained using the
standard equation error identifier of Chapter 2. The controller parame-
ters ¢g, ¢ and d are then computed using the relationships resulting
from the matching equality (3.2.6).

Note that the dimension of the signals w(®), w® used for
identification in Chapter 2 is n, the order of the plant. For control, it is
sufficient that this dimension be n — 1. However, in order to share the

observers for identification and control, we will let their dimension bq n.
Proposition 3.2.1 is still true then, but the degrees of the polynomials



124 Adaptive Control Chapter 3

become, respectively, o = n, 6):0 =n-m, 0§ =n-m, od = n - 1,
and 8¢ = n~1. Since 8d = n -1, it can be realized as d T(s] - A)~'b,
without the direct gain do from y,. This a (minor) technical difference,
and for simplicity, we will keep our previous notation. Thus, we define

7 = (7", dTy e R &7 = " w®") ¢ R (3.3.26)
and

8T

I

(cg,87) e R¥+! wl = (r,w7T) e R¥"*! (3.3.27)
The controller structure is otherwise completely identical to the con-
troller structure described previously,

The identifier parameter is now different from the controller
parameter 6. We will denote, in analogy with (2.2.17)

ol = (aT,bT)
= (a[,”., a,,,”,O,..., b]...., bn) € IRZ" (3.3.28)

Since the relative degree is assumed to be known, there is no need
to update the parameters a,, , ;—so that we let these parameters be zero

in (3.3.28). The corresponding components of w are thus not used for

identification. We let w be equal to w except for those components
which are not used and are thus set to zero, so that

wl o= wiP, ., Wi, ,0,.. ., w?T) € R (3.3.29)

A consequence (that will be used in the stability proof in Section

3.7) is that the relative degree of the transfer function from u — w is at
least n — m.

The nominal value of the identifier parameter =* can be found
from the results of Chapter 2 through the polynomial equalities in
(2.2.5), that is

a'(s) = ai +a3s+ - +ap. " = kyhls)
b's) = bi+bis+ - +brs"t = X(s)-d,(s)  (3.3.30)
The identifier parameter error is now denoted
Y = 7-7" e R” (3.3.31)

The transformation =—>6 is chosen following a certainty
equivalence principle to be the same as the transformation »*— §*, as in
(3.2.7)-(3.2.9). Note that our estimate of the high-frequency gain k, is
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am+- Since ¢§ = ky, / k,, we will let cq = k, / Gm+1. The control input
u will be unbounded if a,, . goes to zero, and to avoid this problem, we
make the following assumption,
(A7) Bound on the High-Frequency Gain

Assume k, = k yin > 0.
The practical implementation of the indirect adaptive control algorithm
is summarized hereafter.

Indirect Adaptive Control Algorithm—Implementation
Assumptions
(A1)-(A3), (AT)
Da:a
n, m, ki
Input
r(), y(t) e R
Output
u(t)e R
Internal Signals
w(t) e R+ [w(r), w®(t) e R"]
0(t) e R+ [co(t) e R, c(t), d(t) e R"]
x(t) e R* [a(t), b(t) e R"]
w(t) e R
yi(t), e3(t) e R
Initial conditions are arbitrary, except a,, 4 1(0) >k min-
Design Parameters
Choose
- M (.e. kp, A, c?,,,) satisfying (A2).
« A € R"™™" b, e IR"in controllable canonical form, such that
det (s] - A) = X(s) is Hurwitz and X(s) = X (5) fips (5).
. g,v>0.
Controller Structure
w® = Aw® 4 by
w® = Aw® 4 byy,
87 = (co, ¢T,dT) = (co, Cps v s Cnsdyy .o, dy)
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wl = (r, w7, y@7)

u=0"w
Identifier Structure
o = (@, bTy=(ay, ..., Gue1,0,.. ., by, ..., by
wo=wb, . ., wid,,0,..., w@
yi=alw

€3 = T w ~-Yp

Normalized Gradient Algorithm with Projection
. e3w
F=-g 3
L+yw T
Ifams1 = kmin and @, .| <0, then let d,,,; = 0.
Transformation Identifier Parameter — Controller Parameter
Let the polynomials with time-varying coefficients
a(s)=ay+ -+ + @y 18" Es)y=ci+ o+ cyst!
b(s)y=by+ - + bys"! d(s)=di+  +dys"!
Divide Xod,, by (X - ), and let § be the quotient.
6 is given by the coefficients of the polynomials

R . 1 P
C=\- a
Am + 1 g
« 1 A A A a
d = (q)\—qb—)\od,,,)
am +1
and by
k
Co = i
am + 1

Transformation Identifier Parameter — Controller Parameter :

We assumed that the transformation from the identifier parameter = to
the controller parameter 9 is performed instantaneously. Note that x-b
is a2 monic polynomial, so that § is also a monic polynomial (of degree
n-m). lIts co?fﬁf:ients can be expressed as the sum of products of
coefficients of Agd,, and X - 5. The same is true for ¢, d, and ¢p with
an additional division by a,,,,. Therefore, given n and m, the transfor-

matjon consists of a fixed number of multiplications, additions, and a
division.
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Note also that if the coefficients of 4 and 5 are bounded, and if
4, +, is bounded away from zero (as is guaranteed by the projection),
then the coefficients of §, ¢, d , and ¢g are bounded. Therefore, the
transformation is also continuously differentiable and has bounded
derivatives.

3.3.4 Alternate Model Reference Schemes

The input error scheme is closely related to the schemes presented in
discrete time by Goodwin & Sin [1984], and in continuous time by
Goodwin & Mayne [1987]. Their identifier structure is identical to the
structure used here, but their controller structure is somewhat different.
In our notation, Goodwin & Mayne choose

_fs)
X(s)L(s)
where 7, X and L are polynomials of degree < n, n, and n - m, respec-
tively. The polynomials A\, L are used for similar purposes as in the
input error scheme. However, except for possible pole-zero cancella-
tions, AL now also defines the model poles in (3.3.32). The filtered
reference input

M@s) = ky (3.3.32)

Fom k8L () (3.3.33)
A(s)
is used as input to the actual controller. Then, the transfer function
r — yp is made to match L ~ I, so that the transfer function from r — y,
is M. Thus, by prefiltering the input, the control problem of matching a
transfer function M is altered to the problem of matching the arbitrary
all-pole transfer function L ~'.

The input error adaptive control scheme of Section 3.3.1 can be
used to achieve this new objective and is represented in Figure 3.6. This
scheme is the one obtained by Goodwin & Mayne (up to a small remain-
ing difference described hereafter). Since the new model is L = !, the new
transfer function M L is equal to 1. Note that, in this instance, the
input and output errors are identical and the input and output error
schemes are very similar. The analysis is also considerably simplified.

Goodwin & Mayne’s algorithms essentially control the plant by
reducing the transfer function to an all-pole transfer function of relative
degree n — m. The additional dynamics are provided by prefiltering the
reference input. Thus, the input error scheme presented in Section 3.3.1
is a more general scheme, allowing for the placement of all the closed-
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Figure 3.6: Alternate Input Error Scheme

loop poles directly at the desired locations without prefiltering.

Note that since identification and control can be separated in the
i_nput error scheme, we may identify 1/c, and 8 /¢, rather than ¢y and
6. This is also shown in Figure 3.6. By dividing the identifier error e,
by co, the appropriate linear error equation may be found and used for
identification.

It is curious to note that the problems encountered are different
depending whether we identify cq or 1/cq. If we identify 1/¢q, as we did
in the indirect scheme, the control input u = cor+6 7w will be
unbounded if the estimate of 1/cq goes to zero. To avoid the zero cross-
ing, we require knowledge of the sign of 1/cq (that is, of k,), and of a
lower bound on 1/cq, that is a lower bound on k, to be used with the
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projection algorithm.

If we identify cq directly, as we did in the input error scheme, a
different problem appears. If ¢y = 0 and 6 =0,then u =0and e; =0
(cf. Figure 3.5). No adaptation will occur (¢ 0), although y, - y,, does
not tend necessarily to zero and may even be unbounded. This is an
identification problem, since we basically lose information in the regres-
sion vector. To avoid it, we require the knowledge of the sign of ¢ (i.e.,
of k,) and a lower bound on cy, therefore an upper bound on k,, to be
used by the projection algorithm.

3.3.5 Adaptive Pole Placement Control
The model reference adaptive control approach requires a minimum

phase assumption on the plant P(s) This results from the necessity to
cancel the plant zeros in order to replace them by the model zeros. One
might consider the approach of letting the model be

W) = k2 e, Ap(s) = Ays)  (3.3.34)

dm(s)
that is, require that only the closed-loop poles be assigned. An adaptive
control based on this idea is called an adaptive pole placement control
algorithm. We now discuss some of the differences between this and the
model reference adaptive control algorithms presented above.
First note that in (3.3.34), the reference model itself becomes adap-
tive, with 7, replaced by its estimated value. Since 7, is unknown a

priori and it is not Hurwitz, it is impossible to choose A = )\Onm as

before. Now, let X be an arbitrary Hurwitz polynomial, and consider the
same controller as previously, so that (3.2.4) is valid. The nominal

values ¢, ¢°, d* such that the closed-loop transfer function is equal to
the M(s) defined in (3.3.34) must satisfy

(X -&%)d, - kA, d* = [ca p ]xa (3.3.35)
m
This equation is a Diophantine equation, that is a polynomial equation
of the form
ag+ by = ¢ (3.3.36)

A necessary condition for a solutlon X,P to exist is that any common
zeroof @, b is also a zero of é. A suﬁicxent condition is simply that d, b
be coprime, in this case, n‘u,d‘p coprime (see lemma A6.2.3 in the



130 Adaptive Control Chapter 3

Appendix for the general solution in that case). Previously, (3.3.35) was
replaced by (3.2.6), with 7, appearing on the right hand side, so that any
common zero of #,, d, was automatically a zero of the right hand side.
Therefore, the solution always existed, although not unique when #,, d,
were not coprime.

An indirect adaptive pole placement control algorithm may be
obtained in a similar way as the indirect model reference adaptive con-
trol algorithm of Section 3.3.3. Then ¢,d are obtained by solving
(3.3.35) with k,, 71, d, replaced by their estimates. A difficulty arises to
guarantee that the estimates of 7,d, are coprime, since the solution of
(3.3.35) will usually not exist otherwise. This was not necessary in the
model reference case where the solution always existed.

Proving stability for an adaptive pole placement algorithm is some-
what complicated. It is often assumed that the input is sufficiently rich
and that some procedure guarantees coprimeness of the estimates.
Nevertheless, these algorithms have the significant advantage of not
requiring minimum phase assumptions. A further discussion is
presented in Section 6.2.2.

3.4 THE STABILITY PROBLEM IN ADAPTIVE CONTROL

Stability Definitions

Various definitions and concepts of stability have been proposed. A
classical definition for systems of the form

x = f(t,x) (3.4.1)
is the stability in the sense of Lyapunov defined in Chapter 1.
The adaptive systems described so far are of the special form

x = f(t,x,r()) (3.4.2)

where r is the input to the system and x is the overall state of the sys-
tem, including the plant, the controller, and the identifier. For practical
reasons, stability in the sense of Lyapunov is not sufficient for adaptive
systems. As we recall, this definition is a local property, guaranteeing
that the trajectories will remain arbitrarily close to the equilibrium, when
started sufficiently close. In adaptive systems, we do not have any con-
trol on how close initial conditions are to equilibrium values. A natural
stability concept is then the bounded-input bounded-state stability (BIBS):
for any r(.) bounded, and xo € IR", the solution x(.) remains bounded.
This is the concept of stability that will be used in this chapter. ’
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The Problem of Proving Stability in Adaptive Control .
The stability of the identifiers presented in Chapter 2 was assess;c} in
theorem 2.4.5. There, the stability of the plant was assumed explicitly.
In adaptive control, the stability of the controllpd plant must be
guaranteed by the identifier, which seriously comphcates the problem.
The stability of the overall adaptive system, which includes the plant, the
controller, and the identifier, must then be considered.

To understand the nature of the problem, we will take a general
approach in this section and consider the generic model reference adap-
tive control system shown in Figure 3.7.

r | MODEL
REFERENCE

y,, | _OUTPUT
-+ p INVERSE M.E‘___EBROH

> (D)<———-—-  MODEL °
REFERENCE ypa + °
INPUT o

ERROR

u PLANT

——%;: }/
uy P u P

OBSERVER OBSERVER
) IE

L_n_f_.. CONTROLLER |@———— IDENTIFER | — »
8 [] ™ IDENTIFIER
m ERROR

Figure 3.7: Generic Model Reference Adaptive Control System

The signals and systems defined previously can be recognized. 6 is the
controller parameter, and = is the identifier parameter. In the case of
direct control, 6 = =, that is, the parameter being identified is directly
the controller parameter. The identifier error may be the output error
eo = Yp—Vms the input error e; = rp—r, Or any other error used for
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identification.

The problem of stability can be understood as follows. Intuitively,
the plant with the control loor will be stable if 6 is sufficiently close to

the true value 6°. However, as we saw in Chapter 2, the convergence of
the identifier is dependent on the stability and persistent excitation of
signals originating from the control loop.

To break this circular argument, we must first express properties of
the identifier that are independent of the stability and persistency of
excitation of these signals. Such properties were already derived in
Chapter 2, and were expressed in terms of the identifier error. Recall

that the identifier parameter error = — =* does not converge to zero but
that only the identifier error converges to zero in some sense. Thus, we
cannot argue that for ¢ sufficiently large, the controller parameter § will
be arbitrarily close to the nominal value that stabilizes the plant-control
loop.

Instead of relying on the convergence of § to 6* to prove stability,
we can express the control signal as a nominal control signal—that makes
the controlled plant match the reference model—plus a control error.
The problem then is to transfer the properties of the identifier to the
control loop, that is, the identifier error to the control error, and prove
stability. Several difficulties are encountered here. First, the transfor-
mation 6(=) is usually nonlinear. In direct adaptive control, the transfor-
mation is the identity, and the proof is consequently simplified. Another
difficulty arises however from the different signals v and w used for
identification and control. A major step will be to transfer properties of
the identifier involving v to properties of the controller involving w.
Provided that the resulting control error is a “small” gain from plant sig-
nals, the proof of stability will basically be a small gain theorem type of
proof, a generic proof to assess the stability of nonlinear time varying
systems (cf. Desoer & Vidyasagar [1975]).

3.5 ANALYSIS OF THE MODEL REFERENCE ADAPTIVE CON-
TROL SYSTEM

We now return to the model reference adaptive control system presented
in Sections 3.1-3.3. The results derived in this section are the basis for
analyses presented in this- and following chaptess. Many identities

involve signals which are not available in practice (since Pis unknown)
but are well defined for the analysis. Most results also rely on the con-
trol input being defined by

gT

U = w
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(CO, CT’ dOa dT)

r, w, y,, w®") (3.5.1)

BT

wT

Error Formulation ‘ '
It will be useful to represent the adaptive system in terms of its devia-

tion with respect to the ideal situation when § = 6°, 'that is, ¢ = 0. Tt}is
step is similar to transferring the equilibrium point of a differential

equation as (3.4.1) to x = 0 bya change of coordinates.
Recall that we defined r, in (3.3.1) as

r, = M7y (3.5.2)

while
Ym = M(r) (3.5.3)
Applying L to (3.3.10), it follows, since 6* is constant, that
u = cor,+06°w (3.5.4)

and, since u is given by (3.5.1),

o= r+ - gTw (3.5.5)
€o
Further, applying M to both sides of (3.5.5)

Vo = Ym+ = M(6TW) (3.5.6)
4
The signal ¢ 7w will be called the control error. We note that the
input error e; = r,—r is directly proportional to the control error ¢Tw
(cf. (3.5.5)), while the output error eq = y, — y, is related to the control
error through the model transfer function M (cf. (3.5.6)).

Since y, = P () = M (rp), the control input can also be expressed in
terms of the control error as

u = P 'M(r,) = ﬁ'lﬂ(r+—!—¢rw) (3.5.7)
u C(')

and the vector w is similarly expressed as
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wih (I -A)"'BP'M |
W o= = M (r+—¢Tw) (3.5.8)

Y, “
W (s - A)" "B M s
while v (cf. (3.3.16)) is given by

1

A (sI—A)“Aka'lM
M -~

(sf -A) ' M

For the purpose of the analysis, we also define (cf. (3.3.10))
|

(r+ L ¢7w) (3.5.9)
Co

- ’p sl -A) b P 'M
2= L) = || = ( )Mk (r + -‘T¢Tw) (3.5.10)
W I - A)"'bM €0

Note that the transfer functions appearing in (3.5.6)—(3.5.10) are all
stable (using assumptions (A1)-(A2) and the definitions of A and L- h.

Model Signals
The model signals are defined as the signals corresponding to the plant
signals when 6 = 6*, that is, ¢ = 0. As expected, the model signals

corrcspond‘ing to y, and r, are y, and r, respectively (cf. (3.5.6) and
(3.5.5)). Similarly, we define

) wih (I -A)"'BP'M
Wy = | Vm = M . (r)
W (sT-A)" "B M
- ;}w ) (3.5.11)
and
| s
A A | SI-A) ' HPTM
v = L Nzp) := L~} ( )Mb* (r)  (3.5.12)
(sI —A) by M
By defining
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’
Wy o= (3.5.13)
Won
we note the remarkable fact that
W = Zm (3.5.14)

Since the transfer functions relating r to the model signals are all
stable, and since r is bounded (assumption (A3)), it follows that all
model signals are bounded functions of time. Consequently, if the
differences between plant and model signals are bounded, the plant sig-
nals will be bounded.

State-Space Description
We now show how a state-space description of the overall adaptive sys-
tem can be obtained. In particular, we will check that no cancellation of

possibly unstable modes occurs when § = 6°.

The plant has a minimal state-space representation [4,, b,,,cpT ] such
that
- Ay(s
P(s) = k, f’( )
dy(s
With the definitions of w¥), w® in (3.2.17)-(3.2.19), the plant with
observer is described by

= ¢J(sI -4,)7"b, (3.5.15)

Xp

w(l)

Apxp+byu

AwD + bou

w® = Aw? + by, = AwD +belx, (3.5.16)

The control input u can be expressed in terms of its desired value,
plus the control error ¢ 7w, as

u = 0Tw = 6"w+9¢Tw (3.5.17)
so that
X%, Ay +bydicl  byeT bdT X,
whh | = bdicl  A+beT bdT|. wb
FYe) ) w®

b)\cg‘ 0 A
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by by
+ | bl eTw+ [ b chr
0 0
- T
Vo = CpXp (3.5.18)

Defining x,, € IR¥~2 to be the total state of the plant and observer, this
equation is rewritten as

Ypw = AmXpy + bW + bycir

Vo = CoXpw (3.5.19)

where 4,, € R¥-2%3-2 p ¢ R3*-? and ¢,, € IR¥~? are defined
through (3.5.18). Since the transfer function from r—y, is M when
¢ = 0, we must have that ¢, (s] — Ap)~'bm = (1/¢8) M(s), that is, that
[Apms by k] is a representation of the model transfer function M,
divided by ¢j. Therefore, we can also represent the model and its out-

put by
Xm = AmXm + bucir

Ym = ChXm (3.5.20)

Note that although the transfer function M is stable, its representa-
tion is non-minimal, since the order of M is n, while the dimension of
Ap is 3n-2. We can find where the additional modes are located by
noting that the representation of the model is that of Figure 3.8. Using
standard transfer function manipulations, but avoiding cancellations, we
get

k, i, X
¢l (ST = Ap) by = (A-C)dp
[ - kynip X g_‘_
(X-¢%d, X

L (3.5.21)
)

and, using the matching equality (3.2.6)
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Figure 3.8: Representation of the Reference Model

Am Ao X
(Sl ~Am) by = L ko 220 = Loy (3.5.22)
C(‘) dm )\)\on,, Co

Thus, the additional modes are those of ):, ):0, and 7,, which are all
stable by choice of X, ):0, and by assumption (Al). In other words, 4,,
is a stable matrix.

Since r is assumed to be bounded and 4,, is stable, the state vector

trajectory x,, is bounded. We can represent the plant states as their
differences from the model states, letting the state error

= X — X € R¥ 72 50 that
¢ = Ape + b,oTw

€ = Vp—Vm = Che (3.5.23)

and
€ = Vp—Vm = %M((brw) = M(L. ¢TW) (3524)
Co Co

which is equation (3.5.6), (derived above) through a somewhat shorter
path.

Note that (3.5.23) is not a linear differential equation representing
the plant with controller, because w depends on e. This can be resolved
by expressing the dependence of w on e as

w = wp,+ Qe (3.5.25)

where
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000
0 01710
I AV
0017
IRlxn IRlxn—l IRlxn-l
an—lxn an—lxn—l IRn—-lxn»l
€ | Rixn Rixn-t  [RIxn-1 = R¥*3"-2 (3.5.26)

IRn—lxn IRn—lxn-l IRn-lxn-l
A differential equation representing the plant with controller is then
é = Ape + bpdTwy, + byod T Qe

o
ey = cle (3.5.27)
where w,, is an exogeneous, bounded input.
Complete Description—Qutput Error, Relative Degree 1 Case

To describe the adaptive system completely, one must simply add
to this set of differential equations the set corresponding to the identifier.
For example, in the case of the output error adaptive control scheme for

relative degree 1 plants, the overall adaptive system (including the plant,
controller and identifier) is described by

é = Ape + bpdTw, + b, 6T Qe

¢ = —gchew, —gcheQe (3.5.28)

As for most adaptive control schemes presented in this book, the adap-
tive control scheme is described by a nonlinear, time varying, ordinary
differential equation. This specific case (3.5.28) will be used in subse-
quent chapters as a convenient example.

3.6 USEFUL LEMMAS

The following lemmas are useful to prove the stability of adaptive con-
trol schemes. Most lemmas are inspired from lemmas that are present
in one form or another in existing stability proofs. In contrast with Sas-
try [1984] and Narendra, Annaswamy, & Singh [1985], we do not use
any ordering of signals (order relations o(.) and O(.)), but keep relation-
ships between signals in terms of norm inequalities.

The systems considered in this section are of the general form

y = H(u) (3.6.1)
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where H : L,,— L, is a SISO causal operator, that is, such that
yi = (Hu)), (3.6.2)

for all u € L, and for all £ 20. Lemmas 3.6.1-3.6.5 further restrict
the attention to LTI systems with proper transfer functions H (s).

Lemma 3.6.1 is a standard result in linear system theory and relates
the L, norm of the output to the L, norm of the input.

Lemma 3.6.1 Input/Output Lp Stability

Lety = H(u), where Hisa proper, rational transfer function. Let /& be
the impulse response corresponding to H.

If H is stable

Then forallp € [1,00]andforallu € L,

Wyl < WAkl ull, + 1l el (3.6.3)
forallu e L,

Ly < LAl ullg + 1) (3.6.4)
for all ¢ = 0, where €(¢) is an exponentially decaying term due
to the initial conditions.

Proof of Lemma 3.6.1 cf. Desoer & Vidyasagar [1975]}, p. 241.

It is useful, although not standard, to obtain a result that is the con-
verse of lemma 3.6.1, that is, with u and y interchanged in (3.6.3)-
(3.6.4). Such a lemma can be found in Narendra, Lin, & Valavani
[1980], Narendra [1984], Sastry [1984], Narendra, Annaswamy, & Singh

[1985), for p = co. Lemma 3.6.2 is a version that is valid for
p € [1,00], with a completely different proof (see the Appendix).

Note that if H is minimum phase and has relative degree zero,
then it has a proper and stable inverse, and the converse result is true by

lemma 3.6.1. If H is minimum phase, but has relative degree greater
than zero, then the converse result will be true provided that additional
conditions are placed on the input signal u. This is the result of lemma

3.6.2,

Lemma 3.6.2 Output/Input Lp Stability

Let y = H(u), where His a proper, rational transfer function. Let
p € [l,00]
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If H is minimum phase
For some ky, k; 2 0, forall u, 1 € L,, and forallt 2 0

Il < killwll, + k2 (3.6.5)

Then  there exist a;,a; = 0 such that

lwl, < aill vl + a2 (3.6.6)
forallz 2 0.
Proof of Lemma 3.6.2 in Appendix.

It is also interesting to note the following equivalence, related to
L, norms. For alla, b € L.

la@) skl bl +ke Iff Jlally, < kill bl + k2 (3.67)
The same is true if the right-hand side of the inequalities is replaced by
any positive, monotonically increasing function of time. Therefore, for
D = oo, the assumption (3.6.5) of lemma 3.6.2 is that u is regular (cf.
definition in (2.4.14)). In particular, lemma 3.6.2 shows that if u is reg-

ular and y is bounded, then u is bounded. Lemma 3.6.2 therefore leads
to the following corollary.

Corollary 3.6.3 Properties of Regular Signals

Lety = I:I(u), where H is a proper, rational transfer function. Let H be
stable and minimum phase and y € Loe
(a) If  wuis regular

Then |u(t)| < ayl| y|l,+a, forallz20.
(b) If  uis bounded and His strictly proper

Then y is regular.
(©) If  uisregular

Then y is regular.
The properties are also valid if ¥ and y are vectors such that each com-
ponent y; of y is related to the corresponding u; through y; = H ().
Proof of Corollary 3.6.3 in Appendix.

In Chapter 2, a key property of the identification algorithms was

obtained in terms of a gain b¢longing to L,. Lemma 3.6.4 is useful for

such gains appearing in connection with systems with rational transfer
function H.
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Lemma 3.6.4
Lety = H (u), where H is a proper, rational transfer function.
If H is stable, u € Lo and forsome x e L __,

lu(@)] < Bl Xl + Balt) (3.6.8)

for all ¢ = 0 and for some 8,8, € L,
Then  there exist v;,v2 € L, such that, forall¢ 2 0

Iy < vi®ll Xl + 72 | (3.6.9)

If in addition, either H is strictly proper,
or 81,8, € L, and B1(t),B(t) > Oast — o0
Then ~y,v2 € L and v(?),v2(t) > Oast - oo

Proof of Lemma 3.6.4 in Appendix.

The following lemma is the so-called swapping' lemmq (Morse
[1980]), and is essential to the stability proofs presented in Section 3.7.

Lemma 3.6.5 Swapping Lemma

Let ¢,w: R, - R" and ¢ be differentiable. Let H be a proper,
rational transfer function.

If H is stable, with a minimal realization
H = cTGI-4)"'b +d (3.6.10)
Then
AT ¢)-HW )¢ = H.(Hy(w)é) (3.6.11)
where

Hy = (I-4)"'b A = -cT(I-4)""  (36.12)

Proof of Lemma 3.6.5 in Appendix.

Lemma 3.6.6 is the so-called small gain theorem (Desoer &
Vidyasagar [1975]) and concerns general nonlinear time-varying systems
connected as shown in Figure 3.9.

Roughly speaking, the small gain theorem states that the system of
Figure 3.9, with inputs u;,u; and outputs y;,y, is BIBO stable, pro-
vided that H, and H, are BIBO stable and provided that the product of
the gains of H, and H, is less than 1.
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Figure 3.9: Feedback System for the Small-Gain Theorem

Lemma 3.6.6 Small Gain Theorem

Consider the system shown in Figure 3.9. Let pe[l,on]. Let H,,
Hjy: Ly, — L, be causal operators. Let ey, e; € L,, and define u,, u, by

uy = e + Hy(ey)
u, = e; - Hy(ey) (3.6.13)
Suppose that there exist constants 8, 8, and v;, v, = 0, such that

I Hie) l = viltey,ll + 8

| Ha(e) ]l £ 72 e, I + B8, forallt =0 (3.6.14)
If Y1 72<1
Then
el < (1=vivd™ ' (L u, b + vall ua, |l + B2 + v2B1)
leayll < (L=viv) ™l ug Il + vill wy, || + 81 + vi82) (3.6.15)
for all £ = 0.
If in addition, u;, u; € L,

Then e, e,, »i = Hi(ey), y1 = Hy(e;) € L, and (3.6.15) is valid with
all subscripts ¢ dropped.

Proof of Lemma 3.6.6 cf. Desoer & Vidyasagar [1975], p. 41.
3.7 STABILITY PROOFS

3.7.1 Stability—Input Error Direct Adaptive Control
Tpe followiqg theorem is the main stability theorem for the input error
direct adaptive control scheme. It shows that, given any inijtial condi-

tion ;md any bounded inp'u.t r(t), the states of the adaptive system
remain bounded (BIBS stability) and the output error tends to zero, as
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{ - oo . Further, the error is bounded by an L, function.

We also obtain that the difference between the regressor vector v
and the corresponding model vector v,, tends to zero as  — Q0 and is in
L,. This result will be useful to prove exponential convergence in Sec-
tion 3.8.

We insist that initial conditions must be in some small Bj, because
although the properties are valid for any initial conditions, the conver-
gence of the error to zero and the L, bounds are not uniform globally.
For example, there does not exist a fixed L, function that bounds the
output error no matter how large the initial conditions are.

Theorem 3.7.1
Consider the input error direct adaptive control scheme described in
Section 3.3.1, with initial conditions in an arbitrary Bj.

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error eg = ¥, —¥m € L and tends to zero as ! — CO;
the regressor error v — v,, € L, and tends to zero as { — QO .

Comments

The proof of the theorem is organized to highlight the main steps that
we described in Section 3.4.

Although the theorem concerns the adaptive scheme with the gra-
dient algorithm, examination of the proof shows that it only requires the
standard identifier properties resulting from theorems 2.4.1-2.4.4.
Therefore, theorem 3.7.1 is also valid if the normalized gradient algo-
rithm is replaced by the normalized least-squares (LS) algorithm with
covariance resetting.

Proof of Theorem 3.7.1

(a) Derive properties of the identifier that are independent of the bounded-
ness of the regressor—Existence of the solutions.

Properties obtained in theorems 2.4.1-2.4.4 led to
16Ty =8 vl 80|
B e LN Loo
¢ e L . éeLinLy
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cot) 2 Ccpin >0 forallt =0 3.7.1)

The inequality for co(¢) follows from the use of the projection in the
update law.

The question of the existence of the solutions of the differential
equations describing the adaptive system may be answered as follows.
The proof of (3.7.1) indicates that ¢ € Loo as long as the solutions exist.
In fact, | ¢ (¢)] <| #(0)], so that |8(t)] < 8" + |¢(0)| for all ¢=0.
Therefore, the controlled system is a linear time invariant system with a
linear time varying controller and bounded feedback gains. From propo-
sition 1.4.1, it follows that all signals in the feedback loop, and therefore
in the whole adaptive system, belong to L e
(b) Express the system states ai:d inputs in term of the control error.

This was done in Section 3.5 and led to the control error ¢/ w, with
|

r,o=r+—¢'w
6
u = P'M(r,)
~ l N
Yp = M(rp) = Vm t _‘M(d)rw)
4i}
(SI-A)"'bP~'M )
w o= M - (r)) = mer(’p)
(SI—A)_lb)\M
= Tt Hy (- TW) (3.7.2)
€o

where the transfer functions M and ﬁw,,,r are stable and strictly proper.

(c) Relate the identifier error to the control error.
The properties of the identifier are stated in terms of the error

¢Tv = ¢T L ~!(z), while the control error is ¢"w. The relationship
between the two can be examined in two steps.

(c1) Relate ¢"w to ¢7z
Only the first component of w, namely r, is different from the first com-
ponent of z, namely, r,. The two can be related using (3.5.4), that is

u = cir, + g w (3.7.3)

and using the fact that the control input
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u = cor+6’w (3.7.4)
to obtain
ryo= s cor+3Tw) = r+ - oTw (3.7.5)
<) o
and
- LT = r-- Tz 3.7.6
r-CO(covrpd)w) rp COd)z (3.7.6)

It follows that

Lotw = Ly, (3.7.7)
cd )

(c2) Relate ¢7z to ¢7v = ¢T L "' (2)

This relationship is obtained through the swapping lemma (lemma
3.6.5). We have, with notation borrowed from the lemma

L‘“(;‘; 67z) = ;';Mv +L‘;‘(£b“(z7)(—;%)) (3.7.8)

and, using (3.7.7) with (3.7.8)

LM (67w) .

ML@E (L oTw)) = MLE (L 672))
* Co
Co Co

]

ML (5 o™+ MLL (L (S 3.79)

With (3.7.2), this equation leads to Figure 3.10. It represents the

plant as the model transfer function with the control error ¢Tw in feed-
back. The control error has now been expressed as a function of the

identifier error ¢7 v using (3.7.9).

The gain ¢7 operating on v is equal to the gain 8 operating on
| vill o » and this gain belongs to L,. On the other hand, ¢ € Ly, so
that any of its component is in L,. In particular ¢ € L,. Also,
¢o(t) 2 Cpmins SO that 1/co € L_ . Thus, d/dt(¢/co) € Lo Therefore,
in Figure 3.10, the controlled plant appears as a stable transfer function
M with an L, feedback gain.

(d) Establish the regularity of the signals.

The need to establish the regularity of the signals can be understood
from the following. We are not only concerned with the boundedness of
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Figure 3.10: Representation of the Plant for the Stability Analysis

the output y, but also of all the other signals present in the adaptive sys-
tem. By ensuring the regularity of the signals in the loop, we guarantee,
using lemma 3.6.2, that boundedness of one signal implies boundedness
of all the others.

Now, note that since ¢ e Loo, the controller parameter 8 is also
bounded. It follows, from proposition 1.4.1, that all signals belong to
L

e’

Recall from (3.7.5) that

ry = —r+—¢’W (3.7.10)

Note that ¢q and r are bounded, by the results of (a) and by assumption
(A3). w is related to r, through a strictly proper, stable transfer function

Section 3.7 Stability Proofs 147

(cf. (3.7.2)). Therefore, with (3.7.10) and lemma 3.6.1
|| < k@7 w)ll, +k

d — -7 —

—w| <k w + k 3.7.11
|2 ®] < k@), (3.7.11)
for some constant kK =0. To prevent proliferation of constants, we will
hereafter use the single symbol k, whenever such an mequallty is valid
for some positive constant.

Since ¢ is bounded, the last inequality implies that
d _
| =~ p wl < kllw, |l + k (3.7.12)

that is, that w is regular.
Similarly, since ¢ and ¢ are bounded and using (3.7.1 1)

l(—¢ Wl +le” ( W)

A

1L GTw)

IA

k6T ®)llo, + K (3.7.13)

so that ¢ 7 W is also regular.
The output y, is given by (using (3.7.10))

Yy = M) = = Mo + - M@TH)  (3.7.14)
€ <o

where M (cor) is bounded. Using lemma 3.6.2, with the fact that o7 W is
regular and then (3.7.14)

167w < k| M@T#))llg + &
kll 7o llgo + *Il B2(cor)ill o + K

kil vpll o + K (3.7.15)
hence, with (3.7.10) and (3.7.11)

ol S kN @ Tl + k< kllpplly + K
|w] < k| yp‘||°°+k (3.7.16)

IA

A

Inequalities in (3.7.16) show that the boundedness of y, implies the

boundedness of r,, W,u, ..., and therefore of all the states of the adap-
tive system.
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It also follows that v is regular, since it is the sum of two regular
signals, specifically

[ 7 -1
RN NG
| [-'%
-~ C A -
L2y L“—‘_—¢TW
= o + Aco 3.7.17)
-0 L~'w

where the first term is the output of Lt (a stable and strictly proper,
minimum phase LTI system) with bounded input, while the second term

is the output of L ~! with a regular input (cf. corollary 3.6.3).

(e) Stability proof. l .
Since v is regular, tte,ofe!; 2.4.6 shows that §—0 as t -oo. From

(3.7.2) and (3.7.9)

1 -
VYm t+ _T M(¢TW)
Co

Yo

Y +A‘4£(—CIE ¢Tv)+ML‘L‘;‘(L‘,;'(zT)(—f—)) (3.7.18)
0

We will now use the single symbol 8 in inequalities satisfied for some
function satisfying the same conditions aslg} that is 8 ¢ LN L_ and

B(t)—~0,as t >0 .
The transfer functions M f,, f,b“l and f,c"l, are all stable and the

last two are strictly proper. The gain —cl— is bounded by (3.7.2), because

- . . 0
of the projection in the update law. Therefore, using results obtained so
far and lemmas 3.6.1 and 3.6.4

1Yo =vml S Bl vl + Bl zlly, + 8
< Bllrylly + Bl il + 8
Bl o ll o + B
< Bl G-Vl + B (3.7.19)

Recall that since e L oo all signals in the adaptive system belong
to LQo . On the other hand, for T sufficiently large, 3(t 2T) <.

e

I\
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Therefore, application of the small gain theorem (lemma 3.6.6) with
(3.7.19) shows that y,-y, is bounded for ¢ 2 T. But since yp,
Ym € L, it follows that y, € L oo Consequently, all signals belong

toL .
Qo
From (3.7.19), it also follows that ey = y, — ¥ € L2, and tends to
zero as { — oo . Similarly, using (3.5.9), (3.5.12) and (3.7.9)
1 ~ -~
_ I-A)"'bP'M
Vo=V, + )7 )
(sI -A) "hyM

(LT + £ (L5 '@ )) (3.7.20)
Co Co

so that v - v,, also belongs to L, and tends to zero, as ¢ = o .
3.7.2 Stability—Output Error Direct Adaptive Control

Theorem 3.7.2
Consider the output error direct adaptive control scheme described in
Section 3.3.2, with initial conditions in an arbitrary By.

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error g = ¥, -~ ¥m € L and tends to zero as { - oo
the regressor error L ~'(w) - L ~!(w,,) € L, and tends to zero
ast—->qo.

Procf of Theorem 3.7.2

The proof is very similar to the proof for the input error scheme, and is
just sketched here, following the steps of the proof of ‘theorem 3.7.1.

(a) We now have, instead
e, ¢ e L
e, € Ly (3.7.21)

Note that these results are valid, aLthough the realization of M is not
minimal (but is stable). '
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(b) As in theorem 3.7.1.

(c) Since ¢y = ¢g, (3.7.9) becomes
L aGTw)
€o
A A l PSS A _ A 1 -
- LRV + LHLESN L F D)) (1.22)
<o o
(d) Asin theorem 3.7.1, it follows that w is regular—cf. (3.7.12). Unfor-

tunately, ¢’ w is not necessarily regular because ¢ is not bounded.
However, we will show that (3.7.16) still holds, which is all we will need
for the stability proof.

To prove (3.7.16), first note that lemma 3.6.2 may be modified as
follows.

If there exists z € L, , k3 = 0 such that (3.6.5) is replaced by

ladl, < ki Nudlp + k2 + ksllzd]l, (3.7.23)
then lemma 3.6.2 is valid with (3.6.6) replaced by

ludly < ay vy + a2 + asflzl, (3.7.24)

for some a3 = 0. We leave it to the reader to verify this new version of
the lemma.

Now, recall that

_ w( (sI - A ' by (u)
A N Yo (3.7.25)
w'? (I - A by ()
so that
w2l < k lly,ll + & (3.7.26)
To apply the modified lemma 3.6.2, we note from (3.7.25) that
w@® = Pwh) (3.7.27)

where P is minimum phase. Further

(D

W = AwD v byu = AW+ begr+ b 8T W (3.7.28)

It follows that

Wl S K Iwily + k + k(WP + pll, ) (3.7.29)
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and, applying the modified lemma 3.6.2
IwPlly = Kk WPl + K Wyl + & (3.7.30)
Putting (3.7.30) with (3.7.25)-(3.7.26)
1Fdlee = Wl + I¥allo + 1w 2l

< kypll + & . (3.7.31)

which is equivalent to (3.7.16) (cf. (3.6.7)).

(e) Recall, from (3.3.16) and the definition of the gradient update law,
that

LA:[IA,(J;TV) = e+ LML ve)
¢ €5

e, - ML(s V) (3.7.32)
&co

so that, with (3.7.22)

Vo-Vm = —ME@TF)+ L MEL(E L FTE))

L d

o o

- e~ L ML@7)+ ~ML(L (L7 ' (FTYe) (3.7.33)
8¢5 €6
Recall that e; is bounded (part (a)) and that ML is strictly proper (in
the output error scheme). The proof can then be completed as in
theorem 3.7.1. O

3.7.3 Stability—Indirect Adaptive Control

Theorem 3.7.3

Consider the indirect adaptive control scheme described in Section
3.3.3, with initial conditions in an arbitrary B, .

Then
(a) all states of the adaptive system are bounded functions of time.
(b) the output error ¢y = y, - y,, € L,, and tends to zero as ¢t - 0o

the regressor error w ~ w,, € L,, and tends to zero as { - oo .
Proof of Theorem 3.7.3 in Appendix. .
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Comments
Compared with previous proofs, the proof of theorem 3.7.3 presents
additional complexities due to the transformation r— 8. A major step is
to relate the identification error 7 W to the control error ¢7 w. We now
discuss the basic ideas of the proof, The exact formulation is left to the
Appendix.

To understand the approach of the proof, assume that the parame-
ters = and @ are fixed in time and that k, is known. For simplicity, let
k, = @41 = kyy = 1. The nominal values of the identifier parameters
are then given by

&>

as =,
b - X-4,

The controller parameters are given as a function of the identifier

parameters through

¢ = N-4gd
d = gx - Gb - Nod,, (3.7.34)
while the nominal values are given by

= X-§% = N-§

d* = ¢'N-§b" - Nodn = §d, -

>

0dm (3.7.35)
It follows that

ga-4qa" = XN=-8) -G, = ~(¢ -+ (X -8 - dA,
= —@-&+@ -DA, (3.7.36)
and
gb - Gb* = G\ —d - Xodp - G\ + dd,
= -@d-d)+(-d* - Xodp + dd,)
= -(d-dy+(@-dHd, (3.7.37)
Therefore
gldzd, bt ﬂl - - [5 & d=d | g
A X d, A A4,

This equality of polynomial ratios can be interpreted as an operator
equality in the Laplace transform domain, since we assumed that the
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parameters were fixed in time. If we apply the operator equality to the
input u, it leads to (with the definitions of Section 3.3)

q@Tw) = -¢’w (3.7.39)
and, consequently

L oen 7
Yp=Ym = —— MG’ w) (3.7.40)
o :

Since the degree of § is at most equal to the relative degree of the
plant, the transfer function MG is proper and stable. The techniques
used in the proof of theorem 3.7.1 and the properties of the identifier
would then lead to a stability proof.

Two difficulties arise when using this approach to prove the stabil-
ity of the indirect adaptive system. The first is related to the unknown
high-frequency gain, but only requires more complex manipulations.
The real difficulty comes from the fact that the polynomials 4, 4, b, ¢,
and d vary as functions of time. Equation (3.7.38) is still valid as a
polynomial equality, but transforming it to an operator equality leading
to (3.7.40) requires some care.

To make sense of time varying polynomials as operators in the
Laplace transform domain, we define

)

1

S
5, = | (3.7.41)

sn—l

so that

a(s) = a’s, a6) aT[—f] (3.7.42)

A(s)

Consider the following equality of polynomial ratios
- as) _ bs)
X(s) X(s)

where 4 and vary with time but X is a constant polynomial. Equality
(3.7.43) implies the following operator equality

(3.7.43)
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a” [if—(.)] - les—f(.)l (3.7.44)
A A
Similarly, consider the product

4s) . bi) (3.7.45)
A(s)  A(s)
This can be interpreted as an operator by multiplying the coefficients of
the polynomials to lead to a ratio of higher order polynomials and then
interpreting it as previously. We note that the product of polynomials
can be expressed as

as)b(s) = a7G,80)b (3.7.46)

so that the operator corresponding to (3.7.45) is

s AT
PLAN ISLIRNCLIPR S (3.7.47)
X X

i.e. by first operating the matrix transfer function on the argument and
then multiplying by @ and 4 in the time domain. Note that this opera-
tor is different from the operator

- | a7
al |22 E)%'—(.)b (3.7.48)

-~

but the two operators can be related using the swapping lemma (lemma
3.6.5).

3.8 EXPONENTIAL PARAMETER CONVERGENCE

Exponential convergence of the identification algorithms under per-
sistency of excitation conditions was established in Sections 2.5 and 2.6.
Consider now the input error direct adaptive control scheme of Section
3.3.1. Using theorem 2.5.3, it would be straightforward to show that the
parameters of the adaptive sysiem converge exponentially to their nomi-
nal values, provided that the regressor v is persistently exciting. How-
ever, such result is useless, since the signal v is generated inside the
adaptive system and is unknown a priori. Theorem 3.8.1 shows that it is
sufficient for the model signal w,, to be persistently exciting to guarantee
exponential convergence.

Note that in the case of adaptive control, we are not only interested
in the convergence of the parameter error to zero, but also in the conver-
gence of the errors between plant states and model states. In other
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words, we are concerned with the exponential stability of the overall
adaptive system,

Theorem 3.8.1

Consider the input error direct adaptive control scheme of Section 3.3.1.
If Wp, is PE

Then  the adaptive system is exponentially stable in any closed ball.

Proof of Theorem 3.8.1 : ?

Since w,,, w, are bounded, lemma 2.6/ implies that v,, = L Yz,
=L~ '(W,,) is PE. In theorem 3.7.1, we found that v -v,, € L,. There-
fore, using lemma 2.6 4, v,, PE implies that v is PE. Finally, since v is
PE, by theorem 2.5.3, the parameter error ¢ converges exponentially to
Zero.

Recall that in Section 3.5, it was established that the errors between
the plant and the model signals are the outputs of stable transfer func-
tions with input ¢”w. Since w is bounded (by theorem 3.7.1), $Tw con-
verges exponentially to zero. Therefore, all errors between plant and
model signals converge to zero exponentially fast. [0

Comments

Although theorem 3.8.1 establishes exponential stability in any closed
ball, it does not prove global exponential stability. This is because
V =V, is not bounded by a unique L, function for any initial condition.
Results in Section 4.5 will actually show that the adaptive control system
is not globally exponentially stable.

The various theorems and lemmas used to prove theorem 3.8.1 can
be used to obtain estimates of the convergence rates of the parameter
error. It is, however, doubtful that these estimates would be of any prac-
tical use, due to their complexity and to their conservatism. A more
successful approach is that of Chapter 4, using averaging techniques.

The result of theorem 3.8.1 has direct parallels for the other adap-
tive control algorithms presented in Section 3.3.

Theorem 3.8.2

Consider the output error direct adaptive control scheme of Section
3.3.2 (or the indirect scheme of Section 3.3.3).

If Wy is PE (W, is PE)
Then  the adaptive system is exponentially stable in any closed ball.

4
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Proof of Theorem 3.8.2

The proof of theorem 3.8.2 is completely analogous to the proof of
theorem 3.8.1 and is omitted here, O

3.9 CONCLUSIONS

In this chapter, we derived three model reference adaptive control
schemes. All had a similar controller structure but different
identification structures. The first two schemes were direct adaptive
control schemes, where the parameters updated by the identifier were the
same as those used by the controller. The third scheme was an indirect
scheme, where the parameters updated by the identifier were the same as
those of the basic identifier of Chapter 2. Then, the controller parame-
ters were obtained from the identifier parameters through a nonlinear
transformation resulting from the model refezence control objective.

We investigated the connections between the adaptive control
schemes and also with other known schemes. The difficulties related to
the unknown high-frequency gain were also discussed. The stability of
the model reference adaptive control schemes was proved, together with
the result that the error between the plant and the reference model con-
verged to zero as ¢ approached infinity. We used a unified framework
and an identical step-by-step procedure for all three schemes. We
proved basic lemmas that are fi ndamental to the stability proofs and we
emphasized a basic intuitive idea of the proof of stability, that was the
existence of a small loop gain appearing in the adaptive system.

The exponential parameter convergence was established, with the
additional assumption of the persistency of excitation of a model regres-
sor vector. This condition was to be satisfied by an exogeneous model
signal, influenced by the designer and was basically a condition on the
reference input.

An interesting conclusion is that the stability and convergence pro-
perties are identical for all three adaptive control schemes. In particular,
the indirect scheme had the same stability properties as the direct
schemes. Further, the normalized gradient identification algorithm can
be replaced by the least squares algorithm with projection without alter-
ing the results. Differences appear between the schemes however, in
connection with the high-frequency gain and with other practical con-
siderations.

The input error direct adaptive control scheme and the indirect
scheme are attractive because they lead to linear error equations and do
not involve SPR conditions. Another advantage is that they allow for a
decoupling of identification and control useful in practice. The indirect
scheme is quite more intuitive than the input error direct scheme,
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although more complex in implementation and especially as far as th_e
analysis is concerned. The final result however shows that stability is
not an argument to prefer one over the other.

The various mode! reference adaptive control scheme§ also shqwed
that the model reference approach is not bound to the choice of a direct
adaptive control scheme, to the use of the output error in the
identification algorithm, or to SPR conditions on the reference model.



CHAPTER 4

PARAMETER CONVERGENCE
USING AVERAGING TECHNIQUES

4.0 INTRODUCTION
Averaging is a method of analysis of differential equations of the form
X = ef(t, x) (4.0.1)

and relates properties of the solutions of system (4.0.1) to properties of
the solutions of the so-called averaged system

Xov = efaXay) (4.0.2)
where
o+ T
fulx) = lim -lf [ 1G,x)dr (4.0.3)
Two I |

assuming that the limit exists and that the parameter ¢ is sufficiently
small. The method was proposed originally by Bogoliuboff & Mitropol-
skii [1961], developed subsequently by Volosov [1962], Sethna [1973],
Balachandra & Sethna [1975] and Hale [1980]; and stated in a geometric
form in Arnold [1982] and Guckenheimer & Holmes [1983].

Averaging methods were introduced for the stability analysis of
deterministic adaptive systems in the work of Astrom [1983], Astrom
[1984], Riedle & Kokotovic [1985] and [1986], Mareels et al [1986], and
Anderson et al [1986]. We also find early informal use of averaging in
Astrom & Wittenmark [1973], and, in a stochastic context, in Ljung &
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Soderstrom [1983] (the ODE approach).

Averaging is very valuable to assess the stability of adaptive sys-
tems in the presence of unmodeled dynamics and to understand mechan-
isms of instability. However, it is not only useful in stability problems,
but in general as an approximation method, allowing one to replace a
system of nonautonomous (time varying) differential equations by an
autonomous (time invariant) system. This aspect was emphasized in Fu,
Bodson, & Sastry [1986], Bodson et al [1986], and theorems were
derived for one-time scale and two-time scale systems such as those aris-
ing in identification and control. These results are reviewed here,
together with their application to the adaptive systems described in pre-
vious chapters. Our recommendation to the reader not familiar with
these results is to derive the simpler versions of the theorems for linear
periodic systems. In the following section, we present examples of
averaging analysis which will help to understand the motivation of the
methods discussed in this chapter.

4.1 EXAMPLES OF AVERAGING ANALYSIS

One-Time Scale Averaging
Consider the /inear nonautonomous differential equation

X = —esin¥(t)x x(0) = xo 4.1.1)

where x is a scalar. This equation is a special case of the parameter
error equation encountered in Chapter 2

6 = —gwt)wi(t) ¢ #(0) = oo (4.1.2)

and corresponds to the identification of a single constant §* from meas-
urements of

y(t) = 6" sin (¢) (4.1.3)

using a gradient update law. The general solution of a first order linear
differential equation of the form

X = a(t) x x(0) = xo 4.1.4)

is known analytically, and is given by
{ a(r) dr

x(t) = e Xo 4.1.5)

In particular, the solution of (4.1.1) i$ simply
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] 1]
— ¢ [ sin¥s) dr —ef (£ - L cos@n)yar
x(t) = e l Xo=¢ lz 2 X0
! [
- ¢— + — sin (21)
=e 2 4 Xo (4.1.6)

Note that when we replaced sin%(r) by —;— - —%—cos (27) in (4.1.6), we

separated the integrand into its average and periodic part. Indeed, for
all 7, x

1 lo +T l
lim — sinf(r)x dr = —x 4.1.7

Therefore, the averaged system defined by (4.0.2)~(4.0.3) is now given by

Yo = =5 X Xa(0) = X (4.1.8)

The solution of the averaged system is

- €

L
xp(t) = e % xq (4.1.9)

Let us now compare the solutions of the original system (4.1.6) and
of the averaged system (4.1.9). The difference between the solutions, at
a fixed ¢

! € .
) r sin(2t)

[ x(2) - xa0(?)] = € “Je - 1] (4.1.10)

- 1%sin(2t)| ase— 0 (4.1.11)

In other words, the solutions are arbitrarily close as ¢ - 0, so that we
may approximale the original system by the averaged system. Also, both
systems are exponentially stable (and if we were to change the sign in the
differential equation, both would be unstable). As is now shown, the
convergence rates are also identical.

Recall that the convergence rate of an exponentially stable system
is the constant « such that the solutions satisfy

| x(t)] s me 70 x(t0)] (4.1.12)

for all x(fp), 2o =0. A graphical representation may be obtained by
plotting In(] x(¢)| ), noting that
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In(| x(£)] 3) < In(m?| x(to)| ?) - 2a(t - to) (4.1.13)

Therefore, the graph of In(] x(¢)| %) is bounded by a straight line of
slope ~2a. In the above example, the original and the averaged system
have identical convergence rate « = —;—
In this chapter, we will prove theorems stating similar results for
more general systems. Then, the analytic solution of the original system
is not available, and averaging becomes useful. The method of proof is
completely different, but the results are essentially the same: closeness
of the solutions, and closeness of the convergence rates as ¢ — 0. We
devote the rest of this section to show how the averaged system may be
calculated in more complex cases, using frequency-domain expressions.
c .
One-Time Sale Averaging—Multiple Frequencies
Consider the system

x = —ewXt)x (4.1.14)

where x € IR, and w contains multiple frequencies

w(t) = zn: ay sin (wi t + o) (4.1.15)
k=1

To define the averaged system, we need to calculate the average
to+ T

m 4 [ wie)dr (4.1.16)
Lo

AVG (wi(t)) = i

T - Q0 T
Expanding w? will give us a sum of product of sin’s at the frequencies
wg. However, a product of two sinusoids at different frequencies has
zero average, so that

n a2
AVG (W¥1)) = I Tk (4.1.17)
k=1
and the averaged system is
n a2
) Y = —€| D Tk Xay (4.1.18)

k=1

The averaged system is exponentially stable as soon as w contains at
least one sinusoid. Note also that the expression (4.1.18) is independent

of the phases ¢.
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Two-Time Scale Averaging
Averaging may also be applied to systems of the form

x(t) = —ew(t) y(t) (4.1.19)
y(i) = —ay@)+ b w(t)x() (4.1.20)

where x, y € R, a > 0. In short, (4.1.20) is denoted
y = o (wx) = M(wx) (4.1.21)

where M is a stable transfer function. (4.1.19) becomes

X = —ewM(Wwx) (4.1.22)

Equa?ions‘ (4.1'.19)—(4.1.20) were encountered in model reference
1§lcnt1ﬁf:at10n with x replaced by the parameter error ¢, ¢ by the adapta-
tion gain g, and y by the identifier error ¢;.

' When ¢ —» 0., x(t) varies slowly when compared to y(¢), and the
time scales of their variations become separated. x(¢) is called the slow
state, y(t) the fast state and the system (4.1.19)~(4.1.20) a two-time scale

system. In the limit as e = O, x(¢) may be considered frozen in (4.1
or (4.1.21), so that nin (4.1.20)

Mwx) = MWw)x (4.1.23)

The result of the averaging theory is that (4.1.22) may indeed be approx-
imated by

Xaw = —e AVG(W M(w)) x5 (4.1.24)

o Again, a frequency domain expression brings more interesting
insight. Let w contain multiple sinusoids

w(t) = kél ay sin (wg t) (4.1.25)
so that
. n
Mw) = EI a | M(wg)| sin (wg ! + ¢g) (4.1.26)
where
o = arg(M (uwg)) (4.1.27)

’Ijhe p_roduct wM (w) may be expanded as the sum of products of
sinusoids. Further, sin(wg? + ¢¢) = sin(wgt) cos(dr) + cos(wgt)
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sin(¢x). Now, products of sinusoids at different frequencies have zero
average, as do products of sin’s with cos’s of any frequency. Therefore

n a2 R
) —2"— | M (jwx) | cos (¢x)
k=1

L af .

3 £ Re [M(;wk)] (4.1.28)
k=1 2 ,

Using (4.1.28), a sufficient condition for the stability of the averaged sys-
tem (4.1.24) is that

Re M (jw) > 0 for all w > 0 (4.1.29)

AVG [WM(W)]

!

The condition is the familiar SPR condition obtained for the stability of
the original system in the context of model reference identification. The
averaging analysis brings this condition in evidence directly in the fre-
quency domain. 1t is also evident that this condition is necessary, if one
does not restrict the frequency content of the signal w(t). Otherwise, it
is sufficient that the w’s be concentrated in frequencies where

Re M (jw)> 0, so that the sum in (4.1.28) is positive.

Vector Case

In identification, we encountered (4.1.2), where ¢ was a vector. The
solution (4.1.5) does not extend to the vector case, but the frequency
domain analysis does, as will be shown in Section 4.3. We illustrate the
procedure with the simple example of the identification of a first order
system (cf. Section 2.0).

The regressor vector is given by

I Y 2N U N 4
5] - Lol o
. r
where P = k, /(s + ap). As before, we let the input r be periodic
n
r(t) = 2 re sin (o t) (4.1.31)
k=1
so that the averaged system is given by (the gain g plays the role of ¢)
éav = —-& AVG (W WT) Dav

) AVG(rr) - AVG(r P(r))
= ~& | avG( B(r)) AVGE() B(r)]
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noopp l ReP (wi)
- - Tk . . , 4.1.32
§ 27 |RePlon | PUup 2| O 1D
1 ap ky

2

R wf + a?
- —g x bav (4.1.33)

El 2 a, k, k} ¢
| Wt +a? ot +a}

The matrix above is symmetric and it may be checked to be positive
semi-definite. Further, it is positive definite for all w; # 0. Taking a

Lyapunov function v = ¢l ¢, shows that the averaged system is
exponentially stable as long as the input contains at least one sinusoid of
frequency w # 0. Thus, we directly recover a frequency-domain result
obtained earlier for the original system through a much longer and
laborious path.

Nonlinear Averaging

Analyzing adaptive control schemes using averaging is trickier because
the schemes are usually nonlinear. This is the motivation for the deriva-
tion of nonlinear averaging theorems in this chapter. Note that it is pos-
sible to linearize the system around some nominal trajectory, or around
the equilibrium. However, averaging allows us to approximate a nonau-
tonomous system by an autonomous system, independently of the linear-
ity or nonlinearity of the equations. Indeed, we will show that it is pos-
sible to keep the nonlinearity of the adaptive systems, and even obtain
frequency domain results. The analysis is therefore not restricted to a
neighborhood of some trajectory or equilibrium.

As an example, we consider the output error model reference adap-
tive control scheme for a first order system (cf. Section 3.0, with
kp = km = (g = 1)

Vp = —GpYptu
Ym = —QuVYm + 7T (4.1.34)
where a,, > 0, and a, is unknown. The adaptive controller is defined by
u=r+doy
do = -geoV, (4.1.35)

where g > 0 is the adaptation gain. The output error and the parameter
error are given by

Section 4.1
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€ = Yp — Vm

165

¢ = do-dy = do-(am —ap)  (4.1.36)
The adaptive system is completely described by
ég = —(am - ¢) €g + Ymd
b6 = —geoleo+ Vm) (4.1.37)
where '
mom e O (4.1.38)

When g is small (g takes the place of € in the averaging analysis ),
¢ varies slowly compared to r, Vm and eg. The averageq system 1s
defined by calculating AVG(eg(eg + Ym)), assuming that ¢ is fixed. In
that case

1

e R
- L L | ¢ (4.1.39)
S+ay—-¢ | S+am
and
e0+ym=-s—;i-:—¢j(y,n)¢+y,n
_ _S*+0m -1 (4.1.40)
"s+am-¢(y'") s+am—¢(

Note that s + a,, — ¢ is the closed-loop polynomial, that 'is the polyno—
mial giving the closed-loop pole for ¢ fixed. Assume again that r is of
the form

n
ro= 2 r sin(wgt) (4.1.41)
k=1

and it follows that

AVG [ eo(eo + ym) ] o fixed

1 am

a 6 (4.1.42)
wb + (am - 6P ot +an

n rl%
"2 7
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so that the averaged system is given by

: Tk 1 a
bay = -8 E 7 2 “ 2 bay (4'143)
k=1 “’l%"'(am"(bav) “’l%"'am
The averaged system is a scalar nonlinear system. Indeed, averaging did
not alter the nonlinearity of the original system, only its time variation.
Note that the averaged system is of the form

¢Zav = —a(¢av) Pav (4144)

where a(¢,,) is a nonlinear function of ¢,,. However, for all & > 0,
there exists « > 0 such that

a(¢gy) =2 a>0 forall | ¢4 < A (4.1.45)

as long as r contains at least one sinusoid (including at w = 0). By tak-

ing a Lyapunov function v = ¢2,, it is easy to see that (4.1.43) is
exponentially stable in By, with rate of convergence «. Since 4 is arbi-
trary, thg system is not only locally exponentially stable, but also
exponentially stable in any closed-ball. However, it is not globally
exponentially stable, because « is not bounded below as 4 — co.

.Again, we recovered a result and a frequency domain analysis,
obtained for the original system through a very different path. An
ad\{antage of the averaging analysis is to give us an expression (4.1.43)
which may be used to predict parameter convergence quantitatively
from frequency domain conditions.

‘ The .analysis of this section may be extended to the general
identification and adaptive control schemes discussed in Chapter 2 and

Chapter 3. We first present the averaging theory that supports the
frequency-domain analysis.

4.2 AVERAGING THEORY~ONE-TIME SCALE
In this section, we consider differential equations of the form

X = €ef(t,x,¢ x(0) = xq 4.2.1)

where x € R", t 20, O<e < ¢, and f is piecewise continuous with
respect to £. We will concentrate our attention on the behavior of the
solutions in some closed ball B, of radius %, centered at the origin.

For small ¢, the variation of x with time is slow, as compared to
the rate of time variation of f. The method of averaging relies on the

assumption of the existence of the mean value of f(¢, x, 0) defined by
the limit
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1 to+ T
folx) = lim = [ f@,x,0)dr (4.2.2)
T-»m T 10

assuming that the limit exists uniformly in ¢y and x. This is formulated
more precisely in the following definition.

Definition Mean Value of a Function, Convergence Function

The function f(¢, x, 0) is said to have mean value f,,(x) if there exists a
continuous function v (7). R, —-IR,, strictly decreasing, such that

vy(T)-+0as T — oo and

o+ T

|%ff&nmw—hM)57a) (4.2.3)

forall 10> 0,T 20, x € By.
The function v (T) is called the convergence function.

Note that the function f(¢, x, 0) has mean value f,,(x) if and only
if the function

dt,x) = f(t, x,0) - faux) (4.2.4)

has zero mean value.

It is common, in the literature on averaging, to assume that the
function f(¢, x, €) is periodic in ¢, or almost periodic in ¢. Then, the
existence of the mean value is guaranteed, without further assumption
(Hale [1980], theorem 6, p. 344). Here, we do not make the assumption
of (almost) periodicity, but consider instead the assumption of the
existence of the mean value as the starting point of our analysis.

Note that if the function d(¢, x) is periodic in ¢ and is bounded,
then the integral of the function d(¢, x) is also a bounded function of
time. This is equivalent to saying that there exists a convergence func-
tion v (T) = a/ T (i.e., of the order of 1/ T) such that (4.2.3) is satisfied.
On the other hand, if the function d(f, x) is bounded, and is not
required to be periodic but almost periodic, then the integral of the func-
tion d (¢, x) need not be a bounded function of time, even if its mean
value is zero (Hale [1980], p. 346). The function v(T) is bounded (by

the same bound as d(¢, x)) and converges to zero as T -» oo, but the
convergence function need not be bounded by a/T as T — oo (it may

be of order 1/VT for example). In general, a zero mean function need
not have a bounded integral, although the converse is true. In this book,
we do not make the distinction between the periodic and the almost
periodic case, but we do distinguish the bounded integral case from the
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general case and indicate the importance of the function v (7) in the
subsequent developments.

System (4.2.1) will be called the original system and, assuming the
existence of the mean value for the original system, the averaged system
is defined to be

xav = 6fav(-xav) xav(O) = Xg (4.2.5)

Note that the averaged system is autonomous and, for T fixed and e
varying, the solutions over intervals [0, T/¢] are identical, modulo a
simple time scaling by e.

We address the following two questions:

(a) the closeness of the response of the original and averaged sys-
tems on intervals [0, T /e],

(b) the relationships between the stability properties of the two sys-
tems.

To compare the solutions of the original and of the averaged system, it
is convenient to transform the original system in such a way that it
becomes a perturbed version of the averaged system. An important
lemma that leads to this result is attributed to Bogoliuboff & Mitropol-
skii [1961], p. 450 and Hale [1980], lemma 4, p. 346. We state a gen-
eralized version of this lemma.

Lemma 4.2.1 Approximate Integral of a Zero Mean Function

If d@, x): R, x B,—»IR" is a bounded function, piecewise con-
tinuous with respect to ¢, and has zero mean value with conver-
gence function vy (7))

Then  there exists £(¢) € K and a function w(¢, x): R, x B, - R"
such that

|we(t, x)| < &) (4.2.6)

ow(t, x)
at
for all t = 0, x € By. Moreover, w,(0, x) = 0, for all x € Bj.
If, moreover, ~(T)=a/T" forsomea =0,r e (0, 1]
Then  the function £(e) can be chosen to be 2a¢’.
Proof of Lemma 4.2.1 in Appendix.

-d(t,x)| s &(o) (4.2.7)
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Comments
The construction of the function w, (¢, x) in the proof is identical to that
in Bogoliuboff & Mitropolskii [1961], but the proof of (4.2.6), (4.2.7} is
different and leads to the relationship between the convergence function
~(T) and the function &(e).

The main point of lemma 4.2.1 is that, although the exact integral
of d(t,x) may be an unbounded function of time, there exists a
bounded function w, (¢, x), whose first partial derivative with respect to
¢ is arbitrarily close to d(, x). Although the bound on w, (¢, x) may
increase as ¢ — 0, it increases slower than £(e)/e, as indicated by (4.2.6).

It is necessary to obtain a function w, (¢, x), as in lemma 4.2.1, that
has some additional smoothness properties. A useful lemma is given by
Hale ([1980], lemma 5, p. 349). At the price of additional assumptions
on the function d(¢, x), the following lemma leads to stronger conclu-
sions that will be useful in the sequel.

Lemma 4.2.2 Smooth Approximate Integral of a Zero Mean Function

If d(, x): R, x B, —»R" is piecewise continuous with respect to
¢, has bounded and continuous first partial derivatives with
respect to x and d(¢, 0) = 0, for all £ = 0. Moreover, d(t, x)
has zero mean value, with convergence function v(7)| x| and

9d(1, X) 15 zero mean value, with convergence function v (T)

ox
Then  there exists £(¢) € K and a function w, (¢, x) : R, X By - R",
such that
[ew (e, x)| < &E(9)]x] (4.2.8)
aw(t, x)
|02 - de, 0| s g@lxd (4.2.9)
IeMI 10 (4.2.10)
ax

forallt =0, x € B,. Moreover, w,(0, x) = 0, forall x € Bj.
If, moreover, ~(T) = a/T" for somea = 0,r € (0,1],
Then the function & (e) can be chosen to be 2ae’.
Proof of Lemma 4.2.2 in Appendix.
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Comments

The difference between this lemma and lemma 4.2.1 is in the condition
on the partial derivative of w,(¢, x) with respect to x in (4.2.10) and the
dependence on | x| in (4.2.8), (4.2.9).

Note that if the original system is linear, i.e.
X = eA(t)x x(0) = xo (4.2.11)

for some A(t) : R, —R"*", then the main assumption of lemma 4.2.2
is that there exists A,, such that 4(¢) - A,, has zero mean value.
The following assumptions will now be in effect.

Assumptions

For some h1 >0, ¢>0

(A1) x =0 is an equilibrium point of system (4.2.1), that is,
f(t,0,0) =0 for all t20. f(¢, x, ¢) is Lipschitz in x, that is,
for some /; = 0

|f(taxla 6)“f(t,.X2,€)| < Illxl_x2| (4212)

forallt =0, x(, X € By, €< €.

(A2) f(t, x, €) is Lipschitz in ¢, linearly in x, that is, for some /; = 0

lf(t,x,el)—f(t,x,e2)| < 12|xt Iél—ezl (4.2.13)
forallt =20, x € By, €, € < ¢.
(A3) f2(0) = 0 and f,,(x) is Lipschitz in x, that is, for some /;, = 0

|fav(x1) - fav(x2)| = Iav‘xl"x2| (4-2-14)
for all x,, x, € By.

(A4) the function d(¢, x) = f(t, x, 0) — f4,(x) satisfies the conditions
of lemma 4.2.2.

Lemma 4.2.3 Perturbation Formulation of Averaging

If the original system (4.2.1) and the averaged system (4.2.5)
satisfy assumptions (A1)-(A4)

Then  there exist functions w,(f, x), £(¢) as in lemma 4.2.2 and ¢, >0
such that the transformation

X = z+ew(t,2z) (4.2.15)
is a homeomorphism in B;, for all ¢ < ¢; and
|x-z] < &(9]z] (4.2.16)
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Under the transformation, system (4.2.1) becomes

2 = efg(z) +ep(t, z, € z(0) = Xxq (4.2.17)
where p(t, z, €) satisfies ‘
|p(t, z, )| < ¥(9]z| (4.2.18)

for some ¥ (¢) € K. Further, y(e) is of the order of e+ £(e).
Proof of Lemma 4.2.3 in Appendix.

Comments

a) A similar lemma can be found in Hale [1980] (lemma 3.2, p. 192).
Inequality (4.2.18) is a Lipschitz type of condition on p(t, z, ¢), which is
not found in Hale [1980] and results from the stronger conditions and
conclusions of lemma 4.2.2.

b) Lemma 4.2.3 is fundamental to the theory of averaging presented
hereafter. It separates the error in the approximation of the original sys-
tem by the averaged system (x - X,,) into two components: x —z and
z - Xx,. The first component results from a pointwise (in time) transfor-
mation of variable. This component is guaranteed to be small by ine-
quality (4.2.16). For e sufficiently small (e < ¢), the transformation
7z x is invertible and as ¢— 0, it tends to the identity transformation.
The second component is due to the perturbation term p(t, z, €. Ine-
quality (4.2.18) guarantees that this perturbation is small as ¢e— 0.

¢) At this point, we can relate the convergence of the function v (7T) to
the order of the two components of the error x — X, in the approxima-
tion of the original system by the averaged system. The relationship
between the functions v(T) and £(¢) was indicated in lemma 4.2.1.
Lemma 4.2.3 relates the function £(¢) to the error due to the averaging.
If d(z, x) has a bounded integral (i.e., y(T)~1/ T), then both x - z and

'p(t, z, € are of the order of e with respect to the main term f,(z). It

may indeed be useful to the reader to check the lemma in the linear
periodic case. Then, the transformation (4.2.15) may be replaced by

t

x(t) = z(t) + ¢ t[(A (r) - Ag)dr | z(2)

and Y(e), &) are of the order of e If d(s, x) has zero mean but
unbounded integral, the perturbation terms go to zero as ¢— 0, but pos-
sibly more slowly than linearly (as Ve for example). The proof of lemma
4.2.1 provides a direct relationship between the order of the convergence
to the mean value and the order of the error terms.
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We now focus attention on the approximation of the original sys-
tem by the averaged system. Consider first the following assumption.

(A5) Xxo is sufficiently small so that, for fixed T and some h’'<h,
x,gv(t) € By for all t e [0, T/e] (this is possible, using the
Lipschitz assumption (A3) and proposition 1.4.1).

Theorem 4.2.4 Basic Averaging Theorem

If the original system (4.2.1) and the averaged system (4.2.5)
satisfy assumptions (A1)-(A5)

Then  there exists ¥ (¢) as in lemma 4.2.3 such that, given T = 0
[ x(1) - xa(2)] < ¥(e)br (4.2.19)
for some by 2 0, 7 > 0, and forall ¢t € [0, T/e)and € < er.

Proof of Theorem 4.2.4
We apply the transformation of lemma 4.2.3, so that

[x-z| < E(e)|z] < Wd|z| (4.2.20)
for € < ¢;. On the other hand, we have that
d
-67!— (z-Xxa) = ¢ [fav(z) - fav(xav)] +ep(t,z,€) (4.2.21)

1]

z(0) -~ xa(0) = O

forallt e [0, T/el, x,y € By, h'<h.
We will now show that, on this time interval, and for as long as

X,z € By, the errors (z - x,;) and (x - x,;) can be made arbitrarily
small by reducing e. Integrating (4.2.21)

! t

1200 = X0 S dy [120) = xa)] dr + ey (@[ |20 dr - (4.222)
0

Using the Bellman-Gronwall lemma (lemma 1.4.2)

A

t
120) - x| < e¥(9[]2()] e ar
0

el T
v(Oh [e__—_l_]

A

lay

]

v(ear (4.2.23)
Combining (4.2.20), (4.2.23)
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[x(&) =z (@) +|2(1) = xa(1)]

V()] xa ()] + (1 +y ()] z(1) = Xa()]

v +(1+y(e))ar)

V(e)br (4.2.24)

|x(2) - xay(1)]

A AN

By assumption, |x,(t)] S h'<h. Let er (with O<er <¢) such
that ¥ (er)br <h - h'. It follows, from a simple contradiction argument,
that x(t) € By, and that the estimate in (4.2.24) is valid for all
t € [0, T/e], whenever e < er. 0O

Comments
Theorem 4.2.4 establishes that the trajectories of the original system and
of the averaged system are arbitrarily close on intervals [0, 7/¢], when ¢
is sufficiently small. The error is of the order of y¥(¢), and the order is
related to the order of convergence of v (7). If d(¢, x) has a bounded
integral (i.e., v(T)~ 1/T), then the error is of the order of e.

It is important to remember that, although the intervals [0, 7'/¢]
are unbounded, theorem 4.2.4 does not state that

x(8) = xal()] < ¥(9b (4.2.25)

for all 1 =0 and some b. Consequently, theorem 4.2.4 does not allow us
to relate the stability of the original and of the averaged system. This
relationship is investigated in theorem 4.2.5.

Theorem 4.2.5 Exponential Stability Theorem

If the original system (4.2.1) and the averaged system (4.2.5)
satisfy assumptions (A1)-(AS5), the function f,,(x) has continu-
ous and bounded first partial derivatives in x, and x = 0 is an
exponentially stable equilibrium point of the averaged system

Then  the equilibrium point x = 0 of the original system is exponen-
tially stable for e sufficiently small.

Proof of Theorem 4.2.5

The proof relies on the converse theorem of Lyapunov for exponentially
stable systems (theorem 1.4.3). Under the hypotheses, there exists a

function v(x,) : R” > IR, and strictly positive constants «, a3, a3, ay
such that, for all x,, € By,

allxavP < v(xav) < a2|xav|2 (4-2-26)
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\'J(xav)l < - eas| X2 (4.2.27)
(4.2.5)
av
P | AN (4.2.28)

The derivative in (4.2.27) is to be taken along the trajectories of the
averaged system (4.2.5).

The function v is now used to study the stability of the perturbed
system (4.2.17), where z(x) is defined by (4.2.15). Considering v(z),
inequalities (4.2.26) and (4.2.28) are still verified, with z replacing x,,.
The derivative of v(z) along the trajectories of (4.2.17) is given by

. , av
v(z)| = v(z) + |— t, z,

(4.2.17) (4.2.5) 0z (e ) (4.2.29)

and, using previous inequalities (including those from lemma 4.2.3)

"(z) < - eas|z| P+ eaqy(e)] 2|2

(4.2.17)

a3 -y (a
< - [—az—“] v(z) (4.2.30)

for all ¢ <. Let ¢’ be such that a3~y (e;')as>0, and define 5 = min
(€1, €’). Denote

a3~ y(eag

al)) = = (4.2.31)
Consequently, (4.2.30) implies that
v(z) S v(z(tg)e WU -1 (4.2.32)
and
1
lz(t)] < Z—?]Z |z(tg)] e~ ¢a@t -1 (4.2.33)

Since a(e)>0 for all e <e,, system (4.2.17) is exponentially stable
Using (4.2.16), it follows that ’ '

1-£(e) |

for a‘ll t‘.>_ to=0, e <e¢, and x(¢p) sufficiently small that all signals
remain in By. In other words, the original system is exponentially
stable, with rate of convergence (at least) ea(e). 0O

1
Ix() < 1+E@ [ﬂl 2| x(tg)] e OU -1 (4.2.34)
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Comments

a) Theorem 4.2.5 is a local exponential stability result. The original sys-
tem will be globally exponentially stable if the averaged system is glo-
bally exponentially stable, and provided that all assumptions are valid
globally.

b) The proof of theorem 4.2.5 gives a useful bound on the rate of con-
vergence of the original system. As e tends to zero, ea(e) tends to
€¢/2 a3/ ay, which is the bound on the rate of convergence of the aver-
aged system that one would obtain using (4.2.26)—(4.2.27). In other
words, the proof provides a bound on the rate of convergence, and this
bound gets arbitrarily close to the corresponding bound for the averaged
system, provided that e is sufficiently small. This is a useful conclusion
because it is in general very difficult to obtain a guaranteed rate of con-
vergence for the original, nonautonomous system. The proof assumes
the existence of a Lyapunov function satisfying (4.2.26)-(4.2.28), but
does not depend on the specific function chosen. Since the averaged sys-
tem is autonomous, it is usually easier to find such a function for it than
for the original system, and any such function will provide a bound on
the rate of convergence of the original system for e sufficiently small.

¢) The conclusion of theorem 4.2.5 is quite different from the conclu-
sion of theorem 4.2.4. Since both x and x,, go to zero exponentially
with ¢, the error x - x,, also goes to zero exponentially with ¢. Yet
theorem 4.2.5 does not relate the bound on the error to e. It is possible,
however, to combine theorem 4.2.4 and theorem 4.2.5 to obtain a uni-
form approximation result, with an estimate similar to (4.2.25).

4.3 APPLICATION TO IDENTIFICATION
To apply the averaging theory to the identifier described in Chapter 2,

we will study the case when g = ¢>0 and the update law is given by (cf.
(2.4.1))

o) = —gel)w(t) ¢(0) = o (4.3.1)
The evolution of the parameter error is described by
o(t) = -gw@)wT()e(t) ¢(0) = ¢o (4.32)

In theorem 2.5.1, we found that system (4.3.2) is exponentially
stable, provided-that w is persistently exciting, i.e., there exist constants
ay, as, 6> 0, such that

o+ 5
ar] 2 [ wr)wi(r)dr = a;l forall 120  (4.3.3)

fo
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?n .the other hand, the averaging theory presented above leads us to the
imit
1 o+ T
R0) := lim — [ w@wl@+ndr e R™" (4.3.4)
T - o0 T 1o

where we used the notation of Section 1.6 for the autocovariance of w
evalu.ated at 0. Recall that R,(¢) may be expressed as the inverse
Fourier transform of the positive spectral measure S,,(dw)

1 7 .
R(t) = 3= f e/91S, (dw) (4.3.5)
- Q0

. Further, w is the output of a proper stable transfer function I:Iw,
given by (cf. (2.2.16)-(2.2.17))

~ (sI-A)"'b
Hy(s) = [(sI—A)-‘)bAﬁA(s)] e R¥(s) (4.3.6)

Therefore, if the input r is stationary, then w is also stationary. Its spec-
trum is related to the spectrum of r through

Su(dw) = Hul(jo) HI(jo) Si(dw) (4.3.7)
and, using (4.3.5) and (4.3.7), we have that

RUO) = 5= [ Hol o) o) S(d) (43.8)
- a0

Since S,(dw) is an even function of w, R,(0) is also given by

[ o]
RAO® = 5= [ Re | Ao A5G | Sidw)

- Q0
It was shown in Section 2.7 (proposition 2.7.1) that when w is station-
ary, w is persistently exciting (PE) if and only if R,(0) is positive
definite. It followed (proposition 2.7.2) that this is true if the support of
S, (dw) is greater than or equal to 2n points (the dimension of w = the
number of unknown parameters = 2n). Note that a DC component in
r(t) contributes one point to the support of S,(dw), while a sinusoidal
component contributes two points (at +w and - w).

o With these definitions, the averaged system corresponding to (4.3.2)
is simply
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&av = -gR,(0)ds 00,(0) = ¢p 4.3.9)
This system is particularly easy to study, since it is linear.

Convergence Analysis

When w is persistently exciting, R,(0) is a positive definite matrix. A
natural Lyapunov function for (4.3.9) is

v(¢av) = _;' ‘ ¢avl 2= 'é‘ dn{v day : (4310)
and

-8 )‘min (Rw(o)) I d’av l 2 < - v(‘bav) < -g A max (Rw(o)) | dav l 2 (431 1)

where Apin and Apa are, respectively, the minimum and maximum
eigenvalues of R,(0). Thus, the rate of exponential convergence of the
averaged system is at least g Xpin (Ru(0)) and at most g A max (Rw(0)). We
can conclude that the rate of convergence of the original system for g
small enough is close to the interval [g Amin (R,(0)), & A max(Rw(0)) 1.

Equation (4.3.8) gives an interpretation of R,(0) in the frequency
domain, and also a mean of computing an estimate of the rate of con-
vergence of the adaptive algorithm, given the spectral content of the
reference input. If the input  is periodic or almost periodic

r(t) = 2 r sin(wct) (4.3.12)
k

then the integral in (4.3.8) may be replaced by a summation
e fe AT
RJ0) = Z 5 Re [Hw,(;wk) H,Z,owk)] (4.3.13)
k

Since the transfer function I:Iw, depends on the unknown plant
being identified, the use of (4.3.11) to determine the rate of convergence
is limited. With knowledge of the plant, it could be used to determine
the spectral content of the reference input that will optimize the rate of
convergence of the identifier, given the physical constraints on . Such a
procedure is very reminiscent of the procedure indicated in Goodwin &
Payne [1977] (Chapter 6) for the design of input signals in identification.
The autocovariance matrix defined here is similar to the average infor-
mation matrix defined in Goodwin & Payne [1977] (p. 134). Our
interpretation is, however, in terms of rates of parameter convergence of
the averaged system rather than in terms of parameter error covariance
in a stochastic framework.
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Note that the proof of exponential stability of theorem 2.5.1 was
based on the Lyapunov function of theorem 1.4.1 that was an average of
the norm along the trajectories of the system. In this chapter, we aver-
aged the differential equation itself and found that the norm becomes a
Lyapunov function to prove exponential stability.

It is also interesting to compare the convergence rate obtained
through averaging with the convergence rate obtained in Chapter 2. We
found, in the proof of exponential convergence of theorem 2.5.1, that the
estimate of the convergence rate tends to ga,;/é when the adaptation
gain g tends to zero. The constants «, & resulted from the PE condition
(2.5.3), i.e., (4.3.3). By comparing (4.3.3) and (4.3.4), we find that the
estimates provided by direct proof and by averaging are essentially
identical for g = € small.

Example

To illustrate the conclusions of this section, we consider the following
example

~ kp
P(s) =17 (4.3.14)
P

The filter is chosen to be X(s) = (s +/5)/!; (where I, = 10.05,
I, = 10 are arbitrarily chosen such that |>:(j 1)] = 1). Although X is not
monic, the gain /, can easily be taken into account.

Since the number of unknown parameters is 2, parameter conver-
gence will occur when the support of S, (dw) is greater than or equal to 2
points. We consider an input of the form r = rgsin(wgt), so that the
support consists of exactly 2 points.

The averaged system can be found by using (4.3.9), (4.3.13)

1 ayk,
- g 12 w§+a}
b = -8 * a  (43.15
av 2 122+w(2) apkp kp2 ay ( )

wh+a} wh+a?
with ¢4,(0) = ¢o. When rg =1, wg = 1, @, = 1, k, = 2, the eigenvalues

of the averaged system (4.3.15) are computed to be —_3_+4\/_§. g

i

-1.309¢g, and - 1_4—\/—5— g = -0.191g. The nominal parameter 9"
(ky /1y, (2-ap)/1y). We let 6(0) = 0, S0 that
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67(0) = (-0.199, - 0.9).
Figures 4.1 to 4.4 show the plots of the paran_leter errors ¢, and ¢3,
for both the original and averaged systems, and with two different adap-

tation gains g = 1,and g = 0.1.

0.5

Original

0.25F
¢1 0.125 |
0.0 - Averaged
-0.125
—0.250.0 l 215 [ 5l.0 l 715 I El.o

Time(s)
Figure 4.1: Parameter Error ¢, g=1)

We notice the closeness of the approximation for g = 0.1.

Figures 4.5 and 4.6 are plots of the Lyapunov function (4.3.10) for
g=1andg =0.1, using a logarithmic scale. We observe the two slopes,
corresponding to the two eigenvalues. The closeness of the estlma'te of
the convergence rate by the averaged system can also be appreciated
from these figures. ‘

Figure 4.7 represents the two components of ¢, one as a funct.lon of
the other when g = 0.1. It shows the two subspaces corresponding to
the small and large eigenvalues: the parameter €rror first moves fast
along the direction of the eigenvector corrgspopdmg to the la;ge eigen-
value. Then, it slowly moves along the direction corresponding to the
small eigenvalue.

4.4 AVERAGING THEORY—TWO-TIME SCALES . o
We now consider a more general class of differential equations arising in
the adaptive control schemes presented in Chapter 3.
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0.225 ¢

- Original

Averaged
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-0.225 1 Ik | ) | 1 1 J
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Figure 4.2: Parameter Error ¢, (¢ = 0.1)
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Figure 4.3: Parameter Error ¢, (g = 1)
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Figure 4.4: Parameter Error ¢, (g =0.1)
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Figure 4.5: Logarithm of the Lyapunov Function (g = 1)
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Figure 4.7: Parameter Error ¢, (¢,) (¢ = 0.1)
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4.4.1 Separated Time Scales
We first consider the system of differential equations
ef(t,x,y) (4.4.1)

A(x)y + €eg(t,x,y) (4.4.2)

x

1]

0

y

where x(0) = xg, ¥(0) = yo, x € R",and y € R™.
The state vector is divided into a fast state vector y and a slow
state vector x, whose dynamics are of the order of e with respect to the

fast dynamics. The dominant term in (4.4.2) is linear in y, but is itself
allowed to vary as a function of the slow state vector.

As previously, we define

to+ T
Sa(x) = lim "l" f f(r, x,0) dr (4.4.3)
T—+>00 T 1o
and the system
xav = fav(xav) -xav(o) = X0 (444)

is the averaged system corresponding to (4.4.1)-(4.4.2). We make the
following additional assumption.

Definition  Uniform Exponential Stability of a Family of Square
Matrices

The family of matrices A(x) € R™*™ is uniformly exponentially stable
for all x € By, if there exist m, X, m’, N >0, such that for all x € By
andt 20

me ¥t < | A <me™ (4.4.5)

Comments

This definition is equivalent to require that the solutions of the system
y = A(x)y are bounded above and below by decaying exponentials,
independently of the parameter x.

It is also possible to show that the definition is equivalent to requir-
ing that there exist py, p2, 41, 42 >0, such that for all x € By, there
exists P(x) satisfying p;I < P(x) < p21, and -¢g,I < AT(x)P(x)
+ P(xX)AXx) s -q11.

We will make the following assgmptions.
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Assumptions

For some 7 >0

(B1) The functions /' and g are piecewise continuous functions of
time, and continuous functions of x and y. Moreover,
f(t,0,0)=0, g(¢,0,0) =0 for all ¢+ =0, and for some /;, /,,
[3,1,20

[ St x1,p0) = [ty x,¥2)| < L|x =-xa| + Ly -y
l&(t, x1, y1) - 8(t, X2, )| < L3|x1=x3| + [4|y1-ya (4.4.6)
forall t 20, x,, x5 € By, y1, y2 € By. Also assume that
f(t, x, 0) has continuous and bounded first partial derivatives
with respect to x, forall t =2 0, and x € B,.

(B2) The function f(¢, x, 0) has average value f,,(x). Moreover,
Sa(0) = 0, and f,,(x) has continuous and bounded first partial

derivatives with respect to x, for all x € Bj, so that for some
I, 20

|fnv(xl) - fav(x2)| < lalel - X5 (4.4.7)

for all x;, x; € By.
(B3) Let d(¢, x) = f(t, x, 0) - f,(x), so that d(¢, x) has zero aver-
age value. Assume that the convergence function can be written

as y(T)|x|, and that ad%x_) has zero average value, with
convergence function v (7).

(B4) A(x) is uniformly exponentially stable for all x € B, and, for
some k; = 0

l d4(x) “ <k, forallx e B, (4.4.8)
ax
(BS) For some h'<h, |x,(t)] € By on the time intervals con-
sidered, and for some hg, yo € By . (Where h', hy are constants
to be defined later). This assumption is technical, and will
allow us to guarantee that all signals remain in B .

As for one-time scale systems, we first obtain the following preliminary
lemma, similar to lemma 4.2.3.

Lemma 4.4.1 Perturbation Formulation of Averaging—Two-Time Scales

If the original system (4.4.1)-(4.4.2) and the averaged system
(4.4.4) satisfy assumptions (B1)-(B3)
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Then  there exist functions w, (¢, x), £(¢) as in lemma 4.2.2 and ¢, > 0,
such that the transformation

x = z +ew(t,z) (4.4.9)
is a homeomorphism in By, for all e < ¢, and
Ix-z| < &@9)]z] (4.4.10)
Under the transformation, system (4.4.1) becomes
z = efalz) +epi(t,z, 0 + epat, 2,95 ) (4.4.11)
z(0) = xo
where
|pit, z, 9l < &(9ki| 2]
|pa(t, z, ¥, &l < ka|y| (4.4.12)

for some k,, k, depending on /,, I3, [y,

Proof of Lemma 4.4.1 in Appendix.

We are now ready to state the averaging theorems concerqing Fhe
differential system (4.4.1)-(4.4.2). Theorem 4.4.2 is an approximation
theorem similar to theorem 4.2.4 and guarantees that the trajectories of
the original and averaged system are arbitrarily close on compact inter-
vals, when ¢ tends to zero. Theorem 4.4.3 is an exponential stability
theorem, similar to theorem 4.2.5. .

Theorem 4.4.2 Basic Averaging Theorem

If the original system (4.4.1)-(4.4.2) and the averaged system
(4.4.4) satisfy assumptions (B1)-(B5)

Then  there exists ¢ (¢) as in lemma 4.2.3 such that, given 7 2 0

[x(t) - xa(t)| < ¥()br (4.4.13)
for some by 2 0, e;>0and forallt € [0, T/e], and e S er.

Theorem 4.4.3 Exponential Stability Theorem

If the original system (4.4.1)-(4.4.2) and the averaged system
(4.4.4) satisfy assumptions (B1)-(B5), the function Sa(x) has
continuous and bounded first partial derivatives in x, and x = 0
is an exponentially stable equilibrium point of the averaged sys-
tem

Then the equilibrium point x = 0,y = 0 of the original system is
exponentially stable for e sufficiently small.
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Comments

As for theorem 4.2.5, the proo® of theorem 4.4.3 gives a useful bound on
the rate of convergence of the nonautonomous system. As e— 0, the
rate tends to the bound on the rate of convergence of the averaged sys-
tem that one would obtain using the Lyapunov function for the averaged
system. Since the averaged system is autonomous, it is usually easier to
obtain such a Lyapunov function for the averaged system than for the
original nonautonomous system, and conclusions about its exponential

convergence can be applied to the nonautonomous system for e
sufficiently small.

4.4.2 Mixed Time Scales

We now discuss a more general class of two-time scale systems, arising
in adaptive control

"

X = ef'(t,x,)) (4.4.14)

Vo= AX)Y + h(t, x) + g (t, X, ¥') (4.4.15)

We will show that system (4.4.14)—(4.4.15) can be transformed into the
system (4.4.1)-(4.4.2). In this case, x is a slow variable, but y’ has both
a fast and a slow component.

The averaged system corresponding to (4.4.14), (4.4.15) is obtained
as follows. Define the function

!
v(t, x) = [eAD0Dh(r,x) dr (4.4.16)
0
and assume that the following limit exists uniformly in ¢ and x
1 10+'T
falx) = lim = [ f(r,x,v(, x))dr (4.4.17)
T—oo0 T 1o

Intuitively, v(, x) represents the steady-state value of the variable )’
with x frozen and ¢ = 0 in (4.4.15). Then, f is averaged with v (¢, x)
replacing )’ in (4.4.14).

Consider now the transformation
y = y-v(,x) (4.4.18)
Since v (¢, x) satisfies

567””)‘) = Ax)v(t,x) + h(t,x) v, 00 = 0 (4.4.19)

we have that
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j = Ay + ef- 2y eve )
+ g, x,y+ v(t,x))] (4.4.20)
so that (4.4.14), (4.4.20) is of the form of (4.4.1), (4.4.2) when
fit,x,y) = [, x,y+v{t,x)) (4.4.21)
g(t,x,.V) = _ﬂ%;ﬁ'f’(t’x’y+v(t,x))
+g’(t,x,y+v(t,x)) (4.4.22)

The averaged system is obtained by averaging the right-hand si@e of
(4.4.21) with y = 0, so that the definitions (4.4.17), and (4.4.3) (with f

given by (4.4.21)) agree. ' .

To apply theorems 4.4.2 and 4.4.3, we require Assqmpnpns (Bl);-
(B5) to be satisfied. In particular, we assume similar Lipschitz condi-
tions on /7, &', and the following assumption on A(t, x)

on(t, x .
(B6)  h(t,0) =0 for all £ 2 0, and ||——(5x——l H is bounded for all

t =20, x € By. . .
This new assumption implies that v(t,0)=0. It also implies that

”______av (;’ X) ” is bounded for all £ = 0, x € By, since
x

v (¢, x) =} eA(x)(z-f)ah(T,X)
ox; b ox;

2 [e’“")(“’)] h(T,x)‘ dr (4.4.23)
0x;

d -
and using the fact that AW -7 and ™ eAX) -7 are bounded by

exponentials ((4.4.5), and (A4.4.30) in the proof of theorem 4.4.3).

45 APPLICATIONS TO ADAPTIVE CONTROL '
For illustration, we apply the previous results to the output error direct
adaptive control-algorithm for the relative degree 1 case. .

We established the complete description of the adaptive system In
Section 3.5 with (3.5.28), i.e.,

b0) = Apelt) + bud” (W) + bmT (D) Q 1)
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o(t) = —gche)wn(t) - gche(t)Q e(t) (4.5.1)

where g is the adaptation gain. With the exception of the last terms
(quadratic in e and ¢), (4.5.1) is a set of linear time varying differential
equations. They describe the adaptive control system, linearized around

the equilibrium e = 0, ¢ = 0. We first study these equations, then turn
to the nonlinear equations,

4.5.1 Output Error Scheme—Linearized Equations

The linearized equations, describing the adaptive system for small values
of e and ¢, are

e(t) = Ape(t) + by wi(t) o(1)

6(t) = —gwalt)emTe(t) (4.5.2)

Since w,, is bounded, it is easy to see that (4.5.2) is of the form of
(4.4.14), (4.4.15) with the functions f’ and 4 satisfying the conditions of
Section 4.4. Recall that 4,, is a stable matrix.

The function v(¢, ¢) defined in (4.4.16) is now

¢

v(t,¢) = £e"m“"’bmw,£(1)df ® (4.5.3)
and f,, is given by
1 to+ T
Jal®) = - lim — [ wa(t)eh
T—Pw T tO

!

J;eA’"(t—T)bmw;(‘r)d‘r dt ¢ (4.5.4)

Frequency Domain Analysis
To derive frequency domain expressions, we assume that r is stationary.
Since the transfer function from r — w,, is stable, this implies that w,, is
stationary. The spectral measure of w,, is related to that of r by

Sw,(dw) = Hy ,(je) Hy (o) S{dw) (4.5.5)

where the transfer function from r - w,, is given by (using (3.5.11))
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1
I-A)" "B M

] 4.5.6

A, = i (4.5.6)
(SI - A ) - lb)\M

which is a stable transfer function.
Define a filtered version of w,, to be
ot
W) = fc,f,eA'"('_’)bmwm(r) dr
0
- L Wrown (4.5.7)

o]

i hat the signal wy
where the last equality follows from (3.5.22): Note t '
was also used in the direct proof of exponential convergence n Chapter

2 (cf. (2.6.34)).
Since ¢, (I ~ Apm) ™ b = L M (s) is stable, wp(¢) is stationary.

o
We let
tQ+T
Ry w (0) = fim = [ wa)whin)dr (4.5.8)
m Vmf T—+o00 T o

which was called the cross correlation between Wy, and wys (evaluated at
0) in Section 1.6. Consequently, we may use (4.5.7) and (4.5.8) to

obtain a frequency domain expression for Ry_w,, (0) as

m -~

Row (O) = —— [ B3 () HE L) M (o) Sida)  (4:5.9)
o 27mC _oo

Since r is a scalar, S,(dw) is real and consequently an even function of w

(cf. Section 1.6). This may be used to show that

Rupy© = — °j° Re[f?;mf(jw)ﬁim,uco)]ke M (jo) Si(dw)

2wcq -0

-

m bl ~ .
e LT 1 [ A, i AT, o) | 1 B ) ()
27"00"@ 3

and that the first matrix in the right-hand side is symmetric, while the
second in antisymmetric.
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With (4.5.7) and (4.5.8), (4.5.4) shows that th
LTI system e averaged system is a

b = “ngmwm/(O)d’av d’av(o) = ¢ (4'5'10)

Convergence Analysis

Since M (s) is strictly positive real, the matrix Ry v, (O) is a positive
semidefinite matrix. Unlike the matrix R,,(0) of Sectlon 4.3, R, 0)
need not be symmetric, so that its eigenvalues need not be real. H/ow-

ever, the real parts are guaranteed to be positive, and a natural
Lyapunov function is again

v(‘bav) = i¢av|2 = ¢Zv¢av (4511)

and

~900) = 865 (Rupuy )+ R, 0] 00 (45.12)

The m‘atfix in .parentheses is symmetric positive semidefinite. As previ-
ously, it is positive definite if w,, is PE.

When the reference input r is periodic or almost periodic, i.e.,
r(t) = ; 7k sin (wi 1) (4.5.13)

an expression for Ry w /(O) is
m

1
g O) = ;; [—- Re | A, (o) AL o) |
 Re M (joy) |
1 rE fe . ap
el bt [ A% Ge) AT, e

- Im M(jwk)] (4.5.14)
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Example
As an illustration of the preceding results, we consider the following
example of a first order plant with an unknown pole and an unknown

gain

“ kp
P(s) = (4.5.15)
s+a,
We will choose values of the parameters corresponding to the Rohrs
examples (Rohrs et al [1982], see also Section 5.2) , when no unmodeled
dynamics are present,
The adaptive process is to adjust the feedforward gain ¢g and the

feedback gain dg so as to make the closed-loop transfer function match
the model transfer function

- ki
M(s) = v a (4.5.16)
m

To guarantee persistency of excitation, we use a sinusoidal input
signal of the form

r(t) = rosin(wg?) 4.5.17)
Thus, (4.5.2) becomes
éo(t) = —ameo(t) + ky(o,(£)r(t) + dy(t) ym(t))

$.(t) = -geot)r(t)

6,(1) = —geot)ym(?) (4.5.18)
where

¢, () = colt) - ¢§

o,(2) = dolt) - dg (4.5.19)

It can be checked, using (4.5.14), that the averaged system defined in
(4.5.10) is now

9

ankm ki (ak - )

- TRk | @nted) (ak + wf)? 4520
d’av = -& 2 km k,%‘ amk;’l ¢av ( e )

{ (@2 +wd) (ak+w})?
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With a, =3, kp,=3,a,=1, k=2, rg=1, wg=1, g =1, the
two eigenvalues of the averaged system are computed to be - 0.0163 ¢
and -0.5537g, and are both real negative. The nominal parameter g*"
= (km/kp, (ap - am)/kp). We let 8(0) = 0, so that #7(0) = (- 1.5, 1).

Figures 4.8, 4.9 and 4.10 show the plots of the parameter errors
#,(¢,) for the original and averaged system, with three different frequen-
cies (wg = 1,3,9).

14 Averaged

1.0
¢y 0.8 |- Original /

0.6

0.4

0.2 L 1 1 | ] | L ]
~1.6 -1.2 -0.8 -0.4 0.0

Figure 4.8: Parameter Error ¢, (¢;) (r = sin¢)

Figure 4.10 corresponds to a frequency of the input signal wy = 5, such
that the eigenvalues of the matrix R, ,_ I(O) are complex:

(-0.0553+,0.05076)g. This explains the oscillatory behavior of the
original and averaged systems observed in the figure, which did not exist
in the previous examples of Section 4.3.

4.5.2 Output Error Scheme—Nonlinear Equations
We now return to the complete, nonlinear differential equations

e(t) = Ame(t) + bud"()Wm(t) + bno'(t)Qe(t)

6(t) = -—gwnlt)che(t) - gQe(t)che(t) (4.5.21)
From (4.4.45)
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Averaged

Original
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1.00
¢y 0.75
0.50
0.25
| —
0.0 i 1 1
-1.5 -1.0 -0.5 0.0 0.5

Figure 4.9: Parameter Error ¢, (¢,) (r = sin3t)

Averaged

Original

0.6

0.3

0.0

Figure 4.10: Parameter Error ¢, (¢,) (r = sin5¢)



194 Parameter Convergence Using Averaging Chapter 4

t
T
W, ¢) = je"’"*”m“’ AU-Np 4T w, ()dr (4.5.22)
0

so that the averaged system is

q; av T gfav (d’av)
where f,, is defined by the limit

$4,(0) = ¢(0) (4.5.23)

to+T
. 1
fav(¢) = _Tlimw—f ;’; [Wm(t)C;V(t,d))

+ Qv(t, p)elve, ¢)] dt (4.5.24)

The assumptions of the theorems will be satisfied if the limit in
(4.5.24) is uniform in the sense of (B3) and provided that the matrix

Ay + b, ¢T Q is uniformly exponentially stable for ¢ € Bj. This means
that if the controller parameters are frozen at any point of the trajectory
the resulting time invariant system must be closed-loop stable.

Frequency Domain Analysis

The expression of f,, in (4.5.24) can be translated into the frequency
domain, noting that w,, is related to r through the vector transfer func-
tion H,, ,

Sak#) = = 5= [ [ Boad=jo)+ Q (= Jol ~ = b 97 @)

b 6" B = o | (e (ol = A~ b0 )
T jw)] S, (dw) (4.5.25)

where S, (dw) is the spectral measure of r. Note that f,, can be factored
as

fav(d’\ = “Aav( ¢) c ¢ (4‘5.26)

where A, : R —R**?" is similar to R, wn, (0) in Section 4.5.1, but

now depends nonlinearily on ¢. The expression in (4.5.25) is more com-
plex than in the linear case, but some manipulations will allow us to
obtain a more interesting result.

Recall that (4.5.21) was obtained from the differential equation
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e(t) = Ame(t)+bne(t)wW()

(1) = —gw(t)che(t) (4.5.27)

by noting that w(t) = w,,(¢) + Q e(t). In general, (4.5.27) is of limited
use, precisely because w depends on e. The signal w is not an external
signal, but depends on internal variables. On the other hand, w,, is an
exogeneous signal, related to r through a stable transfer function.

In the context of averaging, the differential equation describing the
fast variable (i.e., €) is averaged, assuming that the slow variable (i.e., ¢)
is constant. However, when ¢ is constant, w is related to r through a
linear time invariant system, with a transfer function depending on ¢. If
det(s] - A,, - b,¢” Q) is Hurwitz (as we assume to apply averaging), this
transfer function is stable. Therefore, assuming that ¢ is fixed, we can
write

W o= Hyls, ¢) 7 (4.5.28)

so that using (4.5.27), (4.5.25) can be replaced by (4.5.26), with an
expression similar to the expression of R, w,,,,(O) in (4.5.9), i.e.

4al®) = —= [ Filje,6) Ao, ) M(jo) SAdw)  (4.5.29)

2weg - 00

Explicit Expression for ﬁw,(s, b)

Recall that w,, is related to r through the transfer function ﬁwm,, whose
poles are the zeros of det(s/ — 4,,). Let

Xm(s) = det(sI -A4,) (4.5.30)

and write the transfer function Hj , as the ratio of a vector polynomial
7i(s), and a characteristic polynomial x ,,(s), i.e.,

A, () = 2L (4.5.31)
X m(S)
We found in Section 3.5 (cf. (3.5.8), (3.5.11)) that

wo= 26, Ly, (4.5.32)
X m($) C(‘)
Denote ¢, = ¢ - ¢§, so that 7w = ¢,r +¢ | W. Assuming that ¢ is con-
stant, (4.5.32) becomes
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_ ) JUR I
W o= xm(s)'I—--lTn(s)d)T A(s) 1+£’— r
Co c6
R ]
_ A(s) @r
= - - 1+ v (4.5.33)
Xm(s) = — ¢ TA(s) €0
€5
‘ Denote
. R Il —7.4
Ro(8) 1= Xm(s)=— & Tils) (4.5.34)
€0

] )Z‘,,(s)‘ is closed-loop characteristic polynomial, giving the poles of the
adaptive system with feedback 6, that is, the poles of the model transfer

| function with feedback ¢. Therefore, x4(s) is also given by

! %o(s) = det (5] - Ay - b, TQ) (4.5.35)
With this notation, (4.5.33) can be written
w = T’E' ﬁwm’ r+ -d—)L r
Xo¢ 65
Xm , X _
= (W) +— L. (4.5.36)
X¢ X¢ o
On the other hand
- -7
L P A (R0
X¢ COXm
X X o7 _
= —A"'”" (r) - ‘L W, (4'5'37)
Xe X¢ o

Define
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o -+
C(_') IRl x 1 IRI x2n-1 :
B(d’) = d)’ € IRZn—lxl IRZn—len-l (4538) ‘1
o) — 1 !
|
!

ie.,
B(d’) e ]R2n x2n

so that (4.5.36)-(4.5.37) can be written

w o= L) = i'1[_’ ] +3‘A-1 B(¢) [_’ ] (4.5.39)
[W )‘2¢ Wom )Z¢ W om

The vector transfer function H can therefore be expressed in terms of

the vector transfer function Hw , by

A6, 8 = 228 (14BN A, () (4.5.40)
X¢(S )

and, as expected

H, (5,00 = H, 5) (4.5.41)
Convergence Analysis
With (4.5.40), 4 5, can be written

Xm(Jw) |2 ae
ant) = —— [ |22 s B0, o
27¢) “oo ' Xo(Jw)
« AT (jo)I + BT () M(jo) S/(dw) (4.5.42)

Consider now the trajectories of the averaged system and let
Wba) = | bas] 2 = ¢hdav. Note that by (4.5.38), it follows that

T-B(¢) = 0 for all ¢ (4.5.43)

Denote

R($a) : T 122 4
27 CO -00 X¢¢,(}‘-°2)
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©HY (jo) M(jo) S{dw) (4.5.44)

It follows that the derivative of v is given by

- ")(d’av) = g d’Zv(R (¢av) +R T(d’ av)) bav (45.45)

which is identical to the expression for the linear case (4.5.12), provided
that R(¢,,) given in (4.5.44) replaces R, w,,,,(O) given in (4.5.9). It is
remarkable that this result differs from the expression obtained by
linearization followed by averaging in Section 4.5.1 only by the scalar
weighting factor |x, /x4l 2, Recall that x,(s) defines the nominal
closed-loop poles ( i.e. when ¢ = 0, while x, defines the closed-loop poles
with feedback gains 6 = ¢ + 6 . The term | x,, / x| 2 is strictly positive,

given any ¢ bounded, and it approaches unity continuously as ¢
approaches zero.

Since M (s) is strictly positive real, R(¢,) is at least positive
semidefinite. As in the linearized case, it is positive definite if w,, is per-
sistently exciting. Using the Lyapunov function v(¢,,), this argument
itself constitutes a proof of exponential stability of the averaged system,
using (4.5.45). By theorem 4.4.3, the exponential stability of the original
system is also guaranteed for g sufficiently small.

Rates of convergence can also be determined, using the Lyapunov
function v(¢,,), so that

-

gd’z;v(R(d’av) + R T(¢HV)))¢HV
=g infB Amin(R(®a) + RT(¢a)))V 1= 2gav  (4.5.46)

av €
and the guaranteed rate of parameter convergence of the averaged adap-
tive system is g a. The rate of convergence of the original system can be
estimated by the same value, for g sufficiently small.
It is interesting to mnote that, as |¢,| increases,

Amin(R(¢a) + RT(¢4))) tends to zero in some directions. This indi-
cates that the adaptive control system may not be globally exponentially
stable.

Example

We consider the previous two parameter example. The adaptive system
is described by

eo(t) = —ameo(t)+ky (o 1) r(t) + dylt) eot) + ¢,(t) ym(t))
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é.(t) = —geo(t)r(t)
6,(1) = -gedt)-ged)ym(t) (4.5.47)

Consider the case when r = rgsin(wg?). ”ljhe averaged sy.stem can
be computed using (4.5.42). We can also verify the expression using
(4.5.47) and the definition of the averaged system (4.5.22).. After s:?ms
manipulations, we obtain, for the averaged system (dropping the “av

subscripts for simplicity)

1

w% + (a,,, - kp ¢y)2

; s (A —kp®,)®
¢, = "gkp'z— [a,,, LS

ap-ob | ke (4.5.48)
m y
wi+ak wh+an

+

R IR LILIY (45.49)

T
Using this result, or using (4.5.42)—(4.5.43), we find that forv=¢"¢

kP
Knm

wi+al

W+ (@m - ky 95)°

ng‘N

:
2
amkm k2 (a2 - w5)

232
w% + a,%, (“’% +am)
k2  Kin

wdral  (wh+ak)? |

- T ¢ (4.5.50)

It can easily be checked that when the first term in brackets is equal
to 1 (i.e. with ¢, replaced by zero), ’thc result is the. same as the result
obtained by first linearizing the system, then averaging it (cf. (4.5.20)).
In fact, it can be seen, from the expressions of the averaged systems
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((4.5.10) with (4.5.9), and (4.5.23) with (4.5.26), (4.5.38) and (4.5.42)),
that the system obtained by linearization followed by averaging is identi-
cal to the system obtained by averaging followed by linearization. Also,
given any prescribed B, (but such that det (s/ -4, -b,¢’ Q) is
Hurwitz), (4.5.50) can be used to obtain estimates of the rates of conver-
gence of the nonlinear system,

We reproduce here simulations for the following values of the
parameters: a, =3, ky,=3,a,=1,ky=2,rg=1,wy=1,¢g =1. The
first set of figures is a simulation for initial conditions ¢,(0) = - 0.5 and
¢,(0) = 0.5. Figure 4.11 represents the time variation of the function
In(v = ¢7¢) for the original, averaged, and linearized-averaged systems
(the minimum slope of the curve gives the rate of convergence).

Linearized- averaged
In(¢T¢) -3 /
-41-
-5
-6 N ] n ! n { L I
(o] 30 60 90 120

Time (s)

Figure 4.11: Logarithm of the Lyapunov Function

It shows the close approximation of the original system by the averaged
system. The slope for the linearized-averaged system is asymptotically
identical to that of the averaged system, since parameters eventually get
arbitrarily close to their nominal values. Figures 4.12 and 4.13 show the
approximation of the trajectories of ¢, and ¢,.

Figure 4.14 represents the logarithm of the Lyapunov function for a
simulation with identical parameters, but initial conditions ¢,(0) = 0.5,

$,(0) = = 0.5. Due to the change of sign in ¢,(0), the rate of conver-
gence of the nonlinear system is less now than the rate of the linearized
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Averaged

Original

Linearized-averaged

Il n Il \ ! L -

30 60 90 120

Time (s)

Figure 4.12: Parameter Error ¢,

Linearized - averaged

30 60 20 120
- Time (s)

Figure 4.13: Parameter Error ¢,
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system, while it was larger in the previous case.

-0.75

-1.50 -
Original

T -2.25+
In(¢p' )
-3.00}
Averaged
Linearized-averoged
=375
-4.50
. 1 . 1 N L L J
¢} 30 60 90 120

Time (s)
Figure 4.14: Logarithm of the Lyapunov Function

These simulations demonstrate the close approximation by the averaged
system, and it should be noted that this is achieved despite an adapta-
tion gain g equal to 1. This shows that the averaging method is useful
for values of g which are not necessarily infinitesimal (i.e. not neces-
sarily for very slow adaptation), but for values which are often practical
ones.

Figure 4.15 shows the state-space trajectory ¢ ,(¢,), corresponding
to Figure 4.10, that is with initial conditions ¢,(0) = - 1.5,¢,(0) = I,
and parameters as above except wg = 5. Figure 4.15 shows the distor-

tion of the trajectories in the state-space, due to the nonlinearity of the
differential system.

4.5.3 Input Error Scheme

An expression for the averaged system corresponding to the input error
scheme may also be obtained. We consider the scheme for arbitrary
relative degree. For simplicity, however, we neglect the normalization
factor in the gradient algorithm and the projection for the feedforward
gain ¢g.

Section 4.5 Applications to Adaptive Control 203

Linearized-Averaged

1.5

12 Original

0.9
Averaged

0.6 -
03
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| | | 1 | —
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Figure 4.15: Parameter Error ¢, (¢,) (r = sin5t)

The equation describing the parameter update is then simply

é(t) = -y ()e() (4.5.51)
so that the averaged system is again of the form
bav = —8Axay)bar (4.5.52)

where A ,,(¢4) is the autocovariance of the vector v at ¢ = 0. It depends
on ¢, because v is obtained from a closed-loop system with feedback
depending on the parameter error ¢g,. Within the framework of averag-
ing, the system is a linear time invariant system, so that we may write
(as in (4.5.28))

b = H,(s,0) 7 (4.5.53)

Explicit Expression of I:I,,,(s, )
Recall that (cf. (3.5.10))
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vy = L Yz)=L"! | I 0
=1 = _ (4.5.54)

Since the controller is the same as for the output error scheme, we may
use (4.5.36)—(4.5.37). First, rewrite (4.5.36) using ¢, = ¢ - ¢} so that

— Co XAm
W= —— (i) 4.5.55
s (4.5.55)
and
1 4 -
r+—.~¢Tw = ——0—r+—l-—¢Tw
€o o €
€ CoXm |7 _
= Sre = 2Rl (45.56)
Co C0 Xo €O

With (4.5.37), (4.5.56) simply becomes

1 T €o XAm
r + ——.'¢ w = —_(r)
o Y (4.5.57)
Therefore
v=ﬂ).i°l._xjm[r] - coi-lim(
- - w I - W
el 24 W & 2o m) (4.5.58)
and
5 €o ~_y,  Xm(S) A
Hy(s,¢) = —L 1(s)A—"'—lemr(s) (4.5.59)
4] Xo(s)

which is the equivalent of (4.5.40) for the input error scheme.

Convergence Analysis

Using the foregoin i
domE. ¢ going result, we may express A,(¢) in the frequency

2
Ane) = =2 T 2 |EeUR2P g
7 | |L™ (o) [===] H._(jo)
CO - 00 X¢(jw) "
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C AT (jw) S (dw) (4.5.60)

Note that the matrix Ag(¢) is now symmetric and is a positive
semidefinite matrix for all ¢. It is positive definite if the input r is
sufficiently rich. Again, parameter convergence rates may be estimated
from the preceding expression. Although the convergence properties are
quite similar, the symmetry of A,/(¢) guarantees that around the equili-
brium, the linearized system is described by a linear time invariant sys-
tem with only real eigenvalues. Therefore, the oscillatory behavior of
the output error scheme is not observed for the input error scheme.

Example

We consider once again the example of Section 4.5.2, but for the input
error scheme. The model transfer function is M = ky/(s+ay), and we
choose L = (s +13)/1;. Note that (Mf,)“l may be expressed as

(s +am)h Ly am-1, 1

= — +

kn(s+1)  km kp s+l

The equations describing the overall adaptive system with the input
error scheme are

(ML) ' = (4.5.61)

Vo = —apYp +kpu
})m = "am.VM+kmr

u = cor+doyp

x; = =lx+hu i.e. x1=f,'l(u)
Xy = ..[2X2+11yp ie. x; = I:_I(Yp)
11 am—l2 -1
m m
e, = COX3+d0X2—X1
Cop = —8ex1X3 ¢r = Co—Co = CO“km/kp
. . . (ap — am)
dy = —gexxs ¢y = do—d§ = do- pk -
P

Again, we neglected the normalization factor and the projection in the
update law for simplicity.
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When r = rgsin(wg ), the averaged system is

: 2
¢ - g If o o} + a2,
: = -85 — +1
¢y w% + 122 <o w(2) +(am - p¢y)2
| kma,
a'%l + w% [¢r]
4.5.62
Kmam k2 by ( )

a,%,+w% a,%,+w(2)

When oy = 5, Figure 4.16 shows that trajectories of the output scheme
exhibit an oscillatory type of response. Figure 4.17 shows the response
for the input error scheme under comparable conditions.

0.375

0.3

0.225

0.075

0.2

Figure 4.16: Parameter Error ¢, (¢,)-Output Error Scheme

The parameters are k, =3, a,=3, a,=1, k,=2, ro=1, wp=5, g=1,
[, =10.05, I,=10, ¢,(0)=-0.5, ¢,(0)=0.25. As may be observed, the
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0.375 -
03 |
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Py

0.15

0.075

¢

Figure 4.17: Parameter Error ¢, (¢,)-Input Error Scheme

trajectories do not exhibit oscillatory behavior, reflecting the fact that
the matrix above is symmetric and, therefore, has only real eigenvalues.

4.6 CONCLUSIONS

Averaging is a powerful tool to approximate nonautonomous differential
equations by autonomous differential equations. In this chapter, we
introduced averaging as a method of analysis of adaptive systems. The
approximation of parameter convergence rates using averaging was
justified by general results concerning a class of systems including the
adaptive systems described in Chapters 2 and 3. The analysis had the
interesting feature of considering nonlinear differential equations as well
as linear ones. Therefore, the application was not restricted to linear or
linearized systems, but extended to all adaptive systems considered in
this work, including adaptive control systems.

The application to adaptive systems included useful parameter con-
vergence rates estimates for identification and adaptive control systems.
The rates depended strongly on the reference input and a frequency
domain analysis related the frequency content of the reference input to
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the convergence rates, even in the nonlinear adaptive control case
These resu_lts‘are useful for the optimum design of reference input The);
have the lu'_mtation of depending on unknown plant parameters 'but an
approximation of the complete parameter trajectory is obtained ’and the
u‘nderstan.dmg of the dynamical behavior of the parameter error is con-
snd;rably increased using averaging. For example, it was found that the
trajectory of the parameter error corresponding to the linear error equa-
tion could ‘be approximated by an LTI system with real negative eigen-
valu;s, while for the strictly positive real (SPR) error equation it had
possibly complex eigenvalues.

'Bc51des requiring stationarity of input signals, averaging also
rf:qmreq slow parameter adaptation. We showed however, through
simulations, that the approximation by the averaged system wa; good for
yaluc;s of the adaptation gain that were close to 1 (that is, not necessarily
lpﬁmtcmmal) and for acceptable time constants in the ;;arameter varia-
tions. In fact, it appeared that a basic condition is simply that parame-

ters vary more slowly than do other states and si :
system. d signals of the adaptive

CHAPTER 5
ROBUSTNESS

51 STRUCTURED AND UNSTRUCTURED UNCERTAINTY

In a large number of control system design problems, the designer does
not have a detailed state-space model of the plant to be controlled, either
because it is too complex, or because its dynamics are not completely
understood. Even if a detailed high-order model of the plant is avail-
able, it is usually desirable to obtain a reduced order coatroller, so that
part of the plant dynamics must be neglected. We begin discussing the
representation of such uncertainties in plant models, in a framework
similar to Doyle & Stein [1981].

Consider the kind of prior information available to control a stable
plant, and obtained for example by performing input-output experi-
ments, such as sinusoidal inputs. Typically, Bode diagrams of the form
shown in Figures 5.1 and 5.2 are obtained. An inspection of the
diagrams shows that the data obtained beyond a certain frequency wy is
unreliable because the measurements are poor, corrupted by noise, and
so on. They may also correspond to the high-order dynamics that one
wishes to neglect. What is available, then, is essentially no phase infor-
mation, and only an “envelope” of the magnitude response beyond wy.
The dashed lines in the magnitude and phase response correspond to the
approximation of the plant by a finite order model, assuming that there
are no dynamics at frequencies beyond wy. For frequencies below wy, it
is easy to guess the presence of a zero near w;, poles in the neighborhood
of wy, w3, and complex pole pairs in the neighborhood of wg, ws.

209
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Figure 5.1: Bode Plot of the Plant (Gain)
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Figure 5.2: Bode Plot of the Plant (Phase)

To keep the design goal specific and consistent with our previous
analysis, we will assume that the designer’s goal is model following: the
designer is furnished with a desired closed-loop response and selects an
appropriate reference model with transfer function M (s). The problem
is to design a control system to get the plant output y,(¢) to track the
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model output y,,(¢) in response to reference signals r() driving the
model. This is shown in Figure 5.3.

Model
r A Yy
> M(s) >
Piant
u Yp 8
Q(s) 7

" CONTROLLER

Figure 5.3: Model Following Control System

The controller generates the input #(¢) of the plant, using yn,(f), yp(1)
and r(¢) so that the error between the plant and model output
eo(t) 1= y,(t) - ym(t) tends to zero asymptotically.

Two options are available to the designer at this point.
Non-Adaptive Robust Control. The designer uses as model for the plant
the nominal transfer function P*(s)

Ps) = |
s + o) (5.1.1)

(5 +wp) (5 + w3)((5 +va)? + (wg)})((s +v5)* + (ws)?)

The gain k, in (5.1.1) is obtained from the nominal high-frequency
asymptote of Figure 5.1 (i.e. the dashed line). The modeling errors due
to inaccuracies in the pole-zero locations, and to poor data at high fre-
quencies may be taken into account by assuming that the actual plant
transfer function is of the form

_B(s) = P(s) + Hys) (5.1.2)

1

or

P*(s) (1 + Hp(s)) (5.1.3)

where fIa(s) is referred to as the additive uncertainty and fI,,,(s) as the

P(s)
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multiplicative uncertainty. Of course, II:Ia(jw)l and ]I:I,n(jw)| are unk-
nown, but magnitude bounds may be determined from input-output
measurements and other available information. A typical bound for

|I§’,,,(jw)[ is shown in Figure 5.4.

Magnitude ﬁ

|Rmujw)] Aim )|

Figure 5.4: Typical Plot of Uncertainty |ﬁm0w)| and
|H muU“’)'

_ Gi\{en the desired transfer function M (s), one attempts to build a
linear, time-invariant controller of the form shown in Figure 5.5, with
feedforward compensator C(s) and feedback compensator F (s), so that

the nominal closed-loop transfer function approximately matches the
reference model, that is,

-1

P)YC) I + F&)P()Cs)| ~ M@) (5.1.4)

Cts) P(+fig) LI

Fis) |

Figure 5.5: Non-adaptive Controller Structure

over the frequency range of interest (the frequency range of r). Further,

C(s) and F.(s‘).are chosen so as to at least preserve stability and also
reduce sensitivity of the actual closed-loop transfer function to the

modeling errors represented by ﬁa, or ﬁm within some given bounds.
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Adaptive Control. The designer makes a distinction between the two
kinds of uncertainty present in the description of Figures 5.1-5.2: the
parametric or structured uncertainty in the pole and zero locations and
the inherent or unstructured uncertainty due to additional dynamics
beyond wy. Rather than postulate a transfer function for the plant, the
designer decides to identify the pole-zero locations on-line, i.e. during
the operation of the plant. This on-line “tune-up” is for the purpose of
reduction of the structured uncertainty during the course of plant opera-
tion. The aim is to obtain a better match between M (s) and the con-
trolled plant for frequencies below wy. A key feature of the on-line tun-
ing approach is that the controller is generally nonlinear and time-
varying. The added complexity of adaptive control is made worthwhile
when the performance achieved by non-adaptive control is inadequate.

The plant model for adaptive control is given by

}3(s) = }3,,.(3) + ﬁau(s) (5.1.5)
or
P(s) = Pp(s)(1 + Huuls)) (5.1.6)

where f’o-(s) stands for the plant indexed by the parameters 6* and
H,(s) and H,.(s) are the additive and multiplicative uncertainties
respectively. The difference between (5.1.2)—(5.1.3) and (5.1.5)-(5.1.6)
lies in the on-line tuning of the parameter 6* to reduce the uncertainty,
so that it only consists of the unstructured uncertainty due to high-
frequency unmodeled dynamics.

When the plant is unstable, a frequency response curve as shown in
Figures S5.1-5.2 is not available, and a certain amount of off-line
identification and detailed modeling needs to be performed. As before,
however, the plant model will have both structured and unstructured
uncertainty, and the design options will be the same as above. The
difference only arises in the representation of uncertainty. Consider, for
example, the multiplicative uncertainty in the nonadaptive and adaptive

cases. Previously, ﬁm(s) was stable. However, when the plant is
unstable, since the nominal locations of the unstable poles may not be

chosen exactly, flm(s) may be an unstable transfer function. For adap-
tive control, we require merely that all unstable poles of the system be
parameterized (of course, their exact location is not essential!), so that

the description for the uncertainty is still given by (5.1.6), with ﬁmu(s)
stable, even though Pg.(s) may not be.

A simple example illustrates this: consider a plant with transfer
function
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m
-1+ (s+m)

P(s) = (5.1.7)

with €> 0 small and m > 0 large.
For non-adaptive control, the nominal plant is chosen to be 1/s -1, so
that

-2+ 5-¢(s+m)
s-1+e(s+m)

Hous) = (unstable) (5.1.8)

For adaptive control on the other hand, ]3,,.(s) =1/(s+86%) is chosen
with

Hols) = —s—:’; (stable) (5.1.9)

and 8" =-1 +e.

In the preceding chapters, we only considered the adaptive control
of plants with parameterized uncertainty, i.., control of ]3,,..
Specifically, we choose f’g- of the form k, 71, / 3p, where 7, d}, are monic,
coprime polynomials of degrees m, n respectively. We assumed that

(a) The number of poles of ]3,,-, that is, n, is known.
(b) The number of zeros of 13,,-, that is, m < n, is known.

(c) The sign of the high-frequency gain k, is known (a bound may also
be required) .

-

(d) Py is minimum phase, that is, the zeros of 7, lie in the open left
half plane (LHP).

It is important to note that the assumptions apply to the nominal plant
Pe. In particular, P may have many more stable poles and zeros than

P . Further, the sign of the high-frequency gain of P is usually indeter-
: minate as shown in Figure 5.1.

The question is, of course,; how will the adaptive algorithms

described in previous chapters behave with the true plant P7 A basic
desirable property of the control algorithm is to maintain stability in the
presence of uncertainties. This property is usually referred to as the
robustness of the control algorithm.

A major difficulty in the definition of robustness is that it is very
problem dependent. Clearly, an algorithm which could not tolerate any
uncertainty (that is, no matter how small) would be called non robust.
However, it would also be considered non robust in practice, if the range
of tolerable uncertainties were smaller than the actual uncertainties
present in the system. Similarly, an algorithm may be sufficiently robust

Section 5.1 Structured and Unstructured Uncertainty 215

for one application, and not for another. A key set of observations
made by Rohrs, Athans, Valavani & Stein {1982, 1985] is that adap}ive
control algorithms which are proved stable by the techniques of previous
chapters can become unstable in the presence of mild unmodeled
dynamics or arbitrarily small output disturbances. We start by review-
ing their examples.

5.2 THE ROHRS EXAMPLES

Despite the existence of stability proofs for adaptive control systems (cf.
Chapter 3), Rohrs er al [1982], [1985] showed that several algorithms
can become unstable when some of the assumptions required by the sta-
bility proofs are not satisfied. While Rohrs (we drop the et al fOI: com-
pactness) considered several continuous and discrete time algorithms,
the results are qualitatively similar for the various schemes. We con-
sider one of these schemes here, which is the output error direct adap-
tive control scheme of Section 3.3.2, assuming that the degree and the
relative degree of the plant are 1.

The adaptive control scheme of Rohrs examples is designed assum-
ing a first order plant with transfer function

. k
Py(s) = < +"ap (5.2.1)

and the strictly positive real (SPR) reference model

- k 3
= m__ 2.2
M(s) S+am s+3 (5-22)

The output error adaptive control scheme (cf. Section 3.3.2) is described
by

u = cor +doyp (5.2.3)
€ = Vp = Vm (5.2.4)
Co = —geyr (5.2.5)
dy = -geoy, (5.2.6)

As a first step, we assume that the plant transfer function is given
by (5.2.1), with k, = 2, a, = 1. The nominal values of the controller
parameters are thén

K
g = 2 =15 (5.2.7)
kp
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dy = 2 8m (5.2.8)
ky

The behavior of the adaptive system is then studied, assuming that
the actual plant does not satisfy exactly the assumptions on which the
adaptive control system is based. The actual plant is only approximately
a first order plant and has the third order transfer function

2 229
s+ 1 524305 + 229

In analogy with nonadaptive control terminology, the second term
is called the unmodeled dynamics. The poles of the unmodeled dynam-
ics are located at - 15+ 2, and, at low frequencies, this term is approxi-
mately equal to 1.

In Rohrs examples, the measured output y,(¢) is also affected by a

measurement noise n(¢). The actual plant with the reference model and
the controller are shown in Figure 5.6.

P(s) =

(5.2.9)

3 ym(t)
§+3 l
- 8,ft)
g n(t)
l £
i 229 yptt)
_» 7 Facerzae [T

o
)./

Figure 5.6: Rohrs Example—Plant, Reference Model, and Controller

An important aspect of Rohrs examples is that the modes of the
actual plant and those of the model are well within the stability region.
Moreover, the unmodeled dynamics are well-damped, stable modes.
From a traditional control design standpoint, they would be considered
rather innocuous.

At the outset, Rohrs showed through simulations that, without
measurement noise or unmodeled dynamics, the adaptive scheme is
stable and the output error converges to zero, as predicted by the stabil-
ity analysis.

However, with unmodeled dynamics, three different mechanisms of
instability appear:

Section

(R1)

80

60

40

(R2)

(R3)
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With a large, constant reference input and no measurement
noise, the output error initially converges to zero, but eventually
diverges to infinity, along with the controller parameters ¢ and
dy.

Figures 5.7 and 5.8 show a simulation with r(¢) = 4.3, n(t) = 0,
that illustrates this behavior (co(0) = 1.14, do(0) = - 0.65 and
other initial conditions are zero).

i i | 1 1 i i 1 J
0 2.5 5.0 7.5 10.0
Time(s)
Figure 5.7 Plant Output (r = 4.3, n = 0)
With a reference input having a small constant component and a

large high frequency component, the output error divprges at first
slowly, and then more rapidly to infinity, along with the con-
troller parameters cg and d.

Figures 5.9 and 5.10 show a simulation with r(f) = 0.3 +
1.85sin 16.1¢, n(t) = 0 (co(0) = 1.14, do(0) = - 0.65, and other
initial conditions are zero).

With a moderate constant input and a small output disturbance,
the output error initially converges to zero. After staying in the
neighborhood of zero for an extended period of time, it diverges
to infinity. On the other hand, the controller parameters ¢y and
d, drift apparently at a constant rate, until they suddenly diverge
to infinity. ’
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Figure 5.8 Controller Parameters (r=43,n=0)
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Figure 5.9 Plant Output (* = 0.3 + 1.85sin 16.1¢ , n = 0)
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Time(s)

Figure 5.10 Controller Parameters (r = 0.3 + 1.85sin 16.1¢ ,h=0)

Figures 5.11 and 5.12 show a simulation with r¢) =2, n(t) =

0.5sin16.11  (co(0) = 1.14, dp(0) = - 0.65, and other initial
conditions are zero).

Although this simulation corresponds to a comparatively high
value of n(t), simulations show that when smaller values of the
output disturbance n(t) are present, instability still appears, but
after a longer period of time. The controller parameters simply
drift at a slower rate. Instability is also observed with other fre-
quencies of the disturbance, including a constant n(t).

Rohrs examples stimulated much research about the robustness of adap-
tive systems. Examination of the mechanisms of instability in Rohrs
examples show that the instabilities are related to the identifier. In
identification, such instabilities involve computed signals, while in adap-
tive control, variables associated with the plant are also involved. This
justifies a more careful consideration of robustness issues in the context
of adaptive control.

3.3 ROBUSTNESS OF ADAPTIVE ALGORITHMS WITH PER-
SISTENCY OF EXCITATION

Rohrs examples show that the bounded-input bounded-state (BIBS) sta-
bility property obtained in Chapter 3 is not robust to uncertainties. In
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Figure 5.11 Plant Output (r = 2, n = 0.5sin 16.1¢)
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Figure 5.12 Controller Parameters (r = 2, n = 0.5sin 16.1¢)
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some cases, an arbitrary small disturbance can destabilize an adaptive
system, which is otherwise proved to be BIBS stable. In this section, we
will show that the property of exponential stability is robust, in the sense
that exponentially stable systems can tolerate a certain amount of distur-
bance. Thus, provided that the nominal adaptive system is exponen-
tially stable (guaranteed by a persistency of excitation (PE) condition),
we will obtain robustness margins, that is, bounds on disturbances and
unmodeled dynamics that do not destroy the stability of the adaptive
system. Our presentation follows the lines of Bodson & Sastry [1984].

Of course, the practical notion of robustness is that stability should
be preserved in the presence of actual disturbances present in the sys-
tem. Robustness margins must include actual disturbances for the adap-
tive system to be robust in that sense. The main difference from classi-
cal linear time-invariant (LTI) control system robustness margins is that
robustness does not depend only on the plant and control system, but also
on the reference input, which must guarantee persistent excitation of the
nominal adaptive system (that is, without disturbances or unmodeled
dynamics).

5.3.1 Exponential Convergence and Robustness
In this section, we consider properties of a so-called perturbed system

x = f(t,x,u) x(0) = xg (5.3.1)
and relate its properties to those of the unperturbed system
x = f(t,x,0) x(0) = xq (5.3.2)

where ¢t > 0,.x e R”, u e R™. Depending on the interpretation, the sig-
nal u will be considered either a disturbance or an input.

We restrict our attention to solutions x and inputs # belonging to
some arbitrary balls B, € R" and B, € R™.

Theorem 5.3.1 Small Signal I/O Stability

Consider the perturbed system (5.3.1) and the unperturbed system
(5.3.2). Let x = 0 be an equilibrium point of (5.3.2), i.e., f(¢,0,0) = 0,
for all 1 = 0. Let f/ be piecewise continuous in ¢ and have continuous
and bounded first partial derivatives in x, for all ¢ 2 0, x € By, u € B,.
Let f be Lipschitz in u, with Lipschitz constant /,, for all ¢ 2 0, x € By,
ueB,. Letu € Loo.

If x =0 is an exponentially stable,equilibrium point of the unper-

turbed system
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Then
(a) The perturbed system is small-signal L o stable, that is, there
exist v , ¢ >0, such that || ull , <c., implies that

Xl < voolltll o < A (5.3.3)

where x is the solution of (5.3.1) starting at x, = 0;

(b) There exists m =1 such that, for all |xo| <h/m,
0<|l u 0 <Co implies that x(¢) converges to a B; ball of radius

b= vl ull , <h, that is: for all €>0, there exists T = 0 such
that

Ix(0)] < (1 +¢0 (5.3.4)

for all 2T, along the solutions of (5.3.1) starting at xq. Also, for
all =2 0, |x(¢)] <h.

Comments

Part (a) of theorem 5.3.1 is a direct extension of theorem 1 of
Vidyasagar & Vannelli [1982] (see also Hill & Moylan [1980]) to the non
autonomous case. Part (b) further extends it to non zero initial condi-
tions.

Theorem 5.3.1 relates internal exponential stability to external
input/output stability (the output is here identified with the state). In
contrast with the definition of BIBS stability of Section 3.4, we require a
linear relationship between the norms in (5.3.3) for L . stability.

Although lack of exponential stability does not imply input/output
instability, it is known that simple stability and even (non uniform)
asymptotic stability are not sufficient conditions to guarantee 1/Q stabil-
ity (see e.g., Kalman & Bertram [1960], Ex. 5, p. 379).

Proof of Theorem 5.3.1

The differential equation (5.3.2) satisfies the conditions of theorem 1.5.1,

so that there exists a Lyapunov function v(¢, x) satisfying the following
inequalities

ap]x]? < v(t,x) < ay|x|? (5.3.5)

d(t, x)| T (5.3.6)
(5.3.2)

|av(’ . X) | < aqlx| (5.3.7)
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for some strictly positive constants a; - - - ay4, and for all t 2 0, x € By,.

If we consider the same function to study the perturbed differential
equation (5.3.1), inequalities (5.3.5) and (5.3.7) still hold, while (5.3.6) is
modified, since the derivative is now to be taken along the trajectories of
(5.3.1) instead of (5.3.2). The two derivatives are related through

dv(t, x) _ 9v(@t, x) v, x)f(t X, u)
d (5.3.1) ot 121 9x; l :
dv(t x) & v, x)
|(532) 12:1 0x;

[fiexw-si,x,0]  538)
Using (5.3.5)-(5.3.7), and the Lipschitz condition on f

vt x) < —ag|x? + aglx| Ll ull o (5.3.9)
d (5.3.1)
Define

1

ay ar |2
= =21 |== 5.3.10
700 a3 lu [Oll ] ( )
5 1= |u[| (5.3.11)
m = [ ] (5.3.12)

Inequality (5.3.9) can now be written

av(t, x)l < —as|x| [|x| - i] (5.3.13)
(5.3.1) m
This inequality is the basis of the proof.
Part (a) Consider the situation when | xo| < §/m (this is true in partic-
ular if xo = 0). We show that this implies that x(¢) € B; forall t =0
(note that 6/ m < 8, since m = 1).
Suppose, for the sake of contradiction, that it were not. true. Then,

by continuity of the solutions, there would exist Ty, T, (T ;> T¢=0),
such that

|x(To)l =8/m and [x(T))|>8
and for all ¢t € [Ty, T,]:|x(¢)] 2 6/ m. Consequently, inequality
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(5.3.13) shows that, in [Ty, T;], v < 0. However, this contradicts the
fact that

V(To, x(To))< az(8/ m)*= ;82
and
V(T, x(T})> a) 62

Part (b) Assume now that | xg| >4&/m. We show the result in two steps.
(b1) for all €> 0, there exists T = 0 such that | x(T)| < (6/m)(1 +¢).
Suppose it was not true. Then, for some ¢>0 and forall ¢ = 0

[ x>/ m)(1 +¢)
and, from (5.3.13)

v<—-a3(6/my(l+e)e

which is a strictly negative constant. However, this contradicts the fact
that
2

h
(0, X) < az|xol? < az )

and v(t,x(¢))=0 for all ¢ = 0, Note that an upper bound on T is

a2h2

T < 3
a3b e

b2) for all t =T, |x(t)] <6(1+¢). This follows directly from (bl),
using an argument identical to the one used to prove (a).

Finally, recall that the assumptions require that x(¢) € By,
u(t) e B, for all t 2 0. This is also guaranteed, using an argument
similar to (a), provided that | xo| <A/m and || ul|  <c_ , where m is
defined in (5.3.12), and

c_ = min(c,h/'yoo) (5.3.14)

oo
(5.3.14) implies that 6<h, and |xg| < h/m < h implies that |x(¢)|
<m|xo| <h forallt =2 0.

Note that although part (a) of the proof is, in itself, a result for non
zero initial conditions, the size of the ball B;,,, involved decreases when
the amplitude of the input decreases, while the size of By ,,, is indepen-
dent of it. 0O
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Additional Comments

a) The proof of the theorem gives an interesting interpretation of the
interaction between the exponential convergence of the original system
and the effect of the disturbances on the perturbed system. To see this,
consider (5.3.9): the term - a3|x|? acts like a restoring force bringing
the state vector back to the origin. This term originates from the
exponential stability of the wunperturbed system. The term
ag| x| L]l u|| , acts like a disturbing force, pulling the state away from
the origin. This term is caused by the input  (i.e. by the disturbance
acting on the system). While the first term is proportional to the norm
squared, the second is only proportional to the norm, so that when | x|
is sufficiently large, the restoring force equilibrates the disturbing force.
In the form (5.3.13), we see that this happens when
x| =8/m = vy /mll ul -

b) If the assumptions are valid globally, then the results are valid glo-
bally too. The system remains stable and has finite I/O gain, indepen-
dent of the size of the input. In the example of Section 5.3.2, and for a
wide category of nonlinear systems (bilinear systems for example), the
Lipschitz condition is not verified globally. Yet, given any balls B, B,
the system satisfies a Lipschitz condition with constant /, depending on
the size of the balls (actually increasing with it). The balls B, B, are
consequently arbitrary in tha; case, but the values of Yoo (the L‘Jo gain)
and Coo (the stability margin) will vary with them. In general, it can be
expected that € will remain bounded despite the freedom left in the
choice of 4 and c¢, so that the I/O stability will only be local.

¢)  Explicit values of Yo and ¢ can be obtained from parameters of
the differential equation, using equations (5.3.10) and (5.3.14). Note
that if we used the Lyapunov function satisfying (5.3.5)-(5.3.7) to obtain
a convergence rate for the unperturbed system, this rate would be
a3/2a;. Therefore, it can be verified that, with other parameters
remaining identical, the L o gain is decreased and the stability margin
€ 18 increased, when the rate of exponential convergence is increased.

5.3.2 Robustness of an Adaptive Control Scheme

For the purpose of illustration, we consider the output error direct adap-
tive control algorithm of Section 3.3.2, when the relative degree of the
plant is 1. This example contains the specific cases of the Rohrs exam-
ples.

In Section 3.5, we showed that the overall output error adaptive
scheme for the relative degree 1 case is described by (cf. (3.5.28))
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é(t) = Ame@t) + bpdT () wh(t) + buoT (1) Q e(?)

6(t) = - gcme(t) wm(t) - gche(t) Q e(t) (5.3.15)

where e(t)eIR¥*-2% and ¢(.)eIR?. A4, is a stable matrix, and

wm(t) € R¥ is bounded for all ¢ 2 0. (5.3.15) is a nonlinear ordinary
differential equation (actually it is bilinear) of the form

= f@,x) x(0) = xo (5.3.16)
which is of the form (5.3.2), where

1]

[g] e R¥-2 (5.3.17)

Recall that we also found, in Section 3.8, that (5.3.15) (i.e. (5.3.16)) is
exponentially stable in any closed ball, provided that w,, is PE.

Robustness to Output Disturbances
Consider the case when the measured output is affected by a measure-

ment noise n(¢), as in Figure 5.6. Denote by y, the output of the plant
Py(s) (that is the output without measurement noise) and by y,(¢), the

measured output, affected by noise, so that
Yo(t) = ya(t) + n(t) = Pp(u) + n(t) (5.3.18)

To find a description of the adaptive system in the presence of the
measurement noise n(¢), we return to the derivation of (5.3.15) (that is
(3.5.28)) in. Section 3.5. The plant P, has a minimal state-space

representation [A4,, by, ¢ T] such that

Xp = Apx, + byu

]

yy = ¢fx, (5.3.19)
The observers are described by
wh = Aw® + hu

WO = Aw® 4 by,

AwW® 4 byclx, + byn (5.3.20)
and the control input is given by u = 87w = ¢T w+6"w

As previously, we let x7, = (x], wD" W™y Using the definition
of Ap, by and ¢, in (3.5.18)-(3.5.19), the description of the plant with
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controller is now
Xpw = AmXpy + by dTw + bpcir + byn

Yo = ChXp (5.3.21)

where we define b7 = (0,0,57) € (R", R*"!, R*"!) = R¥*" -2,
As previously, we represent the model and its output by

Xm AmXm + bl r
Vm = CF X (5.3.22)

and we let e = x,, — Xp,.
The update law is given by

¢

]

-8(Yp=Ym)W
—gclew —gnw (5.3.23)

and the regressor is now related to the state e by

,
W) w<‘> wih
W,
Yp
e

w(z) w(2>

<
i
1]
5

O OO

W, + Qe + gun (5.3.24)

where we define g7 = (0,0, 1,0) ¢ (R,R*"!,R,IR"*!) = R,

Using these results, the adaptive system with measurement noise is
described by

é(t) = Ape(t) + bpd” (1) wp(t) + bye’ (1) Qe(t)
+ b dT(t) gan (1) + byn(t)
é(1) = -gehe(®) wnlt) - gehe(t) Qe(t) - gehe(t) gun (t)

- gn(t) wm(t) - gn(t) Qe(t) - gn(t) q, (5.3.25)

which, with the definition of x in (5.3.17) and the definition of f in
(5.3.15)~(5.3.16) can be written
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x = f{t,x)+p(t) + Py(t)x(¢) (5.3.26)
where pi(t) € R*~%and Py(t) € R3*~2%57-2 are given by
b, n(t)
t =
P = gn () walt) - gn¥(0)a,
0 bun(t)qy
Pyt) = (5.3.27)
| -gn(t)gnem-gn(t)Q 0

Note that if n € L,thenp andP; € L_. Therefore, the per-
turbed system (5.3.26) is a special form of system (5.3.1), where ¥ con-
tains the components of p; and P,. Although p(¢) depends quadrati-
cally on n, given a bound on n, there exists k, = 0 such that

121l + 11 Pall g < Kall 1l o (5.3.28)

From these derivations, we deduce the following theorem.

Theorem 5.3.2 Robustness to Disturbances

Consider the output error direct adaptive control scheme of Section

3.2.2, assuming that the relative degree of the plant is 1. Assume that

the measured output y, of the plant is given by (5.3.18), where n € Loo.

Let 4 >0.

If w,, is PE

Then  there exists v,,¢,>0 and m = 1, such that || n[loo < ¢, and
| x(0)] < h/m implies that x(¢) converges to a B; ball of radius
0=y |l nll o, with [ x(£)] < m|xo| <h forallz 2 0.

Proof of Theorem 5.3.2

Since w,, is PE, the unperturbed system (5.3.15) (i.e. (5.3.16)) is
exponentially stable in any B, by theorem 3.8.2., The perturbed system
(5.3.25) (i.e. (5.3.26)) is a special case of the general form (5.3.1), so that
theorem 5.3.1 can be applied with u containing the components of
Dpi(t), Po(t). The results on p(t), P,(¢t) can be translated into similar
results involving n(¢), using (5.3.28). 0O

Comments

a) A specific bound ¢, on || n||  can be obtained such that, within
this bound, and provided the initial error is sufficiently small, the stabil-
ity of the adaptive system will be preserved. For this reason, ¢, is called a

Section 5.3 Robustness with Persistency of Excitation 229

robustness margin of the adaptive system to output disturbances.

b) The deviations from equilibrium are locally at most proportional to
the disturbances (in terms of L . norms), and their bounds can be made
arbitrarily small by reducing the bounds on the disturbances.

c¢) The L, gain from the disturbances to the deviations from equili-
brium can be reduced by increasing the rate of exponential convergence
of the unperturbed system (provided that other constants remain identi-
cal). :

d) Rohrs example (R3) of instability of an adaptive scheme with out-
put disturbances on a non persistently excited system, is an example of
instability when the persistency of excitation condition of the nominal
system is not satisfied.

Robustness to Unmodeled Dynamics

We assume again that there exists a nominal plant f’,,o(s), satisfying the
assumptions on which the adaptive control scheme is based, and we
define the output of the nominal plant to be

v; = Ppu) (5.3.29)

The actual output is modeled as the output of the nominal plant, plus
some additive uncertainty represented by a bounded operator H,

Yo(t) = yp(t) + Hy(u)(t) (5.3.30)

The operator H, represents the difference between the real plant, and the

idealized plant 13(s). We refer to it as an additive unstructured uncer-
tainty, and it constitutes all the uncertainty, since it is the purpose of the
adaptive scheme to reduce to zero the structured or parametric uncer-
tainty.

We assume that H,: L, —~ L __ is a causal operator satisfying

e
| Haw)e [l o < vall wll o, + Ba (5.3.31)

for all ¢t =0. B, may include the effect of initial conditions in the unmo-
deled dynamics and the possible presence of bounded output distur-
bances.

The following theorem guarantees the stability of the adaptive sys-
tem in the presence of unmodeled dynamics satisfying (5.3.31).
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Theorem 5.3.3 Robustness to Unmodeled Dynamics

Consider the output error direct adaptive control scheme of Section
3.3.2, ass_uming that the relative degree of the plant is 1. Assume that
the nominal plant output and actual measured plant output satisfy

(5.1}.29)—(5.3.30), where f’,- satisfies the assumptions of Section 3.3.2. H,
satisfies (5.3.31) and is such that trajectories of the adaptive system are
continuous with respect to ¢.

If W, is PE
Then  for X0, Ya B, sufficiently small, the state trajectories of the
adaptive system remain bounded.

Proof of Theorem 5.3.3

Let 7>0 such that x(¢)<#h for all ¢t € [0,7]. Define n = H,(u), so
that, by assumption

7l g = vall tell oo + Ba (5.3.32)
forall t e [0,T]. Using (5.3.24), the input u is given by

T
u = 0w = 0"w+ ¢™w

i

0" Wi + 0% Qe + 0 qun + ¢Twp, + $TQe + + ¢Tq.n (5.3.33)

Since x € By, there exist v,, 8, = 0 such that

luillg < vull nell o + B (5.3.34)
forallt e [0,T]. Let v, B, sufficiently small that
YaYu < 1 (5.3.39)
Bt vabu < ¢y (5.3.36)
-4 vu

where ¢, is the constant found in theorem 5.3.2. Applying the small
gain theorem (lemma 3.6.6), and using (5.3.32), (5.3.35) and (5.3.36), it
follows that | n, ||  <c,. By theorem 5.3.2, this implies that |x(s)] <h
for all ¢ € [0,T]. Since none of the constants v,, B, v, and B, is
dependent on T, |x(t)] <h for all +=0. Indeed, suppose it was not
true. Then, by continuity of the solutions, there would exist a 7> 0
such that |x(¢t)| <h for all ¢t € [0,T], and x(T)=h. The theorem
would then apply, resulting in a contradiction since | x(T)| <h. 0O
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Comments

Condition (5.3.24) is very general, since it includes possible nonlineari-
ties, unmodeled dynamics, and so on, provided that they can be
represented by additive, bounded-input bounded-output operators.

If the operator H, is linear time invariant, the stability condition is
a condition on the L gain of H,. One can use

w .
Ya = lhalls = [lhan) ar (5.3.37)
0

where h,(r) is the impulse response of ﬁa. The constant 8, depends on
the initial conditions in the unmodeled dynamics.

The proof of theorem 5.3.3 gives some margins of unmodeled
dynamics that can be tolerated without loss of stability of the adaptive
system. Given 7., 8, it is actually possible to compute these values.
The most difficult parameter to determine is possibly the rate of conver-
gence of the unperturbed system, but we saw in Chapter 4 how some
estimate could be obtained, under the conditions of averaging. Needless
to say the expression for these robustness margins depends in a complex
way on unknown parameters, and it is likely that the estimates would be
conservative. The importance of the result is to show that if the unper-
turbed system is persistently excited, it will tolerate some amount of dis-
turbance, or conversely that an arbitrary small disturbance cannot desta-
bilize the system, such as in example (R3).

5.4 HEURISTIC ANALYSIS OF THE ROHRS EXAMPLES

By considering the overall adaptive system, including the plant states,
observer states, and the adaptive parameters, we showed in Section 5.3
the importance of the exponential convergence to guarantee some
robustness of the adaptive system. This convergence depends especially
on the parameter convergence, and therefore on conditions on the input
signal r(¢).

A heuristic analysis of the Rohrs examples gives additional insight
into the mechanisms leading to instability, and suggest practical methods
to improve robustness. Such an analysis can be found in Astrom [1983],
and its success relies mainly on the separation of time scales between the
evolution of the plant/observer states, and the evolution of the adaptive
parameters. This separation of time scales is especially suited for the
application of averaging methods (cf. Chapter 4).

Following Astrom [1983], we will show that instability in the Rohrs
examples are due to one or more of the following factors
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a) the lack of sufficiently rich inputs to
[ allow for parameter convergence in the nominal system,

[ prevent the drift of the parameters due to unmodeled
dynamics or output disturbances.

b) the presence of significant excitation at high frequencies, originating
either from the reference input, or from output disturbances. These sig-
nals cause the adaptive loop to try to get the plant loop to match the
model at high frequencies, resulting in a closed-loop unstable plant.

c) a large reference input with a non-normalized identification (adapta-
tion) algorithm and unmodeled dynamics, resulting in the instability of
the identification algorithm.

Analysis

Consider now the mechanisms of instability corresponding to these three
cases.

a)  Consider first the case when the input is not sufficiently rich (exam-
ple (R3)).

In the nominal case, the output error tends to zero. When the PE condi-
tion is not satisfied, the controller parameter does not necessarily con-
verge to its nominal value, but to a value such that the closed-loop
transfer function matches the model transfer function at the frequencies
of the reference input. Consider Rohrs example, without unmodeled
dynamics. The closed-loop transfer function from r — y,, assuming that
¢o and d| are fixed, is

yAp _ 2Co

7 s+1-2d, (541
If a constant reference input is used, only the DC gain of this transfer
function must be matched with the DC gain of the reference model.
This implies the condition that

26'0
1 -2d,

| (5.4.2)

Any value of cg, dy satisfying (5.4.2) will lead to y, - y,,~0 as t - 0o
for a constant reference input. Conversely, when ey — 0, so do ¢, and
dg, so that the assumption that ¢, d, are fixed is justified.

If an output disturbance n(t) enters the adaptive system, it can
cause the parameters ¢y, dg to move along the line (more generally the
surface) defined by (5.4.2), leaving eg = y, - ¥, at zero. In particular,
note that when output disturbances are present, the actual update law
for dy is not (5.2.6) anymore, but
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do = —gVy(Vp—Vm) - gVmn - gn* (5.4.3)

where we find the presence of the term - gn?, which will tend to make
dy slowly drift toward the negative direction.

In example (R3), unmodeled dynamics are present, so that the
transfer function from r — y, is in fact given by

F (s+1)(s*+30s +229) - 4584,

which is identical to (5.4.1) for DC signals, but which is unstable for dg
= 0.5and dy < - 17.03.

The result is observed in Figures 5.11 and 5.12, where dj slowly
drifts in the negative direction, until it reaches the limit of stability of
the closed-loop plant with unmodeled dynamics. This instability is
called the slow drift instability. The error converges to a neighborhood
of zero, and the signal available for parameter update is very small and
unreliable, since it is indistinguishable from the output noise n(¢). It is
the accumulation of updates based on incorrect information that leads to
parameter drift, and eventually to instability.

In terms of the discussion of Section 5.3, we see that the constant
disturbance — gn? is not counteracted by any restoring force, as would be
the case if the original system was exponentially stable. For example,
consider the case where n = 0.1sin16.1¢. Figure 5.13 shows the evolu-
tion of the parameter dy in a simulation where r(¢) = 2 and where
r(t) = 2sin¢. In the first case, the parameter slowly drifts, leading even-
tually to instability. When r(¢) = 2sin¢, so that PE conditions are

(5.4.4)

satisfied, the parameter dy deviates from dj but remains close to the
nominal value.

Finally, note that instabilities of this type can be obtained for sys-
tems of relative degree greater than two even without unmodeled
dynamics and can lead to the so-called bursting phenomenon (cf. Ander-
son [1985]). The presence of noise in the update law leads to drift in the
feedback coefficients to a region where they are large, resulting in a
closed loop unstable system and a large increase in eg. The output error
eo eventually converges back to zero, but a large ‘blip’ is observed. This
repeats at random instants, and is referred to as bursting. As before a
safeguard, against bursting is persistent excitation.

b) Consider now the case when the reference input, or the output dis-
turbance, contain a large component at a frequency where unmodeled
dynamics are significant (example (R2)).
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do (r(t)=2)

-14 do (r{t)=2sin t)
| 1 ! ! | | |
0 50 100 150 200

Time(s)

Figure 5.13 Controller Parameter do(n = 0.1sin 16.1¢)

Let us return to Rohrs example, with a sinusoidal reference input
r(t) = rosin(wg?). With unmodeled dynamics, there are still unique
values of ¢y, dy such that the transfer function from r — y, matches M
at the frequency of the reference input wg. Without unmodeled dynam-
ics, these would be the nominal ¢, d3, but now they are the values cg',
dy" given by

458()0+ 3

= (5.4.5)
(s + 1) (s2 + 305 +229) - 4584 'qw, ST 3 lig,

where wq is the frequency of the reference input. Note that the values of

¢§ ,dg depend on M, P, the unmodeled dynamics, and also on the
reference input r.

On the other hand, it may be verified through simulations that the
output error tends to zero and that the controller parameters converge to
the following values ¢o_ and dg_ (cf. Astrom [1983]).
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wp Co,, do,,
1 1.69 -1.26
2 1.67 -1.44
5 1.53 -2.72

10 1.04 -7.31

It may be verified that these values are identical to ¢g , dg defined
earlier. Therefore, the adaptive control system updates the parameters,
trying to match the closed-loop transfer function—including the unmo-
deled dynamics—to the model reference transfer function. Note that the

parameter do_ = dg’ quickly decreases for wy>5. On the other hand, the

closed-loop system is unstable when do < -17.03 and dp < -17.03,
when wp = 16.09. Therefore, by attempting to match the reference
model at a high frequency, the adaptive system leads to an unstable
closed-loop system, and thereby to an unstable overall system.

This is the instability observed in example (R2). In contrast, Fig-
ure 5.14 shows a simulation where r = 0.3 + 1.85sin¢, that is where the
sinusoidal component of the input is at a frequency where model match-
ing is possible.

1.8
.,
0.6
or
~0.8
\,\,\/\’V\/\’\A‘M—w do
12 /
| ! I 1 | ! ! |
4] 25 50 75 100

Time(s)

Figure 5.14 Controller Parameters (r = 0.3 + 1.85sin¢, n = 0)

Then, the parameters converge to values ¢g, dg' close to ¢g, dg, and the
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adaptive system remains stable, despite the unmodeled dynamics.

¢) Consider finally the mechanism of instability observed with a large
reference input (example (R1)).

This mechanism will be called the high-gain identifier instability.
Although we do not have explicitly a high adaptation gain g, recall that
the adaptation law is given by

o = —8epr (5.4.6)
dy = -geoy, (5.4.7)

Roughly speaking, multiplying r by 2 means multiplying y,,, y, and eg by
2 and therefore is equivalent to multiplying the adaptation gain by 4.

The instabilities obtained for high values of the adaptation gain are
comparable to instabilities caused by high gain feedback in LTI systems
with relative degree greater than 2 (cf. Astrom {1983] for a simple root-
locus argument). A simple fix to these problems is to replace the
identification algorithm by a normalized algorithm.

5.5 AVERAGING ANALYSIS OF SLOW DRIFT INSTABILITY

As was pointed out in Section 5.4, Astrom [1983] introduced an analysis
of instability based on slow parameter adaptation, to separate the evolu-
tion of the plant/observer states and the adaptive parameters. The
phenomenon under study is the so-called slow drift instability and is
caused by either a lack of sufficiently rich inputs, or the presence of
significant excitation at high frequencies, originating either from the
reference input or output disturbances.

A heuristic analysis of this phenomenon was already given in the
preceding section. In this section, we make the analysis more rigorous
using the averaging framework of Chapter 4. In Section 5.5.1, we
develop general instability theorems for averaging of one and two time
scale systems. In Section 5.5.2, we apply these results to an output error
adaptive scheme. Our treatment is based on Riedle & Kokotovic [1985]
and Fu & Sastry [1986].

5.5.1 Instability Theorems Using Averaging

One Time Scale Systems

Recall the setup of Section 4.2, where we considered differential equa-
tions of the form

x = ef(t, x,¢) (5.5.1)

and their averaged versions
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Xoy = € fav(Xay) (5.5.2)
where
o+ T
fulx) = lim & [ fir, x,0)dr (5.5.3)
T—»m T 10

assuming that the limit exists uniformly in 7 and x. We will not repeat
the definitions and the assumptions (A1)~(A5) of Section 4.2, but we will
assume that the systems (5.5.1), (5.5.2) satisfy those identical assump-
tions. The reader may wish to review those assumptions before proceed-
ing with the proof of the following theorem.

Theorem 5.5.1 Instability Theorem for One Time Scale Systems

If the original system (5.5.1) and the averaged system (5.5.2)
satisfy assumptions (A1)-(A5), the function fav (x) has continu-
ous and bounded first partial derivatives in x, and there exists a
continuously differentiable, decrescent function v(¢, x) such that
i) v(,0=0
(ii) v(t, x) > O for some x arbitrarily close to 0

(iii) |§v_((3{)—,c£)— I < k,| x| for some k;>0

(iv) the derivative of v(f, x) along the trajectories of (5.5.2)
satisfies

W, x)I > ekl x|? (5.5.4)
(5.5.2)
for some k,>0.

Then  the original system (5.5.1) is unstable for e sufficiently small.

Remark

By an instability theorem of Lyapunov (see for example Vidyasagar
[1978]), the additional assumptions (i)-(iv) of the theorem guarantee
that the averaged system (5.5.2) is unstable. By definition, a system is
unstable if it is not stable, meaning that there exists a neighborhood of
the origin and arbitrarily small initial conditions so that the state vectors
originating from them are expelled from the neighborhood of the origin.

Proof of Theorem 5.5.1

As in Chapter 4, the first step is to use the transformation of lemma
4.2.3 to transform the original system. Thus, we use

x = z+ewl(l,2) (5.5.5)

with w, (¢, z) satisfying, for some £(¢) € K
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lew (t, 2)] < £(e)]z| (5.5.6)
|- 282 | < e (5.5.7)
dz

to transform (5.5.1) into
z = efa(2) + eplt, 2, ¢) (5.5.8)

where p(t, z, €) satisfies
[p(t, z, )l < ¥(g]z| (5.5.9)

for some ¢ (¢) € K.

Now, consider the derivative of v (¢, z) along the trajectories of
(5.5.8), namely

| =] v P e,z (5.5.10)
(5.5.8) (5.5.2) z
Using the inequalities (5.5.4) and (5.5.9), we have that
v(z,z)l > eky|z|2- ep(Oky| 2|2 (5.5.11)
(5.5.8)

If ¢ is chosen so that k; — Y(eg) ky >0, then it is clear that v(¢, z) | (s.5.5) is
positive definite. By the same Lyapunov instability theorem as was
mentioned in the remark preceding the theorem, it follows from (5.5.11)
that for € < ¢, the system (5.5.8) is unstable, and consequently so is the
original system (5.5.1). O

Comments

The continuously differentiable, decrescent function required by theore'm
5.5.1 can be found prescriptively, if the averaged system is linear, that is

Xgy = €AX,, (5.5.12)

and if 4 has at least one eigenvalue in the open right-half plane, but no
eigenvalue on the jw-axis. In this case, the function v can be chosen to
be

v(ix) = xTP x
where P satisfies the Lyapunov equation
ATP + P4 = I (5.5.13)

The Taussky lemma generalized (see Vidyasagar [1978]) says that P has
at least one positive eigenvalue, so that v(x) takes on positive values in
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some directions (and arbitrarily close to the origin). It is also easy to
verify that the conditions (iii), (iv) of theorem 5.5.1 are also satisfied by
v(x).

Two Time Scale Systems
We now consider the system of Section 4.4 namely

ef(t, %, y) - (5.5.14)
y = Ay +eglt,x,y) (5.5.15)

with x € R”, y ¢ R™. The only difference between (5.5.14), (5.5.15)
and the system (4.4.1), (4.4.2) of Chapter 4 is that the 4 matrix of
(5.5.15) is now assumed to be constant and stable rather than a function
of x which is uniformly stable. The averaged system is

Xoy = €fay(Xqy) (5.5.16)
where f,, (x) is defined to be

X

o+ T

.1
far(x) = Tl—l.moo—,f !o f(r, x,0)dr (5.5.17)

The functions f, g satisfy assumptions (B1), (B2), (B3) and (B5) (only
assumption (B4) is not necessary). As in the case of theorem 5.5.1, we
advise the reader to review the results of Section 4.4 before following the
next theorem.

Theorem 5.5.2 Instability Theorem for Two Time Scale Systems

If the original system (5.5.14), (5.5.15) and the averaged system
(5.5.16) satisfy assumptions (B1), (B2), (B3) and (BS), along
with the assumption that there exists a continuously
differentiable decrescent function v(¢, x) such that
i v, 00=0
(i) v(¢, x) > 0 for some x arbitrarily close to 0

(iii) IQV(T’—;‘—) | < k11x] for some ky>0

(iv) the derivative of v(¢, x) along the trajectory of (5.5.16)
satisfies

v(z,x)l > ekylx|? (5.5.18)
(5.5.16)
for some k,> 0, i

Then  the original system (5.5.14), (5.5.15) is unstable for ¢ sufficiently
small.
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Proof of Theorem 5.5.2

To study the instability of (5.5.14), (5.5.15), we consider another decres-
cent function vy,

Vl(t,x, y) = v(t’x)-k:inPy (5‘5'19)

where P is the symmetric positive definite matrix satisfying the
Lyapunov equation

ATP +PA = -1

Using the transformation of lemma 4.4.1, we may transform (5.5.14),
(5.5.15)—as in the proof of theorems 4.4.2 and 4.4.3 —into

z = efalz) +epi(t, 2, €) + epal, 2, p, €) (5.5.20)
y = Ay +eg(t, x(z), y) (5.5.21)
where p (¢, z, €¢) and p;y(¢, z, , €) satisfy
[p1(t, 2, €)| < £(eky4] 2] (5.5.22)
|p2(t, z,y,€)| < ks|y| (5.5.23)

and ¢(¢) € K. Clearly, vi(t, z, y)>0 for some (x, y) values arbitrarily
close to the origin (let y = 0 and use assumption (ii)). Now, consider
Nz, )| =]+ ksl - 26y Patt, 2, 9)
(5.5.20, 21) (5.5.20)

Using exactly the same techniques as in the proof of theorem 4.4.3 (the
reader may wish to follow through the details), it may be verified that
Wt 20| 2 ca(@|z]? + ]y’
(5.5.20, 21)

for some a(e) >k, and g (¢)— k3 as e— 0. Thus v, (¢, z, y) is a positive
definite function along the trajectories of (5.5.20, 21). Hence, the system
(5.5.20), (5.5.21) and consequently the original system (5.5.14), (5.5.15)
is unstable for e sufficiently small. O

Mixed Time Scales

As was noted in Chapter 4, a more general class of two-time scale sys-
tems arises in adaptive control, having the form

x = ef(t,x,¥) (5.5.24)
! Ay + h(t, x) + eg'(t, x, ") (5.5.25)

y
Again, for simplicity, we let the matrix 4 be a constant matrix (we will
only consider linearized adaptive control schemes in the next section).
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In (5.5.24), (5.5.25), x is the slow variable but )y’ has both a fast and a
slow component. As we saw in Section 4.4, the system (5.5.24), (5.5.25)
can be transformed into the system (5.5.20), (5.5.21) through the use of
the coordinate change

y =y -, x) (5.5.26)

where v(¢, x) is defined to be

. _
v, x) = ]ef“'-*)h(f, x)dr (5.5.27)
0

The averaged system of (5.5.24), (5.5.25) of the form of (5.5.16) will
exist if the following limit exists uniformly in ¢ and x

o+ T

f f(7,x,v(7, x))dr

to

.1
Sa(x) = TlimwT

The instability theorem of 5.5.2 is applicable with the additional
assumption (B6) of Section 4.4.

5.5.2 Application to the Output Error Scheme

Tuned Error Formulation with Unmodeled Dynamics

We will apply the results of the previous section to an output error adap-
tive control scheme (see Section 3.3.2) designed for a plant of order n
and relative degree one, The controller is, however, applied to a plant of
order n + n,, where the extra n, states represent the unmodeled dynam-
ics. In analogy to (3.5.16), the total state of the plant and observers

3n-2 . .
Xpw € R 7™ satisfies the equations

Xp 4, 00| |x b,
W = 10 A0 |wP| + |b]u
0

- (2 2
W@ Byl 0 A e

Xp

[cF00] [w® (5.5.28)
w®

]

Yp

(5.5.28) is precisely (3.5.16) with the difference that x, € R" "™ rather
to R",
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Now, it may no longer be possible to find a * € IR*" such that the
closed loop plant transfer function equals the model transfer function.
Instead, we will assume that there is a value of 8 which is at least stabil-
izes the closed loop system, and refer to it as the tuned value 6,. We
define

Ap+bydoec] bl bydl
A, = b)‘doth‘ A+b)‘CtT b)‘dtr (5.529)
b)‘Cg‘ 0 A

We will call As the tuned closed-loop matrix (cf. (3.5.18)), and we define
the tuned plant as

Xpwe = AuXpws + buCorr

ypc = czxpwt (5.5.30)
where
by Cp
by = |b| e R ™% and ¢ =|0] e R ™2
0 0

Note the analogy between (5.5.30) and (3.5.20). Now, the transfer func-
tion of the tuned plant is not exactly equal to the transfer function of the
model, and the error between the tuned plant output and the model out-
put is referred to as the tuned error

€ = Ypa— Ym (5.5.31)

Typically, the values 6, which are chosen as tuned values correspond to
those values of 6, for which the tuned plant transfer function approxi-
mately matches the model transfer function at low frequencies (at those
frequencies, the effect of unmodeled dynamics is small).

An error formulation may now be derived, with respect to the
tuned system instead of the model system of Section 3.5. Let § := 6 -6,
represent the parameter error with respect to the tuned parameter value,
and rewrite (5.5.28) as

AXpy + b8TW + bucoer

X
Yo = ¢ Xpw (5.5.32)

This is similar to (3.5.19). The output error parameter update law is
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6 =6 = —gegw (5.5.33)
In turn the output error eg := y, — ¥, can be decomposed as
€0 = Vp=Vm = Vo~ Vpr T € (5.5.34)

Now, defining & = X,y = Xpy» and é; = y, - y,. We may subtract equation
(5.5.30) from equation (5.5.31) to get

6 = A2+ bTw

&y = cle (5.5.35)
along with the update law

§ = —g(cTée +e)w (5.5.36)

As in the ideal case, w can be written as w = w,+ Q¢ (with w, € R
having the obvious interpretation), so that (5.5.35), (5.5.36) may be com-
bined to yield

Al + b8 Tw, + b8TQé

N
i

AT

= -gclew. - geTeQe - geww. — ge, Qe (5.5.37)

Comparing the equations (5.5.37) with the corresponding equation
(3.5.28) for the adaptive system, one sees the presence of two new terms
in the second equation. If the tuned error e, = 0, the terms disappear
and the equations (5.5.37) reduce to (3.5.28). The first of the new terms
is an exogenous forcing term and the second a term which is linear in
the error state variables. Without the term e,w,, the origin é = 0,6 = 0
is an equilibrium of the system. Consequently, we will drop this term
for the sake of our local stability/instability analysis. We will also treat

the second term ge.Qé as a small perturbation term (which it is if e, is
small) and focus attention on the linearized and simplified system

é = A8 + bwlf

- gcTow, (5.5.38)

e
i

Averaging Analysis

To apply the averaging theory of the previous section, we set the gain
g = ¢, a small parameter. Since A, is stable, it is easy to see that the sys-
tem (5.5.38) is of the form of the mixed time scale system (5.5.24),
(5.5.25) so that averaging may be applied. The averaged parameter error
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64, satisfies

oy = efav(éav) (5.5.39)
where f,,(8) is defined as
. 1 to+ T t
o) = - lim j wit) el | [e™ Dbwlrydr | dtd (5.5.40)
@ ) 0

Note that f,,(6) is a linear function of § so that the stability/instability
of (5.5.38) for ¢ small is easily determined from (he eigenvalues of the
matrix in (5.5.36). As previously, the matrix in (5.5.40) may be written
as the cross-correlation at 0 between w,(¢) and

t
well) = ! cTe* " pw.(rydr (5.5.41)

Thus (5.5.40) may be written as
Saov®) = =Ry (0) 6 (5.5.42)

Frequency Domain Analysis

To derive a frequency domain interpretation, we assume that r is sta-
tionary. The spectral measure of w, is related to that of r by

Sy(dw) = Hy (jo) HY(jo) S,(dw) (5.5.43)

\yherf: the transfer function from r to w, is I:Iw_,(s). This transfer func-
tion is obtained by denoting the transfer function of the tuned plant

coe (ST = A" 'by = M.(s) (5.5.44)
so that

1
. (s] = A)~'bP M,
Hy,,(s) = i (5.5.45)

(s] - A)~ b M,

The cross-correlation between w, and Wep is then given by
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[o o]

L [ ) B, (o) M(je)SAde)  (5.5.46)
o]

27Che

Note the similarity between (5.5.45), (5.5.46) and (4.5.6), (4.5.9) for
averaging in the ideal case. The chief difference is the presence of the

tuned plant transfer function M.(s) in place of the model transfer func-
tion M (). M.(s) may not be strictly positive real, even if M (s) is so.
Consequently RW_W.I(O) may not be a positive semi-definite matrix. Heu-
ristically speaking, if a large part of the frequency support of the refer-
ence signal lies in a region where the real part of M.( Jjw) is negative,
then RW_W.I(O) may fail to be positive semi-definite.

It is easy to see that if all the eigenvalues of R, ,, (0) are in the
right half plane, the (simplified) overall system (5.5.3f8) is globally
asymptotically stable for ¢ small enough. Also, if even one of the eigen-
values of Ry, I(O) lies in the left half plane, then the system (5.5.38) is
unstable (in the sense of Lyapunov). From the form of the integral in
(5.5.46), one may deduce that a necessary condition for RW_W.I(O) to have
no zero eigenvalues is for the reference input to have at least 2n points
of support. In fact, heuristically speaking, for Rw_w_f(O) to have no nega-
tive eigenvalues, the reference input is required to have at least 2n
points of support in the frequency range where Re M.( Jjw) > 0 (the rea-
son that this is heuristic rather than precise is because the columns of
I:Iw.,(jw) may not be linearly independent at every set of 2n frequencies).
Since the tuned plant transfer function M.(s) is close to the model
transfer function M (s) at least for low frequencies (where there are no
unmodeled dynamics), it follows that to keep the adaptive system stable,
sufficient excitation at lower frequencies is required. It is also important
to see that the stability/instability criterion is both signal-dependent as
well as dependent on the tuned plant transfer function MJ(s).

It is important at this point to note that all of the analysis is being
performed on the averaged version of the simplified linearized system
(5.5.38). As far as the original system (5.5.31) is concerned, we can
make the following observations
a) If the simplified, linearized system (5.5.38) is exponentially stable,
then the original system (5.5.37) is locally stable in the sense that if the
tuned error and the initial conditions on é&., § are sufficiently small, tra-
jectories will eventually be confined to a neighborhood of the origin (the
size of the neighborhood depends on e, and goes to zero as |e.(f)| goes
to zero). The proof of this follows from theorem 5.3.1.

Rw.w.f(o) =
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b)  If the simplified linearized system is unstable, then the original sys-
tem (5.5.37) is also unstable, using arguments from theorem 5.5.1.

Of course, the averaging analysis may be inconclusive if the aver-
aged system RW.W_I(O) has some zero eigenvalues. In this instance, if
RW_W,I(O) has at least one eigenvalue in the open left half plane, then the
original system is unstable. However, if R, ,_(0) has all its eigenvalues
in the closed right half plane, including some at zero, the averaging is
inconclusive for (5.5.38) and for (5.5.37). Simulations seem to suggest
that, in this case, the parameter error vector g driven by e, drifts away
from the origin in the presence of noise. This is what happens in Rohrs
example (R3), where the reference input is only a DC input: e,
corresponding to the tuned error is small, since the closed loop plant
matches the model at low frequencies, but its place is taken by the out-
put disturbance which causes the parameters to drift away from their
tuned values.

The result of this section also makes rigorous the heuristic explana-
tion for the instability mechanism of the example in (R2) where a
significant high frequency signal is present in a range where the tuned
plant transfer function is not strictly positive real. A tuned plant is
easily obtained by removing the unmodeled poles at — 152 to get the
tuned values ¢g. = 1.5, dp. = 1 identical to 6*.

Example

In this section, we discuss an example from Riedle & Kokotovic [1985].
We consider the plant

kp
us?+ (1 +p)s + 1

P(s) = (5.5.47)
where x>0 is a small parameter., The adaptive controller is designed
assuming a first order plant with relative degree 1. Thus, we assume
that the ‘nominal’ plant is of the form

kp

Py = —& (5.5.48)

with k, unknown. The model is of the form 1/(s + 1) and we set the
tuned value of ¢y, namely c;. to be 1/k, for the analysis, For the exam-
ple, k, is chosen to be 1. The error system is
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1
- =1 —r(t) o r)et)  (5.5.49)

/3 "

(¢) 0 0

Note that (5.5.49) is simpler than (5.5.37) since there are no adaptive
parameters in the feedback loop. Rw.w_ (0) is a scalar, and is easily com-
puted to be

,____,
D Q>

* | - pw?
Ry 0) = | T +#(1+#)2w2 Sy(dw) (5.5.50)
- 0o

Note that the integrand is positive for |w| <1 /\/; and negative for
| w] > 1/\/;. For example, if » = 0.1 and

ri(t) sin 5¢ Rw‘w_f(O) = -0.046
ry(t) 0.4sin¢ + sin5¢ RW.W_I(O) = 0.026

Thus, the first input results in an unstable system and the second in a
stable one. These results are borne out in the simulations of Figure
5.15.

]

0.8 —

0.6 —

0.2 —

0.0 ! . ! 1 . j
-0.2 - 0.0 0.2 0.4 0.6

Figure 5.15  Stability-Instability: Boundary for r((¢) and
ro(t) = ri(t) + 0.4 sint. A
A0 = - au~ (SY)
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5.6 METHODS FOR IMPROVING ROBUSTNESS—
QUALITATIVE DISCUSSION

Adaptive systems are not magically robust: several choices need to be
carefully made in the course of design, and they need to explicitly take
into account the limitations and flexibilities of the rather general algo-
rithms presented in earlier chapters. We begin with a qualitative discus-
sion of methods to improve the robustness of adaptive systems. A
review of a few specific update law modifications is given in the next
section.

5.6.1 Robust Identification Schemes

An important part of the adaptive control scheme is the identifier, or
adaptation algorithm. When only parametric uncertainty is present,
adaptive schemes are proved to be stable, with asymptotic tracking.
Parameter convergence is not guaranteed in general, but is not necessary
to achieve stability. In the presence of unmodeled dynamics and meas-
urement noise, drift instabilities may occur, so that the spectral content
of the input becomes important. The robustness of the identifier is fun-
damental to the robustness the adaptive system, and may be influenced
by a careful design.

An initial choice of the designer is the frequency range of interest.
In an adaptive control context, it is the frequency range over which
accurate tracking is desired, and is usually limited by actuators’ band-
with and sensor noise.

The order of the plant model must then be selected. The order
should be sufficient to allow for modeling of the plant dynamics in the
frequency range of interest. On the other hand, if the plant is of high
order, a great deal of excitation (a number of independent frequencies)
will be required. The presence of a large parameter vector in the
identifier may also cause problems of numerical conditioning in the
identification procedure. Then, the covariance matrix R,(0) (see
Chapters 2 and 3) measuring the extent of persistent excitation, is liable
to be ill-conditioned, resulting in slow parameter convergence along cer-
tain directions in parameter space. In summary, it is important to
choose a low enough order plant model capable of representing all the
plant dynamics in the frequen:.'y range of interest.

Filtering of the plant input and output signals is achieved by the
observer, with a bandwith determined by the filter polynomial (denoted

earlier A(s)). To reduce the effect of noise, it may be reasonable to
further filter the regression vectors in the identification algorithm, so as
to exclude the contribution of data from frequency regions lying outside
the range of frequencies of importance to the controller (i.e. low pass
filtering with a cut-off somewhat higher than the control bandwith).
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The spectrum of the reference input is another parameter, partially
left to the designer. Recall that the identifier identifies the portion of the
plant dynamics in the frequency range of the input spectrum. Thus, it is
important that the input signal: a) be rich enough to guarantee parame-
ter convergence, and b) have energy content in the frequency range
where the plant model is of sufficient order to represent the actual plant.
The examples of Rohrs consisted of scenarios in which a) the input was
not rich enough (only a DC signal), and b) the output had energy in the
frequencies of the unmodeled dynamics (a DC signal and a high-
frequency sinusoid). In the first case, noise caused parameter drift, con-
sistent with a good low frequency model of the plant, into a region of
instability. In the second, an incorrect plant model resulted in an
unstable loop.

From a practical viewpoint, it is important to monitor the signal
excitation in the identifier loop and to turn off the adaptation when the
excitation is poor. This includes the case when the level of excitation is
so low as to make it difficult to distinguish between the excitation and
the noise. It is also clear that if the excitation is poor over periods of
time where parameters vary, the parameter identification will be
ineffectual. In such an event, the only cure is to inject extra perturba-
tion signals into the reference input so as to provide excitation for the
identification algorithm.

We summarize this discussion in the form of the following table for
a robust identification scheme.

Steps of Robust Identification

Step Considerations

1. Choice of the frequency
range of interest

Frequency range over which
tracking is desired

2. Plant Order Determination Modeling of the plant dynamics in
the frequency range of interest

Low

3.  Regressor Filter Selection Filter high frequency components

(unmodeled dynamics range)

4, Reference Input Selection Sufficient richness
Spectrum within frequency range
of interest

If not, check step §

S.  Turn off parameter update
when not rich enough
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If the excitation is not rich Limit perturbation to plant
over periods of time where

parameters vary,

add perturbation signal

5.6.2 Specification of the Closed Loop Control Objective—Choice of the
Reference Model and of Reference Input

The reference model must be chosen to reflect a desirable response of
the closed-loop plant. From a robust control standpoint, however, con-
trol should only be attempted over a frequency range where a satisfac-
tory plant model and controller parameterization exists. Therefore, the
control objective (or reference model choice) should have a bandwidth
no greater than that of the identifier. In particular, the reference model
should not have large gain in those frequency regions in which the
unmodeled dynamics are significant.

The choice of reference input is also one of the choices in the
overall control objective. We indicated above how important the choice
is for the identification algorithm. However, persistent excitation in the
correct frequency range for identification may require added reference
inputs not intended for tuned controller performance. In some applica-
tions (such as aircraft flight control), the insertion of perturbation signals
into the reference input can result in undesirable dithering of the plant
output. The reference input in adaptive systems plays a dual role, since
the input is required both for generating the reference output required
for tracking, as well as furnishing the excitation needed for parameter
convergence (this dual role is sometimes referred to as the dual control
concept).

5.6.3 The Usage of Prior Information

The schemes and stability proofs thus far have involved very little a
priori knowledge about the plant under control. In practice, one is often
confronted with systems which are fairly well modeled, except for a few
unknown and uncertain components which need to be identified. In
order to use the schemes in the form presented so far, all of the prior
knowledge needs to be completely discounted. This, however, increases
the order of complexity of the controller, resulting in extra requirements
on the amount of excitation needed. In certain instances, the problem
of incorporating prior information can be solved in a neat and consistent
fashion—for this we refer the reader to Section 6.1 in the next chapter.
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5.6.4 Time Variation of the Parameters

The adaptive control algorithms so far have been derived and analyzed
for the case of unknown but fixed parameter values. In practice, adap-
tive control is most useful in scenarios involving slowly changing plant
parameters. In these instances the estimator needs to converge much
faster than the rate of plant parameter variation. Further, the estimator
needs to discount old input-output data: old data should be discounted
quickly enough to allow for the estimator parameters to track the time-
varying ones. The discounting should not, however, be too fast since
this would involve an inconsistency of parameter values and sensitivity
to noise.

We conclude this section with Figure 5.16, inspired from Johnson
[1988], indicating the desired ranges of the different dynamics in an
adaptive system.

DESIRED
MODEL
PARAMETER REFERENCE UNMODELED
VARIATION BANDWIDTH DYNAMICS
j : : : j >
SPEED REFERENCE FREQUENCY
OF SIGNAL
ADAPTATION BANDWIDTH

Figure 5.16 Desirable Bandwidths of Operation of an Adap-
tive Control System,

5.7 ROBUSTNESS VIA UPDATE LAW MODIFICATIONS

In the previous sections, we reviewed some of the reasons for the loss of
robustness in adaptive schemes and qualitatively discussed how to
remedy them. In this section, we present modifications of the parameter
update laws which were recently proposed as robustness enhancement
techniques.

5.7.1 Deadzone and Relative Deadzone

The general idea of a deadzone is to stop updating the parameters when
the excitation is insufficient to distinguish between the regressor signal
and the noise. Thus, the adaptation is turned off when the identifier
error is smaller than some threshold.

More specifically, consider the input error direct adaptive control

algorithm with the generalized gradient algorithm and projection. The
update law with deadzone is given by
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6 = -g ———— f A 5.7.1

& 1+yvTy if fea| > ( )

6 =0 if |ey] < A (5.7.2)

and as before, if ¢y = ¢y, and ¢ < 0, then set ¢y = 0. The parameter A
in equations (5.7.1) and (5.7.2) represents the size of the deadzone.
Similarly, the output error direct adaptive control algorithm with gra-
dient algorithm is modified to

§ = -gey if |e)| > A (5.7.3)

>

=0 if ey < A (5.7.4)

where A is, as before, the deadzone threshold. It is easy to see how the
other schemes (including the least-squares update laws) are modified.

The most critical part in the application of these schemes is the
selection of the width of the deadzone A. If the deadzone A is too large,
e, in equations (5.7.1), (5.7.2) and e; in (5.7.3), (5.7.4) will not tend to
zero, but will only be asymptotically bounded by a large A, resulting in
undesirable closed-loop performance. A number of recent papers (for
example, Peterson & Narendra [1982], Samson [1983], Praly [1983], Sas-
try [1984], Ortega, Praly & Landau [1985], Kreisselmeier & Anderson
[1986], Narendra & Annaswamy [1986]) have suggested different tech-
niques for the choice of the deadzone A. The approach taken by Peter-
son & Narendra [1982]—for the case when the plant output is corrupted
by additive noise—and by Praly [1983] and Sastry [1984]—for the case of
both output noise and unmodeled dynamics—is to use some prior
bounds on the disturbance magnitude and some prior knowledge about
the plant to find a (conservative) bound on A and establish that the
tracking error eventually converges to the region |e;| < A. The bounds
on A which follow from their calculations are, however, extremely con-
servative. From a practical standpoint, these results are to be inter-
preted as mere existence results. Practically, one would choose A from
observing the noise floor of the parameter update variable e, (with no
exogenous reference input present). It is also possible to modify it on-
line depending on the quality of the data.

The approach of Samson [1983], Ortega, Praly & Landau [1985]
and Kreisselmeier & Anderson [1986] is somewhat different in that it
involves a deadzone size A which is not determined by e, or e, alone,
but by how large the regressor signal in the adaptive loop is (the dead-
zone acts on a suitably normalized, relative identification error). The
logic behind this so-called relative deadzone is that if the regressor vector
is large, then the identification error may be large even for a small
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transfer function error due to unmodeled dynamics. The details of the
relative deadzone are somewhat involved (the three papers referenced
above are also for discrete time algorithms). However, the adaptive law
can only guarantee that the relative (or normalized) identification error
becomes smaller than the deadzone eventually. Thus, if the closed-loop
system were unstable, the absolute identification error could be
unbounded. To complete the proofs of stability with relative deadzones,
it is then important to prove that the regressor vector is bounded. It is
claimed (cf. Kreisselmeier & Anderson [1986]) that the relative deadzone
approach will not suffer from “bursting,” unlike the absolute deadzone
approach.

5.7.2 Leakage Term (o-Modification)

Ioannou & Kokotovic [1983] suggested modifying the parameter update
law to counteract the drift of parameter values into regions of instability
in the absence of persistent excitation. The original form of the
modification is, for the direct output error scheme

0 = -ge,v-ob (5.7.5)

where ¢ is chosen small but positive to keep 6 from growing unbounded.
Two other interesting modifications in the spirit of (5.7.5) are

f = -ge—-o@-0p) (5.7.6)

where 50 is a prior estimate of 8 (for this and other modifications see
Ioannou [1986] and Ioannou and Tsakalis [1986]), and one suggested by
Narendra and Annaswamy [1987]

b = —gev-oleld (5.7.7)

Both (5.7.6) and (5.7.7) attempt to capture the spirit of (5.7.5) without
its drawback of causing 6 -0 if e, is small. Equation (5.7.6) tries to
bias the direction of the drift towards 6, rather than 0 and (5.7.7) tries
to turn off the drift towards 0 when |e;| is small. The chief advantage
of the update law (5.7.7) is that it retains features of the algorithm
without leakage (such as convergence of the parameters to their true
values when the excitation is persistent). Also, the algorithm (5.7.7) may
be less susceptible to bursting than (5.7.5), though this claim has not
been fully substantiated.

5.7.3 Regressor Vector Filtering

The concept of low pass filtering or preconditioning the regressor vector
in the parameter update law was discussed in Section 5.6. It is usually
accomplished by low pass filtering of the process input and output in the
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identification algorithm and is widely prevalent (cf. the remarks in Wit-
tenmark & Astrom [1984]). Some formalization of the concept and its
analysis is in the work of Johnson, Anderson & Bitmead [1984]. The
logic is that low pass filtering tends to remove noise and contributions of
high frequency unmodeled dynamics.

5.7.4 Slow Adaptation, Averaging and Hybrid Update Laws

A key characteristic of the parameter update laws even with the addition
of deadzones, leakage and regressor vector filtering 1is their
“impatience.” Thus, if the identification error momentarily becomes
large, perhaps for reasons of spurious, transient noise, the parameter
update operates instantaneously. A possible cure for this impatience is
to slow down the adaptation. In Chapter 4, we studied in great detail
the averaging effects of using a small adaptation gain on the parameter
trajectories. In fact, a reduction of the effect of additive noise (by
averaging) is also observed.

Another modification of the parameter update law in the same
spirit is the so-called hybrid update law involving discrete updates of
continuous time schemes. One such modification of the gradient update
law (due to Narendra, Khalifa & Annaswamy [1985]) is

o

0tkv1) = O(t) - [gevar (5.7.8)

In (5.7.8), the ¢, refer to parameter update times, and the controller
parameters are held constant on [, # . ]. The law (5.7.8) relies on the
averaging inherent in the integral to remove noise.

Slow adaptation and hybrid adaptation laws suffer from two draw-
backs. First, they result in undesirable transient behavior if the initial
parameter estimates result in an unstable closed loop (since stabilization
is slow). Second, they are incapable of tracking fast parameter varia-
tions. Consequently, the best way to use them is after the initial part of
the transient in the adaptation algorithm or a short while after a parame-
ter change, which the “impatient” algorithms are better equipped to han-
dle.

5.8 CONCLUSIONS

In this chapter, we studied the problem of the robustness of adaptive
systems, that is, their ability to maintain stability despite modeling
errors and measurement noise.

We first reviewed the Rohrs examples, illustrating several mechan-
isms of instability. Then, we derived a general result relating exponen-
tial stability to robustness. The result indicated that the property of
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exponential stability is robust, while examples show that the BIBS stabil-
ity property is not (that is, BIBS stable systems can become unstable in
the presence of arbitrarily small disturbances). In practice, the ampli-
tude of the disturbances should be checked against robustness margins to
determine if stability is guaranteed. The complexity of the relationship
between the robustness margins and known parameters, and the depen-
dence of these margins on external signals unfortunately made the result
more conceptual than practical.

The mechanisms of instability found in the Rohrs examples were
discussed in view of the relationship between exponential stability and
robustness, and a heuristic analysis gave additional insight. Further
explanations of the mechanisms of instability were presented, using an
averaging analysis. Finally, various methods to improve robustness were
reviewed, together with recently proposed update law modifications.

We have attempted to sketch a sampling of what is a very new and
active area of research in adaptive systems. We did not give a formal
statement of the convergence results for all the adaptation law
modifications. The results are not yet in final form in the literature and
estimates accruing from systematic calculations are conservative and not
very insightful. A great deal of the preceding discussion should serve as
design guidelines: the exact design trade-offs will vary from application
to application. The general message is that it is perhaps not a good idea
to treat adaptive control design as a “black box” problem, but rather to
use as much process knowledge as is available in a given application.

A guideline for design might run as follows

a) Determine the frequency range beyond which one chooses not to
model the plant (where unmodeled dynamics appear) and find a
parameterization which is likely to yield a good model of the plant
in this frequency range, yet without excessive parameterization. If
prior information is available, use it (see Section 6.1 for more on
this).

b) Choose a reference model (performance objective) whose
bandwidth does not extend into the range of unmodeled dynamics.

¢) In the course of adaptation, implement the adaptive law with a
deadzone whose size is determined by observing the amount of
noise in the absence of exogenous input. Also, monitor the excita-
tion and turn off the adaptation when the excitation is not rich
over a large interval of time. If necessary, inject extra excitation
into the exogenous reference input as a perturbation signal. If it
appears that the plant parameters are not varying very rapidly,
slow down the rate of adaptation or use a hybrid update algorithm
(this is rather like a variable time step feature in numerical integra-
tion routines). Other modifications, such as leakage, may be added
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as desired.

d) Implement the appropriate start-up features for the algorithm using
prior knowledge about the plant to choose initial parameter values
and include “safety nets” to cover start-up, shut-down and transi-
tioning between various modes of operation of the overall con-
troller.

The guidelines given in this chapter are for the most part conceptual: in
applications, questions of numerical conditioning of signals, sampling
intervals (for digital implementations), anti-aliasing filters (for digital
implementations), controller-architecture featuring several levels of
interruptability, resetting, and so on are important. Even with a consid-
erable wealth of theory and analysis of the algorithms, the difference an
adaptive controller makes in a given application is chiefly due to the art
of the designer!

CHAPTER 6

ADVANCED TOPICS
IN IDENTIFICATION
AND ADAPTIVE CONTROL

6.1 USE OF PRIOR INFORMATION

6.1.1 Identification of Partially Known Systems

We consider in this section the problem of identifying partially known
single-input single-output (SISO) transfer functions of the form

No(s) +.§ a; Ni(s)
P(s) = Lo (6.1.1)
DAO(S)"‘ElﬁjDAj(S)
Jw

where N,- and 5j are known, proper, stable rational transfer functions
and «;, B; are unknown, real parameters. The identification problem is
to identify «;, 8; from input-output measurements of the system. The
problem was recently addressed by Clary [1984], Dasgupta [1984], and
Bai and Sastry [1986].

The representation (6.1.1) is general enough to model several kinds
of “partially known” systems.

Examples
a)  Network functions of RLC circuits with some elements unknown.

Consider for example the circuit of Figure 6.1, with the resistor R unk-
nown (the circuit is drawn as a two port to exhibit the unknown

257
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resistance).

I

+ e et

Lals..
:

Figure 6.1 Two Port with Unknown Resistance R

If the short circuit admittance matrix of the two port in Figure 6.1 is

i yii(s)  yias) v,
A ’ (6.1.2)
i yals) yafs) V2

then a simple calculation yields the admittance function

O yurRyuyn -y
vy 1 +Ry22
which is of the form of (6.1.1). Circuits with more than one unknown

element can be drawn as multiports to show that the admittance func-
tion is of the form of (6.1.1).

b)  Interconnections of several known systems with unknown intercon-
nection gains. A simple example of this is shown in Figure 6.2, with a

plant ﬁ(s) known, and a feedback gain k unknown.

(6.1.3)

r + /P\ yp

Figure 6.2 Plant with Unknown Feedback Gain

The closed-loop transfer function, namely P/1+kP is of the form
of (6.1.1) if P is stable. If P is unstable, then by writing P = Np/ﬁp as
the ratio of two proper stable rational transfer functions, the closed-loop
transfer function is Np/ﬁp +k Np, which is of the form (6.1.1).

¢) Classical transfer function models, that is, plants of the form stu-
died in Chapter 2
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. ams" T+

P(s) = — (6.1.4)
ST+ BuSTT -+ B

with m < n and «;, 8; unknown, can be stated in terms of the set up of
(6.1.1) by choosing

No(s) = 0

Dols) = s"/N(s)

Nis) = si"Y/R@)  i=1,....m

Dis) = -sI"Y/XGs) j=1,....n (6.1.5)

where ):(s) is (any) Hurwitz polynomial of order n.

d) Systems with some known poles and zeros. Consider the system of
Figure 6.3, with unknown plant, but known actuator and sensor dynam-

ics (with transfer functions f’a(s) and ﬁs(s) respectively).

Actuator Plant Sensor
m-1
] Pals) o AmS__Teta Pals) |—»'P
sn+ﬁns 1»_‘_+B‘

Figure 6.3 Unknown Plant with Known Actuator and Sensor Dynamics

The overall transfer function is written as

m .
z C(,'Sl—l

Bis) = Bs) - — - Py(s) (6.1.6)
s"e Y 88!
j=1
which is of the form (6.1.1) by choosing, as above
No(s) = 0
Do(s) = s"/X(s)
Ni(s) = sTVBs)Bs)/N(s)  i=1,...,m
Di(s) = -5~ 1/X(s) j=1,...,n  (617)

where ):(s) is (any) Hurwitz polynomial" of order n.
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Identification Scheme

We now return to the general system described by (6.1.1). The
identification problem is to determine the unknown parameters o, B;
from input-output measurements. One could, of course, neglect the
prior information embedded in the form of the transfer function (6.1.1)
and identify the whole transfer function using one of the procedures of
Chapter 2. However, usage of the particular structure embodied in
(6.1.1) will result in the identification of fewer unknown parameters,
with a reduction of computational requirements and usually faster con-
vergence properties.

Let 7(s), y,(s) denote the input and output of the plant. Using
(6.1.1)

A

n m
Doy, - No? = 'Eﬁj jfp*’_zaiNif (6.1.8)

Defining the signals

2, := Doy, - No?
W o= N7 i=1,..., m
W,,Hj = ijp j=1,..., n (619)

and the nominal parameter vector 6*

0" = (ay,.... &mBir..., By) € R?*™M (6.1.10)
we may rewrite (6.1.8) as

Wi
3, =07 | - (6.1.11)
wn+m
or, in the time domain
z,(t) = 6" w(1) (6.1.12)
where
wl(t) = (wi(t), ..., Wyom(t)) € RT*M

Note the close resemblance between (6.1.12) and the plant parame-
terization of (2.2.14) in Chapter 2. It is easy to verify that in the
instance in which no prior information about the plant is available (case
¢) above), equation (6.1.12) above is a reformulation of equation
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(2.2.14). )

The purpose of the identifier is to produce a recursive estimate 6 (¢)
of the parameter vector §°. Since r and y, are available, the signals
Z,(t), w(t) are obtainable through stable Aﬁltering of r and y,, up to some
exponentially decaying terms (since N; and D; are stable, proper,
rational functions). These decaying terms will be neglected for simpli-
city.

In analogy to the expression of the plant equation (6.1.12), we
define the output of the identifier as

zi(t) = 60T()w(r) (6.1.13)
We also define the parameter error

o(t) = 6(t)-6" (6.1.14)
and the identifier error

ei(t) = z;(t) - z,(t) (6.1.15)
so that, for the analysis '

ei(t) = ¢T()w() (6.1.16)

Equation (6.1.16) is now exactly the same as (2.3.2) of Chapter 2, so that
all the update algorithms and properties of Chapter 2 can'be used verba-
tim in this context. Thus, for example, the gradient algorithm

6 = —gew g>0 (6.1.17)
or the least-squares algorithm

§ = — gPew

P = -gPwwTP g>0 (6.1.18)

along with covariance resetting, are appropriate parameter upda'te laws.
As in Chapter 2, the parameter error will converge (exponeqtlall_y) to
zero for the gradient or the least-squares algorithm with resetting if the
vector w is persistently exciting, i.e. if there exist a, a3, >0, such that

lo+6 .
ar] = [ wa)wl(r)dr 2 a1 foralltg=0 (6.1.19)
to
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Frequency Domain Conditions for Parameter Convergence

The techniques of Chapter 2 can be used to give frequency domain con-
ditions on r(f) to guarantee (6.1.19). To guarantee the upper bound, we
simply assume:

(AI) Boundedness of the Regressor

The plant ﬁ(s) is stable, and the reference signal r is piecewise
continuous and bounded.

As usual, the nontrivial condition comes from the lower bound in
(6.1.19). To relate this condition on w to the frequency content of r, we
will need a new identifiability condition on the transfer function from r
to w, which we will denote

Ay o= (Ny(s), ..o Nou(s), Di(s)B(s), ..., Du(s)B(s))  (6.1.20)

(A2)  Identifiability
The system is assumed to be identifiable, meaning that for every
choice of n + m distinct frequencies w), . . ., wy ., the vectors

ﬁw,(jw,) e C"*™ (i =1,..., n+m) are linearly indepen-
dent.

Proposition 6.1.1

Under assumptions (A1) and (A2), w is persistently exciting if and only
if r is sufficiently rich of order n + m.

Proof of Proposition 6.1.1 similar to the proof of theorem 2.7.2.

Comments

a) From (6.1.20) and (6.1.11), it follows that if an input with (n + m)
spectral lines is applied to the system, we would have

GEpUw), ooy 2y (wnam)) = 0 (Hy (o), .o HyrGonam))

diag (7 (Jw1), ..., F(jonim)) (6.1.21)

The identifiability condition implies that (6.1.21) has a unique solution

for 6°, while proposition 6.1.1 shows that the identifier parameter will
converge to this value.

b) It is difficult to give a more concrete characterization of

identifiability, since the components of I:Iw,(s) are proper stable rational
functions of different orders. An exception is the case of example c¢) and
discussed in Chapter 2. In that case, it was shown that the identifiability
condition holds if the numerator and denominator of the plant transfer
function are coprime polynomials.
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6.1.2 Effect of Unmodeled Dynamics

The foregoing set up used transfer functions of the form (6.1.1) with ]\7,-,

and 13,- known exactly. In practice, the N, and 131- are only known
approximately. In particular, the transfer functions used to approximate

the N; and 131- will generally be low order, proper stable transfer func-
tions (neglecting high-frequency dynamics and replacing near pole-zero
cancellations by exact pole-zero cancellations). Thus, the identifier
model of the plant is of the form '

Noo(s) + 3 ;i Ngi (5)
Py(s) = S (6.1.22)
Dao(s) = X 8; Dy (s)

Jj=1

where P,(s) is a proper stable transfer function, and N, , N,;, D, ﬁaj

are approximations of the actual transfer functions NO, N;, [30, Aj. We
will assume that
| AN (jo) = |(No =) ()| < e (6.1.23)
foralw, i=0,..., m
|aD;(jw)| = |(Dg; - D;)(jw)| < e (6.1.24)
foralw, j=0,...,n

The identifier uses the form (6.1.22), while the true plant ﬁ(s) is
accurately described by (6.1.1). Consequently, the signals of (6.1.9) are
now replaced by

A -

Eap = Daoj;p_Nao;
wai = 1{’(1,'; i=l,...,m
Wamsj = D9, j=1,...,n (6.1.25)

It is important to note that (6.1.12) is still valid, since the signals w, z,
pertain to the true plant. The identifier, however, uses the signals wy; (¢)
so that the identifier output

zi(t) := 6T()w, (1) (6.1.26)

where (1) is the parameter estimate at time /. The parameter update
laws of (6.1.17), (6.1.18) are modified by replacing w by w,, while

eit) = z(t) - z,(t)
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8T (Y wy(2) - 6° w(t)
dT()wa (1) +0* (wa (1) -w(t))  (6.1.27)

i

Define
Aw(t) = wy(t) - w(t)
Consequently, the gradient algorithm is described by
b =0 - —gem,
= —gw,wlo-g0" Aww, (6.1.28)
and the least-squares algorithm by “
é =0 = -gPeyw,
= —gPw,wl¢-gP" Aww,
P = —gPw,wlP (6.1.29)

Equations (6.1.28), (6.1.29) have a similar form as without unmodeled
dynamics with the exception of the extra forcing terms

- g0" Aww, in (6.1.28) (6.1.30)

and

-gP8* Aww, in (6.1.29) (6.1.31)

Note that Aw, is bounded, since it is the difference between the outputs
of two proper transfer functions with a bounded reference input r. Con-
sequently, the terms in (6.1.30) and (6.1.31) are bounded. Thus, if the
systems of (6.1.28) and (6.1.29) are exponentially stable in the absence
of the driving terms, the robustness results of Chapter 5 (specifically
theorem 5.3.1) can be used to guarantee the convergence of the parame-
ter error to a ball around the origin. It is further readily obvious from
the estimates in the statement of the theorem that the size of the ball
goes to zero as Aw shrinks (or, equivalently, the inaccuracy of modeling
decreases).

It therefore remains to give conditions under which the undriven
systems of (6.1.28), (6.1.29) with resetting are exponentially stable. It is
easy to see that this is guaranteed if w, is persistently exciting, i.e., con-
dition (6.1.19) holds with w replaced by w,. It is plausible that if ¢ (the
extent of mismodeling of the N;, ﬁj) is small enough and w is per-
sistently exciting, then w, is also persistently exciting. This is esta-
blished in the following two lemmas.
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Lemma 6.1.2 Persistency of Excitation under Perturbation

If the signal w(t) € IR"*™ is persistently exciting, i.e. there exist
ay, ay, 6> 0 such that

fo+d

ayl = fw(f)wT(T)df > a;] forallfg=0 (6.1.32)
Lo

and the signal Aw(z) € IR"*™ satisfies

1
sup | aw(t)| < %1-]2 (6.1.33)

Then  w+ Aw is also persistently exciting.

Proof of Lemma 6.1.2

w+ Aw is persistently exciting if there exist a';, a’;, 8’ > 0, such that
for all x € IR"*™ of unit norm,
lo+6' 2
a'y = f [xT(w(f)+ Aw(r))| dr = o) (6.1.34)
L

Let 6’ = 6. The upper bound of the integral in (6.1.34) is automatically
verified, simply because Aw is bounded and w satisfied a similar ine-
quality. For the lower bound, we use the triangle inequality to get

o+ 1

f [xT(w(T) + Aw('r))] “dr

lo

o+ 1 to+6 %
> j cTw(r))dr | - f (xTAw(r))? dr
to to
> of-6" sup | Aw(r)| (6.1.35)

The conclusion now-follows readily from (6.1.33). 0O

Thus, we see that w, is guaranteed to be persistently exciting, when
w persistently exciting and Aw is sufficiently small. The claim that Aw

is small, when € in (6.1.23), (6.1.24) is small enough, follows from the
next lemma.
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Lemma 6.1.3
If g(s) is a proper, stable, nth order rational function with

corresponding impulse response g(7)
Then  the L, norm of g(¢) can be bounded by

[e o]
lglli = [le)ldr < 2nsup|&(jw) (6.1.36)
0 w

Proof of Lemma 6.1.3 see Doyle [1984].

From lemma 6.1.3, and the definition of Aw, it is easy to verify
that

|Aw(t)] < 2eNsup |r(7) (6.1.37)

where N is the maximum order of the AN;, AD;. Thus, Aw(¢) is small
enough for € small enough, and the persistency of excitation of w guaran-
tees that of w,. Using the estimate (6.1.37) and applying theorem 5.3.1,
we see that the parameter error will converge to a ball of radius of order
€.

6.2 GLOBAL STABILITY OF INDIRECT ADAPTIVE CONTROL
SCHEMES

The indirect approach is a popular technique of adaptive control. First,
a non-adaptive controller is designed parametrically, that is, the con-
troller parameters are written as functions of the plant parameters.
Then, the scheme is made adaptive by replacing the plant parameters in
the design calculation by their estimates at time ¢ obtained from an on-
line identifier. A reason for the popularity of the indirect approach is
the considerable flexibility in the choice of both the controller and the
identifier. Global stability of indirect schemes was shown by several
authors in the discrete time case (Goodwin & Sin [1984], Anderson &
Johnstone [1985], and others). In a continuous time context, Elliott,
Cristi & Das [1985] used random parameter update times for proving
convergence, and Kreisselmeier [1985, 1986] assumed that the parame-
ters lie in a convex set in which no unstable pole-zero cancellations
occur.

In Section 3.3.3, we considered the specific case of a model refer-
ence indirect adaptive control algorithm. We also indicated how it could
be replaced by a pole placement algorithm for nonminimum phase sys-
tems in Section 3.3.5. In this section, we consider more general con-
troller designs, following the approach of Bai & Sastry [1987]. We dis-
cuss a general, indirect adaptive control scheme for a SISO continuous
time system using an identifier in conjunction with an arbitrary
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stabilizing controller. We will show that when the reference input is
sufficiently rich, the input to the identifier is also sufficiently rich to
cause parameter convergence in the identifier. The controller is updated
only when adequate information has been obtained for a “meaningful”
update. Thus, roughly speaking, the adaptive system consists of a fast
parameter identification loop and a slow controller update loop. We will
not need any conditions calling for the parameters to lie in a convex set
or calling for lack of unstable pole-zero cancellations in the identifier.
However, we will need sufficient richness conditions on the input that
we were not assumed previously to establish global stability.

For application of the results, we will specialize our scheme to a
pole placement adaptive controller, as well as to a factorization based
adaptive stabilizer (of a kind that has attracted a great deal of interest in
the literature on non-adaptive, robust control—see, for example,
Vidyasagar [1985]).

6.2.1 Indirect Adaptive Control Scheme

The basic structure of an indirect adaptive controller is shown in Figure
6.4,

Controller

Parameter
Calculation

Identitier [«
+
r
- ? u

Figure 6.4 Basic Structure of an Indirect Adaptive Controller

O>
Y
o>
y
<
o

The unknown, strictly proper plant is assumed to be described by

. k, fiy(s I
Py = 2 e (6.2.1)
d,(s) ST BsT T4+ By

with 7,(s), c;’p(s) monic, coprime polynomials. The degree of aA',, is n,
and that of 7, is less than or equal to n - | (consequently, some of the
«;’s may be zero).

The compensator is a proper, m th order compensator of the form
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. A.(s A1 ST+ 0 +
Cs) = 2 Gmars” L (6.2.2)
d.(s) b1 ™+ o+ by

The adaptive scheme proceeds as follows: the identifier obtains an
estimate of the plant parameters. The compensator design (pole place-
ment, model reference, etc.) is performed, assuming that the plant
parameter estimates are the true parameter values (certainty equivalence
principle). We will assume that there exists a unique compensator of the
form (6.2.2) for every value of the plant parameter estimates. The hope

is that, as ¢ —» oo, the identifier identifies the plant correctly, and there-
fore the compensator converges asymptotically to the desired one.

We first design an identifier as in Chapter 2. Define w(t) e R
with Laplace transform

n-14

Yp

-

(6.2.3)

a 1 vy -~ y 3o ey

A A A A

with X (s), a monic Hurwitz polynomial of the form
s"+ XA, s" "'+ -+ + \,. Then

T [ﬁ SU sV S
wooi= ) vy
A

(1) = 6 w(1) (6.2.4)
where
0" = lay, ..., am Ai=B1r...) Ao=By (6.2.5)
The identifier output is
yi(t) = 87()yw(r) (6.2.6)

where 6(¢) is the estimate of " at time ¢. If ¢(¢) is the parameter error

¢(t) = 6(¢)—~ 0%, then the identifier error e(¢) = y;(¢)-y,(t) has the
form

ey(t) = oT(t)yw(t) (6.2.7)

For the identification algorithm, we will use the least-squares with
resetting

é(t)
P(1)

1]

-P()yw(t)e(t) (6.2.8)
-P(OwW(OWI()P(t) t#1 (6.2.9)

n

with P(¢*) = koI >0, where ¢; is the sequence of resetting times, to be
specified hereafter. It is shown in the Appendix (lemma A6.2.1) that the
parameter error ¢(¢) is bounded, even if y,(¢) may not be. Further,
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¢ (1) — 0 asymptotically, if w(t) is persistently exciting, i.e., if there exist
ay, ai, >0, such that
fo+$é
a] = j w(r)wl(r)dr = a1
to

foralltg =0 (6.2.10)

Note however that the upper bound in (6.2.10) is not needed for
the specific algorithm chosen here. Further, it has been shown in
Chapter 2 that under the condition that 7, ﬁp are coprime polynomials,
w satisfies the lower bound condition (6.2.10) if u is sufficiently rich, i.e.,
if the support of the spectrum of u has at least 2n points (assuming that
u(t) is stationary).

The design of the compensator is based on the plant parameter esti-
mates 6(¢). It would appear intuitive that if §(¢)—6* as t - oo, then
the time-varying compensator will converge to the nominal compensator
and the closed-loop system will be asymptotically stable. Therefore, the
system of Figure 6.4 can be understood as a time-varying linear system
which is asymptotically time-invariant and stable. The following lemma
guarantees the asymptotic stability of the linear time varying system.

Lemma 6.2.1
Consider the time-varying system

X = (A + AA(1))x (6.2.11)

where 4 is a constant matrix with eigenvalues in the open LHP and
Il AA(t)]| is a bounded function of ¢ converging to zero as ¢ — co.

Then  (6.2.11) is asymptotically stable, i.e. there exist m, a>0 such
that the state transition matrix ®(¢, ¢y) of 4 + AA(¢) satisfies

I ®(t, 1) < me *U' " forallt >t

Update Sequence for the Controller
Although the update law (6.2.8), (6.2.9) may be shown to be asymptoti-
cally stable when w satisfies (6.2.10) (in fact only the lower bound), it is
of practical importance to limit the update of the controller to instants
when sufficient new. information has been obtained. This is measured
through the “information matrix”

i+4é

j w(r)wl(rYdr

&
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Thus, given v >0, we choose the update sequence ¢ by /g = 0, and
li,) =t +6;, where §; satisfies
L+a
8; = arggnin f wwldr > v1 (6.2.12)
43

Then, the compensator parameters are held constant between ¢ and
t;+1. We will assume that the compensator parameters are continuous
functions of 4. We may now relate the richness of the reference signal
r(t) in Figure 6.4 to the convergence of the identifier.

Lemma 6.2.2  Convergence of the Identifier

Consider the system of Figure 6.4 with the least-squares update law
(6.2.8), (6.2.9) and resetting times identical to the controller update
times given in (6.2.12).

If the input r is stationary and its spectral support contains at
least 37 + m points,

Then  the identifier parameter error converges to zero exponentially as
t - oo. More precisely, there exists 0 < ¢ < 1 such that

| (1) < & ¢(0)] (6.2.13)

and §; ;= t;,| - ; is a bounded sequence.

Proof of Lemma 6.2.2

The proof uses lemmas which are collected in the Appendix. In particu-
lar, lemma A6.2.1 shows the conclusion (6.2.13) if the sequence §; is
bounded. Thus, we will establish this fact. We proceed by contradic-
tion. If 8, is an unbounded sequence, then one of two following possi-
bilities occurs

(a) There exists an / < oo such that §; = oo or

(b) d,>00asi—>o00.

Consider the scenario (a) first. If this happens the system becomes
time invariant after ¢, since the controller is not updated. Conse-
quently, one can find the transfer function from r to u to be

~ kA (t;)n ]
A, - o)1y - 2 (6.2.14)
ki) +dodo(s)  d

where z?c( t;) and A.(¢;) are the denominator and numerator of the con-
troller at time ¢;. Using (6.2.14), we may write the transfer function
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from r to w to be

-

A 0 - T
Hols) = —2— |dy, ..., s" VA, kohy, ..., kyhps" ' | (6.2.15)

Xd,d
Since the degree of 7 is (n +m), no more than (n + m) of the spectral
lines of the input can correspond to zeros of the numerator polynomial.
Even in this (worst-case) situation, we see from the arguments of
Chapter 2 that w is persistently exciting. This fact, however, contradicts
the assumption that §; = oo.

Now, consider scenario (b). First, notice that when the plant
parameters are known, the closed loop system is time-invariant and
stable so that we may write the equation relating r(¢) to the signal w,,(1)
(w,,( ) corresponds to w(¢) in the case when ¢(¢) = 0, as in Chapter 3)

i

Zm Az, + br
Wy = Cz,

where A, C are constant matrices, b is a constant vector and A4 is stable.
For the adaptive control situation, ¢ (¢) # 0, but we may still write the
following equation relating r(¢) to w(¢)

b4

A+AA))z + (b+Ab(D))r
(C+AC(1))z

where AA(1),AC(t),Ab(t) are continuous functions of ¢(¢) and
AA(t),AC(t) and Ab(t)—0 as ¢(¢)—>0. If scenario (b) happens, we
still have that ¢(¢)—>0 as ¢ —/@”from lemma A6.2.1. Further, from
lemma A6.2.2 it follows that w,,(¢) approaches w(¢) for ¢ large enough.
Then the persistency of excitation of w(¢) follows as a consequence of
the result of lemma A6.2.2 and the fact that w,,(¢) is persistently excit-

ing. This, however, contradicts the hypothesis that 8, > oo as i - c0.
(m]

w

Theorem 6.2.3 Asymptotic Stability of the Indirect Adaptive System

Consider the system of Figure 6.4, with the plant and compensator as in
lemma 6.2.2.

If the inpuf r is stationary and its spectral support contains at
least 3n + m points

Then  the adaptive system is asymptotically stable.
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Proof of Theorem 6.2.3 follows readily from lemmas 6.2.1 and 6.2.2.

6.2.2 Indirect Adaptive Pole Placement

Pole placement is easily described in the context of Figure 6.4. The
compensator C is chosen so that the closed-loop poles lie at the zeros of
a given characteristic polynomial (fc, (s), typically of degree (2n - 1). In
other words, 7, d. need to be found to satisfy

kyff, + d.d, = dg (6.2.16)

When 7, (3’,, are coprime, equation (6.2.16) may be solved (see lemma
A6.2.3 in the Appendix) for any arbitrary (f’cl of degree (2n ~ 1), with
Ag, d, each of order n - 1.

When the plant is unknown, the "adaptive” pole placement scheme

is mechanized by using the estimates 7,(f; ), c?p( ¢;) of the numerator and
denominator polynomials. Using lemma A6.2.3 again, it is easy to ver-

ify that if k,(¢;) a,(), a7,,( t;) are coprime, there exist unique 7.(¢;) and
d.(t;) of order n - 1 such that

kp( 1) At Ap(t) + d(8)dy( 1) = dy (6.2.17)

The estimates for k,(¢;) A,(¢;) and (f’p(t,) follow from the plant parame-
ter estimates 6(¢) of the identifier. In analogy to the plant parameter
vector 6, we have the parameter vector of the compensator (cf. (6.2.2)
withm =n-1)

8.() = [bo(t), ..., batt), ag(t), . ... a,,(z)] (6.2.18)

As usual, 87 has the interpretation of being the nominal compensator
parameter vector. Further, to guarantee that k,(f;) A,(¢;) and c?,,( t;) are
coprime at the instants ¢, we need to modify the definitions of the
update times. Let

iy = L+ (6219)
where §; is the smallest real number satisfying
4+ 8
[ wwldt = 41 (6.2.20)
4
ky(1;) Ay(t; +6;) and d,(t; +8;) are coprime (6.2.21)

More precisely (6.2.21) is satisfied by guaranteeing that the smallest
singular value of the matrix in lemma A6.2,3 of the Appendix—
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measuring the coprimeness of k,(f; + 6;) A,(¢; +6;), J,,( t; + 8; )—exceeds
anumbers>0. O

Theorem 6.2.4 Asymptotic Stability of the Adaptive Pole Placement
Scheme

Consider the adaptive pole placement scheme, with the least squares
identifier of (6.2.8)-(6.2.9) and the update sequence f; defined by
(6.2.19)-(6.2.21).

If the input r(¢) is stationary and its spectral support contains at
least 4n — 1 points

Then  all signals in the loop are bounded and the characteristic poly-
nomial of the closed loop system tends to d.(s). Moreover,

| 6.(t)-6:| — 0 exponentially.

Proof of Theorem 6.2.4

The first half of the theorem follows from lemmas 6.2.1, 6.2.2—a slight
modification of the arguments of lemma 6.2.2 is needed to account for
the new condition (6.2.21) in the update time, but this is easy because of

the convergence of the identifier and the coprimeness of the true 7, d, .
For the second half, we see from lemma A6.2.3 in the Appendix that

A@O())6.(1) = d (6.2.22)

with d the vector of coefficients of the polynomial c?c,. It follows from
lemma A6.2.3 in the Appendix that there is an m > 0 such that

1 406(8)) =A@ < m| 6(s) -6
Further, subtracting (6.2.22) from
A@%8; = d (6.2.23)
we see that
AO(L)) = A0 | 0.(4) = —A@0")(0c(1;)-67)
Thus
0:(4)=62] < ml[A7P@)| | 6(6)-0"| | 0(4;)]  (6.2.24)
Since | 6.(¢;)| is bounded (by (6.2.21)), we get that
| 6c(4;) =062 < my|"0(;)-6"] (6.2.25)

for some m,. Since 6(f;) converges to 6* exponentially, so does 8, (¢;) to
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6.2.3 Indirect Adaptive Stabilization—The Factorization Approach

The Factorization Approach to Controller Design  _

We will briefly review the factorization approach to controller design
(the non-adaptive version). Consider the controller structure of Figure
6.5.

u2

Uy -] Y2

A
P(s) >~

éts)

Figure 6.5 Standard One Degree of Freedom Controller

The plant P is as defined in (6.2.1) and the compensator C as in (6.2.2).
The transfer function relating e, e, to u;, u, is given by

A ’ [1 ) ﬁ] (6.2.26)
. 1+PC ¢ 1 -
The system of Figure 6.5 is BIBO stable if and only if each of the four

elements of (6.2.26) is stable, i.e., belongs to R, the ring of proper,

stable, rational functions. The ring R is a more convenient ring than is
the ring of polynomials for several reasons (see for example, Vidyasagar
[1985])—including the study of the robustness properties of the closed

loop systems. We assumed that P and C are factored coprimely in R
(not uniquely!) as

P(s) = Ny(s)D; '(s)
C(s) = DY s)Ns) (6.2.27)

From Vidyasagar [1985], it follows that the system of Figure 6.5 is BIBO
stable if and only if (N,Nc+ﬁpDc)" belongs to R, or, equivalently,

Nch + ﬁpﬁc is a unimodular element of R . Without loss of generality,
we can state that a compensator stabilizes the system of Figure 6.5 if
and only if
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NN+ D,D, = 1 (6.2.28)

Equation (6.2.28) parameterizes all stabilizing compensators. We
will be interested in a parameterization of all solutions of (6.2.28) in

terms of the coeflicients f’f N,,, ﬁp. For this purpose, let (4,, b, c,,T )bea
minimal realization of P(s). If f € IR" and / e IR" are chosen to stabil-
ize Ayr:= A, - b,fT and A, := A, - IcT (such a choice is possible by the
minimality of the realization of Ay, by, c,,T ), then, iE may be shown (see
Vidyasagar [1985]) that a right coprime fraction of P is given by

N, = cI(sI -4,)"'b, (6.2.29)
D, = 1-cl(sI -4,)"'b, (6.2.30)
and further that all solutions of (6.2.28) may be written as
D. = 1+¢](sI = Ay) "1 = Q(s)cT(sT - Ap)~'b, (6.2.31)
Re = ST = Ay) ™+ 06) [ 1= /T - )" 8, ] (6.2.32)

with é(s) e R an arbitrary element chosen to meet other performance
criteria (such as minimization of the disturbance to output map, obtain-
ing the desired closed loop transfer function, optimal desensitization to
unmodeled dynamics, etc.).

The optimal choice of Q(s) depends on the plant parameters.
However, such a choice of Q(s) may not be unique or depend continu-
ously on plant parameters. The optimal choice of Q(s) is the topic of
the so-called H® optimal control systems design methodology. In this
chapter, we will not concern ourselves with anything more than stabiliza-

tion, and use a fixed Q(s) rather than one whose calculation depends on
the current estimate of plant parameters. For simplicity we will, in fact,

fix Q(s) = 0 in the adaptive stabilization which follows.

Adaptive Stabilization Using the Factorization Approach

The objective is to design the compensator C(s) adaptively based on the
estimate 6 of the plant parameters so that the closed loop system is
asymptotically stable with all signals bounded. Set u,(¢) = 0.

The identifier and compensator update sequence { ¢ ) are specified
in (6.2.19)-(6.2.21). The only difficulty in mechanizing the n th order
compensator of (6.2.31) and (6.2.32) (with é(s) = 0) lies in calculating
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f(t), (1) e R" to stabilize Ap(4; ), the estimate of A4, based on the
current plant parameter estimate. To that effect, we consider the con-
trollable form and observable form realizations of the plant estimate

0 1 0 0
0 0 . .
A = | - : b= || (6239
=B:i(4;) -Bit) ~Ba(ti) 1
(1) = [og(6) ax(yy) - an(t)]
and
000 -Bi(4) ey 1)
10 - . i .
A(t) = by(t) = - (6.2.34)
0 - I =-8,(4) (i)

&T(4) = [0+ 01]

Let the transformation matrix M (¢;) relate the realization (6.2.33) to
(6.2.34)

M(y) ApM (1)~
M (1) by(1;)

/‘Ip(ti)
5p(ti)
&y = Juym)!

Note that M(¢) is the only calculation that needs to be performed.
Now f(¢;) and [(¢;) are easily read off. Indeed, consider any stable
polynomial s” + p,s"~! + -+ + p,. Then it is easy to see that

() [=p1+B81t), ., =pa+Ba(t)]T

and
) = M) [-p1+B81(4), o =pn+Bu(1)) (6.2.35)

Therefore A,(4;)-b,/T(t;) and A,(1;)-1(4)cl(4;) have their eigen-
values at the zeros of s"+p,s" '+ -+ +p,. The compcnsatoAr of
(6.2.31), (6.2.32) with Q(s) = 0 can be made adaptive by choosing C(¢;)

= D '(4;) N(1;) with

Section 6.2 Global Stability of Indirect Schemes 277
Ne(ti) = ST G- Ap(6)) 71 (1) (6.2.36)
De(t;) = 1+l ()T - Ay (1))~ (1) (6.2.37)

Then, as before we have the following theorem:

Theorem 6.2.5 Asymptotic Stability of the Adaptive Identifier Using the
Factorization Approach

Consider the set up of Figure 6.5, with the least squares identifier of
(6.2.8), (6.2.9), the update sequence { ;) of (6.2.19)~(6.2.21), and the
compensator of (6.2.36), (6.2.37).

If the input is stationary and its spectral support is not concen-
trated on k£ < 4n points,

Then  the adaptive system is asymptotically stable.
Proof of Theorem 6.2.5 follows as the proof of theorem 6.2.4.

6.3 MULTIVARIABLE ADAPTIVE CONTROL

6.3.1 Introduction

The extension of adaptive control algorithms for single-input single-
output systems (SISO) to multi-input multi-output systems (MIMO) is
far from trivial. Indeed, transfer function properties which are easily
established for SISO systems are much more complex for MIMO sys-
tems. The issue of the parameterization of the adaptive controllers
becomes a dominant problem. Several MIMO adaptive control algo-
rithms were proposed based on the model reference approach (Singh &
Narendra [1982], Elliott & Wolovich [1982], Goodwin & Long [1980],
Johansson [1987]), the pole placement approach (Prager & Wellstead
[1981], Elliot, Wolovich & Das [1984]), and quadratic optimization
approaches (Borisson [1979], Koivo [1980]). See also the review/survey
papers by Dugard & Dion [1985] and Elliott & Wolovich [1984].

The understanding of parameterization issues benefited significantly
from progress in the theory of nonadaptive MIMO control theory. In
Section 6.3.2, we briefly review some basic results. More details may be
found in Kailath [1980], Callier & Desoer [1984], and Vidyasagar
[1985]. These results will help us to establish the parameterization of
MIMO adaptive controllers in Section 6.3.3. Once the parameterization
is established, the” design of adaptive schemes will follow in a more
straightforward manner from SISO theory (Section 6.3.4).

As previously, we will concentrate our discussion on a model reference
adaptive control scheme and follow an approach parallel to that of
Chapter 3. Alternate adaptive control schemes may be found in the
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references just mentioned. We will say very little about the dynamic
properties of MIMO adaptive control systems. Indeed, this topic is not
well understood so far (even less than for SISO systems!).

6.3.2 Preliminaries

6.3.2.1 Factorization of Transfer Function Matrices

Right and Left Fractions

Consider a square transfer function matrix P(s), with p rows and p
columns, whose elements are rational functions of s with real

coefficients. The set of such matrices is denoted f’(s) e RP*P(s). A
rational transfer function is expressed as the ratio of two polynomials in
s. Similarly, a rational transfer function matrix may be represented as
the ratio of two polynomial matrices. The set of polynomial matrices of

dimension p x p is denoted IR? *?[s] (nf)tc tAhe slight difference in nota-
tion). AA pair of polynomial matrices (Ng, Dg) is called a right fraction
(rf) of P(s) € RP*P(s)if

e Ng, Dp € RP*P[s]

+ Dy nonsingular, i.e., det(Dg(s)) #0 for almost all s.

« P = NgDg'
§imi1arly, a pair (].3L, ](’L) is called a left fraction (lf) of
P(s) e RP*P(s)if

e Ni,D; e RP*¥[s]

« D, nonsingular, i.e. det (D (s)) #0 for almost all s

« P=D/'N,

Given a right fractiAon (NR,AljR), another right fraction may be
obtained by muAltiplying Ng and Dy on the right by a nonsingular poly-
nomial matrix R(s) € IR?*?[s], i.e.

NR,ﬁR r.f.of P = NR, =NR1§ r.f.of P

R nonsingular ﬁR, = ﬁRﬁ

The matrix R is called a common right divisor of NR, and ].3R]. It is
called the greatest common right divisor (gcrd) of Ng, and Dg, if any
other common right divisor of Ng, and Dg, is also a common right divi-

sor of R. In fact, “the” gerd is not unique, but all gerd’s are equivalent
in a sense to be defined hereafter.
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Similar definitions follow for a left fraction (ﬁL, NL). Given
(Dr, Np) a left fraction of P(s) and a nonsingular matrix L, (lDL, I:NL)

is also a left fraction of f’(s). Greatest common left divisors are defined
by making the appropriate transpositions.

Right and Left Coprime Fractions—Poles and Zeros

A polynomial matrix 1.3R(s) is called unimodular if its inverse is a poly-
nomial matrix. A necessary and sufficient condition is that det ].3R(s) is
a real number different from 0. Clcarly, a unimodular matrix is non-
singular. Further, multiplying a polynomial matrix by a unimodular
matrix does not affect its rank or the degree of its determinant.

Two matrices ﬁ, and ﬁz are said to be right equivalent if there
exists a unimodular matrix R such that Rz = R R. Given a pair

(NR, DR) and a gerd R,, the matrix Rz = RlR is also a gerd if R is uni-
modular. In fact, it may be shown that all gcrd’s are so related, that is,
all gcrds are right equivalent. Extracting the gerd R of a right fraction
(NR,, DR ) is pretty much like cxtractmg common factors m a scalar
transfer function. The new pair (NR = NR,R DR = DR, “1y is also

a right fraction so that P = NIRIDRj‘ = NRDR . Note that the gcrd’s of

(NR, 1.5R) are unimodular. In general, two matrices (NR, ].3R) are called
right coprime if their gcrd is unimodular. It may be shown that for all

ﬁ(s) e IR?*P(s), there exists a right coprime fraction off’(s ); that is,
e Ng,Dr € R?*7[s] right coprime
. ].3R nonsingular
« P = NgDg!
In analogy to the SISO case, the poles and zeros of P are defined as
« pisa pole of P if det(Dg(p)) = 0
« zisazeroof P if det(JVR(z)) =0
where (NR, ljR) is a right coprime fraction of P. Similarly, n = order of

the system = adet(ﬁk(s)). It may be shown that these definitions
correspond to the similar definitions for a minimal state-space realiza-

tion of a proper P(s—).

Similar definitions are found for left coprime fractions. It follows
that rcf and lcf of a plant 2 must satisfy det (ﬁR(s)) = det (1.3L(S)) and
det (NR(s)) = det (1\7L(s)), except for a constant real factor.
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Properness, Column Reduced Matrices

We restrict our attention to proper and strictly proper transfer function
matrices, defined as follows:

lim ﬁ(s) exists
S+ Qa0

lim P(s) = 0

§— Qa0

P(s) € RE*P(s) if
P(s) € RE*P(s) if
Consider a right fraction (}VR, ﬁR), and define the column degrees as
acj(DAR) = m?X[a(ﬁR )ij ]
The following fact is easily established:
P(s) € RE*X(s) => 9,;(Ng) < 9;(Dg)

P(s) € RE*P(s) = ,(Ng) < 0.(Dg)

The converse is true if we introduce the concept of column reduced
matrices. First define the highest column degree coefficient matrix Dy,

(Dpe)ij = coefficient of the term of degree ac,-(liR) in (Dg);

A matrix is called column reduced (also column proper) if Dy, is non-

singular. If (]VR, ﬁR) is a right fraction of 13(s) and ﬁR is column
reduced, then

3;;(NR) < 9.(Dg) <> P(s) e RE*(s)
3;;(Nr) < 8,(Dg) <> P(s) e REXY(s)

If (NR,IjR) is a right coprime fraction of ﬁ(s), and ﬁR is column
reduced, we call

B = ac,(ﬁR) 1= controllability indices 0f13

m max (u;) := controllability index of P
J

It is a remarkable fact that {u;} is invariant (see Kailath [1980]). In
other words, the controllability indices are the same (modulo permuta-

tions) for all r.c.f. (NR, ﬁR) with 15R column reduced. Note also that

P
n = order of the system = 3 u;
j=1

It may also be shown that the definition of controllability indices
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correspond to the alternate definition for a minimal state-space realiza-
tion.

Given a matrix 13(5) e RE*P(s) or ﬁ(s) e IRy’S(s), it is always
possible to find a rcf (Ng, Dg) such that Dg is column reduced. The
procedure is somewhat lengthy and is discussed in Kailath [1980]. The
first step is to obtain a right coprime fraction (using a Hermite row form
decomposition), and the second step is to reduce the matrix to a column

reduced form, multiplying further on the right by some appropriately
chosen unimodular matrix.

Properness, Row Reduced Matrices

Similar facts and definitions hold for left fractions and are briefly sum-
marized. The highest row degree coefficient matrix Dy, is defined as:

(Dp)ij = coefficient of the term of degree ar,(le ) in (151_):‘1
where 8,:(Dy) = max (6(5L),j) are the row degrees of D .
j

The matrix ﬁL is called row reduced if Dy, is nonsingular. If (ﬁL, NL) is
a left fraction of P(s), and D, is row reduced, then

3i(NL) < 8,(Dy) <= P(s) e RE*¥(s)
9i(NL) < 8,(Dy) <> P(s) e RE*H(s)

When (bL, NL) is a left coprime fraction of ﬁ(s), with ﬁL row reduced,
we define
vy, = 6,,»(Dl) = observability indices of P
v = max (vy;) := observability index of P
!

The set of observability indices is invariant. They are different from the
controllability indices, although related by

14 14
n = systemorder = Xy = Xy
i=1 j=1

Polynomial Matrix Division

Consider, first, scalar polynomials. Given two polynomials 7 and d, the
standard division algorithm provides § and 7 such that

A= q4d +r oF < od
This procedure is equivalent to separating the strictly proper and not
strictly proper parts of a transfer function:
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f

=g+ g polynomial , strictly proper

ENINIEN
Q...>| ~

From this observation, the following proposition is obtained in the mul-
tivariable case.

Proposition 6.3.1 Polynomial Matrix Division

Let Ng, Dg, Ni, D, € IRP*?[s] with Dg, D, nonsingular. Lei~Dp-be
columi.reduced-and-Py-pe-rowreduced:

Thern  There exists QR, ﬁR, QL, ﬁL € IR?*P[s] such that

Nr = OrDg + Ry 3cj(RR) < acj(DAR)

N DLOr + R 9,(R.) < 8,(Dy)

i

Proof of Proposition 6.3.1

The elements of NxDg' are rational functions of s. Divide each
numerator by its denominator and call the matrix of quotients Qg.

Therefore N,m‘,;‘ = QR +S‘R where S‘R e IRP*F(s). Let ﬁR = §R§R,
ie. S:R = RARDAR_ 1.
Since §RﬁR = NR ~ Qkﬁk, ﬁR is a polynomial matrix. Further, S‘R

being strictly proper aré~&lg—calumu.ceduced, the column degrees of ﬁR

must be strictly less than those of ﬁR. A similar proof establishes the
fact for left fractions. O

6.3.2.2 Interactor Matrix and Hermite Form
Interactor Matrix
In Chapter 3, we observed that SISO model reference adaptive control
requires the knowledge of the relative degree of the transfer function
fs(s)‘ The extension of the concept of relative degree to transfer func-
tion matrices is not trivial and must take into account the high-
frequency interactions between different inputs and outputs. The con-
cept of an interactor matrix follows in a natural way, by taking the fol-
lowing approach. Note that the knowledge of the relative degree of a
scalar transfer function ls(s) e IR, ,(s) is equivalent to the knowledge
of a monic polynomial E(s) such that

lim £(s)P(s) = k, # 0

5=+ Q0

Then, the relative degree of 13(s) is equal to the degree of é (s). The
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scalar k, was earlier called the high-frequency gain of the plant P.

The high-frequency behavior of MIMO systems is similarly deter-
mined by a polynomial matrix such that

lim g(s)f’(s) = K, nonsingular
S—C0

We must assume here that 13(s) is itself nonsingular. The matrix g(s) is
not unique, unless its structure is somewhat restricted. It is shown in

Wolovich & Falb [1976] that there exists a unique matrix g(s) satisfying
the following conditions.

Definition Interactor Matrix

The interactor matrix of a nonsingular plant 13(s) e IR{*P(s) is the
unique matrix § € lR’”‘"LsBsuch that

lim £(s)P(s)

K, nonsingular

£(s) = Z(s)A(s)
where
o A(s) = diag (s")
Bt 0 0 - 0]
32](5) 1 0
© 2(s) = | Gals) Gxls) 1
.5171(3) . .. 1J

+ any polynomial ¢;(s) is divisible by s (or is zero)

The matrix K, is called the high frequency gain of the plant P(s). The
integers r; extend the notion of the relative degree r of an SISO transfer
function. The matrix i(s), which becomes 1 in the SISO case, describes
the high-frequency interconnections between different inputs and out-
puts.

Hermite Normal Form

Another approach, leading to an equivalent definition, is found in Morse
[1976]. For this, one notes that proper rational functions of s form a
ring. A division algorithm may also be defined, where the gauge of an

element is its relative degree. Therefore, 13(s) is a matrix whose
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clements belong to a principal ideal domain, and may be factored as

P(s) = H(s) - U(s) H,U e Ry*(s)

where H is the Hermite column Sform of P. The Hermite column form

of I is a lower triangular matrix, such that the elements below the diag-
onal are either zero, or have relative degree strictly less than the diago-

nal element on the same row. The matrix U is unimodular in IR *?(s),

that is, its inverse is a proper rational matrix. The unimodularity of U
is equivalent to

lim 0(.5‘) = K, nonsingular
6 5= Q0

Morse [1979] showed that, with some slight modifications, one could
uniquely detine the Hermite normal form as follows
Definition Hermite Normal Form

The Hermite normal form of a nonsingular plant ﬁ(s) e IRO*P(s) is the

unique matrix H e IR7*P(s) such that

P (s) = fl(s)- 0(s) U unimodular in RS *P(s)

N N
(s+a)"
fau(s) !
(s+a)?!

(s+a)?

alt
i

|
(s+a)*

where Gﬁij(s) < r; -1 and a is arbitrary, but fixed a priori.

As shown in the following proposition, the interactor matrix and
the Hermite normal form are completely equivalent.

Proposition 6.3.2 Interactor Matrix and Hermite Normal Form
Equivalence

Let g(s) be the interactor matrix of 13(s) e IRO*P(s). Let ﬁ(s) be the
Hermite normal form of P(s) for a = 0.

Then f(s) = ﬁ‘l(s)
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Proof of Proposition 6.3.2

We let g‘ = H ~" and show that it satisfies the conditions in the definition
of the interactor matrix. First, note that 513 =H 'P =0U. Since U is
unimodular, lim ¢ P = K, nonsingular. Next, decompose

S—>00
s 0 -0 l 0o - 0
. 0 s . . shy(s) 1 - 0
H = . . . . . . . .
0 0 - s s};pl(s) :
= A7'ZN 2 (2A)!

Clearly, A so defined satisfies the required properties, and < is a lower

triangular matrix with 1’s on the diagonal. The off-diagonal terms
satisfy

G2(s) = —shy(s)
s(h31(5) = Asg(s) A3 (s))

~ sh 3(s)

a31(s)

I

a32(s)

so that 2 (s) also satisfies the required conditions. O

Hermite Form and Model Reference Control

’I_'he significance of the Hermite normal form in model reference adap-
tive cqntrol may be understood from the following discussion. An arbi-
trary linear time-invariant (LTI) controller may be represented as

u = éFF(") + éFB(yp)

where Cpr is a. feedforward controller and C‘FB is a feedback controller,
so that the closed-loop transfer function is given by

(I - PCrp)~' PCrp (u)
P(l_éFBﬁ)-léFF(u)

Yo

[
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= AU - CrgP) ™' Cpr (u)
TAhe transfer function is equal to the reference model transfer function
M if
M = HUWU -CrgP) ' Crr
Assume now that the plant is strictly proper, and restrict the controller to

be proper. Then, the transfer function Ul - é‘pgﬁ)" ‘C’FF is proper. In
other words, the reference model must be the product of the plant’s Her-
mite form times an (arbitrary) proper transfer function. For SISO sys-
tems, this is equivalent to saying that a proper compensator cannot
reduce the relative degree of a strictly proper plant.

6.3.3 Model Reference Adaptive Control—Controller Structure

With the foregoing preliminaries, the assumptions required for multi-
input multi-output (MIMO) model reference adaptive control will look
fairly similar to the assumptions in the SISO case.

Assumptions

(A1) Plant Assumptions
The plant is a strictly proper MIMO LTI system, described by a
square, nonsingular, transfer function matrix

P = HU e RLA(s)
where H is a stable Hermite normal form of f’, obtained by set-
ting @ > 0. H is assumed known. The plant is minimum
phase, and the observability index v is known (an upper bound

on the order of the system is, therefore, vp).

(A2) Reference Model Assumptions
The reference model is described by

M = HM, € RE*H(s)
where Mo is a proper, stable transfer function matrix and H is
the Hermite normal form of the plant.
(A3) Reference Input Assumptions

The reference input r(:) € IR™ is piecewise continuous and
bounded on IR ,.

Controller Structure

First, note that all the dynamics of MO may be realized by prefiltering
the reference input r. Therefore, we define
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Fo= Mr)
so that
Ym = ﬁ(?) (6.3.1)

In this manner, the model reference adaptive control problem is replaced

by a problem where the reference model M is equal to the Hermite nor-
mal form of the plant.

The controller structure used for multivariable adaptive control is
similar to the SISO structure, provided that adequate transpositions are

made. Let A (s) be an arbitrary, monic, Hurwitz polynomial of degree

v—1 (where v is the observability index of 13). Define f\(s) e IRP*P(s)
such that

A(s) = diag [X(s)] (6.3.2)
The controller is represented in Figure 6.6.

- 7 = y
—MsFE=>1 ¢, Y P(s) ‘—? P

A~ A
Kot

/N

A V)bes)

Figure 6.6 MIMO Controller Structure

It is defined by

F

M(r)

CoF + A7) C(s)u) + A~ '(5)D(s)(¥,) (6.3.3)

where Co e R?*?, C(s), D(s) e IR?*?(s). By the foregoing choice of
A, A- c CA™', and A"'D =DA"' Further, let 9C <v-2

8D < v-1 (where 8C denotes the maximum degree of all elements of
C

u

—

Now, consider a right coprime fraction (NR, ﬁR) of P. Therefore
Dr(x) = u ¥, = Ng(x) (6.3.4)

where x is a pseudo-state of P. Combining with the expression of the
controller
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Dr(x) = Cof + A" 'C(u) + A~'D(p,) (6.3.5)

so that
f\ﬁRx = f\COF + éﬁRx + ﬁNRx (6.3.6)
[(A -C)Dg - DNglx = ACoF (6.3.7)

Therefore, the output y, is given by
¥, = Nrl(A —=C)Dg - DNzl 'ACy(F) (6.3.8)

As in the SISO case, this leads us to a proposition guaranteeing that
there exists a nominal controller of prescribed degree such that the

closed-loop transfer function matches the reference model (fI ) transfer
function.

Proposition 6.3.3 MIMO Matching Equality
There exist C§, C*, D* such that the transfer function from 7 — y, is a.

Proof of Proposition 6.3.3

The transfer function from 7 to y, is H if and only if the following
equality is satisfied

Nrl(A -C*Dgr- D"Ngl 'ACS = H (6.3.9)

Since H~! is a polynomial matrix, the foregoing equality may be
transformed into a polynomial matrix equality, reminiscent of the
matching equality of Chapter 3

(A-C*)Dgr- D*Ng = AC{H 'Ng (6.3.10)

First, we determine Cj. Multiply both sides by 15,{‘ on the right
and A~' on the left. Then
(I-A'CY-A"'D*NgDg' = C{H 'NpDg! (6.3.11)
Taking the limit as s - oo
I = C}K, > C§=K,! (6.3.12)

The polynomial matrices C*, D* are obtained almost as in the SISO
case. Let (D;, N;) be a left coprime fraction of P, with D; sew
’reduaod. Divide IA\K,,‘ VL= on the right by ﬁL , S0 that

LolurMy ReovceD (uth A MaTRIY Fenerion
PESCAIPTION Aways EXISTS CCF BECRELL S.

R R.6vi0ORT , "A NEw v PUT cAvOniCAL
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AK,'H™' = O,D; + R, (6.3.13)
where ac,.(ﬁL) < 66,(DAL) < v. Then, let
B* = R, = 0Dy - AK;' A"
C' = A-Q, N, (6.3.14)

Since ﬁL NR = NL ﬁR , it is easy to show that the given C{, é", D" solve
the matching equality. Since 4,(D;) < v, aD* = a(ﬁL) <v-1. On the
other hand
lim (I -A"'C*) = Lim(A"'DP+K;,'"H 'P) =1 (6.3.15)
§—= 00 S— 00

so that A~ !C* is strictly proper and aC*<v-2. DO

State-Space Representation
A state-space representation is obtained by defining the matrices C,, . . .

, Cvfl’DO’Dl ..... Du—l e IR?*? such that
N - v-2
Cs)A(s) := C|LA+C2% + o+ C,_,s =
A A
BisOA~s) - 1 s 5* 72
A" () ;= Do+ Dy —+Dy—=+ -+ +D,_|— (6.3.16)
A A A
Consequently, the vectors w! and wf? are defined by
a ._ s @ ._ s ;
wi) = 2 (u) wi? = (yp) i =1...v-1 (63.17)
A A
The regressor vector w is defined as
wl o= (FTowl o WL T wPT L W) e RPX2P (6.3.18)
and the matrix of controller parameters is
8" = (Co,Cy,..., Co_y,Do,Dy,..., D,_|) € RP*2P (6.3.19)
so that the control input is given by
u = 0'we R (6.3.20)
The controller structure is represented in Figure 6.7. By letting the con-

troller parameter 0, i.e., Cy, . . ., C,_1,Dg, ..., D,_ vary with time,
the scheme will be made adaptive. We define the parameter error

FoLM FOL MULTIVARIALLE SYSTEWMS, 1 6E€E

TRANS, o0y AvTon. Cowrrol .
e €40 .Chc¢ " 1aa¢ ) VoL,
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J Y Yp
e DA Pls) \L
AUXILIARY
SIGNAL
GENERATOR
(2)
v
1 Do
{0 )<
i=1,..,v -1
Figure 6.7 MIMO Controller Structure—Adaptive Form
(1) := 0(1)-0" € RP*P (6.3.21)
and
o7 = (Cy, , Coo, Do, Dy D,.y)
< i . :
W= L Wyl Wl w@l)
d:=0-0" (6.3.22)

6.3.4 Model Reference Adaptive Control—Input Error Scheme
For simplicity in the following derivations, we make the following
assumption
(A4) High Frequency Gain Assumption
The high-frequency gain matrix K|, is known.

Consequently, we let
Cy = C§ = K,
u = C{F +0'w (6.3.23)

and we look for an update law for @)(z).
Consider the matching equality
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(A-C"Dr-D"Np = ACIH "Ny (6.3.24)

and multiply both sides by A" on the left and 15R"’ on the right so that

I -(A"'CY-(A'DYP = CLH'P (6.3.25)
Now, define
L(s) := diag [[(s)] € R?*?(s) (6.3.26)

where f(s) is a monic, Hurwitz polynomial such that 9/ = 8(ﬁ 1 (the

maximum degree of all elements of A ™! ). Since A and L are given by
(6.3.2), (6.3.26), they commute with any matrix. Multiplying both sides
of (6.3.25) by L ~! and applying both transfer function matrices to u
leads to

A

CSHL) Ny) + LNC A wy+ DA~ (3,))

i"'(u)

Co(HL) ' () + L8 w)

Co(HL) ' (y)) + 0" L Y(w) (6.3.27)
As in the SISO case, we define
v = (HL)'yI,L-'(w7))

vI = L-Y(wT)

0Tv-L ') (6.3.28)
so that, using (6.3.27)

€y !

€y = ey

= 37y (6.3.29)
where the last equality follows because we assumed that K, is known,

that is, Cy = C;. The error equation is a linear equation, but a mul-

tivariable one, with e; € R?, &7 ¢ R?*®-"_ However, standard
update laws are easily extended to the multivariable case, with similar
properties. For example, the normalized gradient algorithm for (6.3.29)
becomes )
- \_JezT
0 = -g—n"— g, v>0 (6.3.30)
l+yv7%

This equation may be obtained by considering each component of e,,
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forming p scalar error equations, and collecting the standard SISO
update laws. Similarly, a least-squares algorithm may also be defined.

The scheme may also be extended to the unknown high-frequency
gain case. However, some procedure must be devised to prevent C,
from becoming singular (cf. ¢y # 0 in SISO),

6.3.5 Alternate Schemes

The multivariable input error scheme presented here is equivalent to the
scheme presented by Elliott & Wolovich [1982]. In discrete time, a
similar scheme is obtained by Goodwin & Long [1980]. An output error
version of the model reference adaptive control scheme is found in
Singh & Narendra [1984].

It is fairly straight forward to derive an indirect scheme, based on
the solution of the matching equality given in the proof of proposition
6.3.3. An interesting contribution of the proposition is to show that the
solution of the matching equality requires only one polynomial matrix
division. This is to be contrasted with the situation for pole placement,
where the general Diophantine equation needs to be solved. In fact, the
matrix polynomial division itself is simpler than it looks at first, and
may be calculated without matrix polynomial inversion (see Wolovich
[1984]).

A possible advantage of the indirect approach is that the interactor
matrix may be estimated on-line (Elliott & Wolovich [1984]). Indeed,
the requirement of the knowledge of the Hermite form may be too much

to ask for, unless H is diagonal (cf. Singh & Narendra [1982], [1984]).

When H is not diagonal, the off-diagonal elements depend on the unk-
nown plant parameters.

The model reference adaptive control objective with M =H is
somewhat restrictive: Indeed, all desired dynamics are generated by
prefiltering the input signal. In continuous time, all zeros are cancelled
by poles, and the remaining poles are defined by A. In discrete time,
the remaining poles are all at the origin (d-step ahead control). This is
not very desirable for implementation, as discussed in Chapter 3. In the
SISO case, a more adequate scheme was presented such that the internal
dynamics of the closed-loop system are actually those of the reference
model.

Stability proofs for MIMO adaptive control follow similar paths as
for SISO (Goodwin & Long [1980], Singh & Narendra [1982]). Conver-
gence properties have not been established. Indeed, the uniqueness of
the controller parameter is not guaranteed by proposition 6.3.3, as it was
in the SISO case. More research will be needed for the dynamics of
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MIMO adaptive control systems to be well-understood.

6.4 CONCLUSIONS

In this chapter, we first discussed how prior information may be used in
the context of identification. Then, we presented flexible indirect adap-
tive ?qntrol schemes, and proved their global stability under a richness
condition on the exogeneous reference input. Applications to pole place-
ment and the factorization approach were discussed. We then turned to
the extension of model reference adaptive control schemes to MIMO
systems. After some preliminaries, we established a parameterization of
Fhe adaptive controller, following lines parallel to the SISO case. An
input error scheme was finally presented. More research will be needed
to better upderstand the dynamics of MIMO adaptive control schemes.
The combination of modern control theories based on factorization
gpgroaches and of MIMO recursive identification algorithms in a flexible
indirect adaptive controller scheme is a promising area for further
developments and applications.



CHAPTER 7

ADAPTIVE CONTROL OF A CLASS
OF NONLINEAR SYSTEMS

7.1 INTRODUCTION

In recent years there has been a great deal of interest in the use of state
feedback to exactly linearize the input-output behavior of nonlinear con-
trol systems, for example of the form

P
f(x)+ 2 &)y

i =1
Vi h(x). ..y, = hy(x) (7.1.1)

In (7.1.1), xe R", ueR? yeR” and f, g : R"—> R". Also the #,;’s
are scalar valued functions from IR” to IR. The theory of linearization
by exact feedback was developed through the efforts of several res.earchj
ers, such as Singh and Rugh [1972], Freund [1975], Meyer & C}colam
[1980], Isidori, Krener, Gori-Giorgi & Monaco [1981] in the continuous
time case. Good surveys are available in Claude [1986], Isidori [1985,
1986] and Byrnes & Isidori [1984]. The discrete time case and sampled
data cases are more involved and are developed in Monaco &
Normand-Cyrot [1986]. A number of applications of these techniques
have been made. Their chief drawback however seems to be in the fact
that they rely on exact cancellation of nonlinear terms in order to get
linear input-output behavior. Consequently, if there are errors in the
model of the nonlinear terms, the cancellation is no longer exact and the
input-output behavior no longer linear. In this chapter, we suggest the

X

il

294

Section 7.1 Introduction 295
use of parameter adaptive control to help make more robust the cancel-
lation of the nonlinear terms when the uncertainty in the nonlinear
terms is parametric. The results of this chapter are based on Sastry &
Isidori [1987].

The remainder of the chapter is organized as follows: we give a
brief review of linearization theory along with the concept of a
minimum phase nonlinear system in Section 7.2. We discuss the adap-
tive version of this control strategy in Section 7.3 along with its applica-
tion to the adaptive control of rigid robot manipulators, based on Craig,
Hsu & Sastry [1987]. In Section 7.4, we collect some suggestions for
future work.

7.2 LINEARIZING CONTROL FOR A CLASS OF NONLINEAR
SYSTEMS—A REVIEW

7.2.1 Basic Theory
SISO Case

A large class of nonlinear control systems can be made to have linear
input-output behavior through a choice of nonlinear State feedback con-
trol law. Consider, at first, the single-input single-output system

S(x) + gx)u
y = hx) (7.2.1)

with x e R”, f, g, 4 all smooth nonlinear functions. In this chapter, a
smooth  function will mean an infinitely differentiable function.
Differentiating y with respect to time, one obtains

X

L S, ok
y = axf(x)+ ax SXu
= Lrh(x) + Leh(x)u (7.2.2)

where Loh(x): R" - R and Lgh(x): R"—> R stand for the Lie deriva-
tives of h with respect to f, g respectively. If Loh(x) is bounded away
from zero for all x, the state feedback control law (of the form
U = ax)+p(x)v)

|
- u = Zg—k (— Lf/l + V) (723)
yields the linear system (linear from the new input v to )

y o= v
The control law (7.2.3) has the effect of rendering (n - 1) of the states of
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(7.2.1) unobservable through appropriate choice of state feedback.

In the instance that Lgh(x) = 0 meaning Lgha(x) = 0 for all x,
one differentiates (7.2.2) further to get

¥ = Lph(x) + (LgLsh)(x)u (7.2.4)

In (7.2.4), L}h (x) stands for L;(Lsh)(x) and LgLsh(x) = Lo (Lrh(x)).
As before, if L, Lrh(x) is bounded away from zero for all x, the control
law

1
Y TR (= Lth(x)+v) (7.2.5)

linearizes the system (7.2.4) to yield
yo=

More generally, if v is the smallest integer such that L, L}h = 0 for

i=0,..., vy-2and L,L/ " 'h is bounded away from zero, then the
control law

U = — (CLh+v) (7.2.6)

LyLp~'h
yields
o=
The procedure described above terminates at some finite v if the row
dh d d .. . .

vectors {a'x x), defh(x), C, de," h(x)} are linearly indepen

dent for all x.

Note that the theory is considerably more complicated and incom-
plete if Lo L7~ 'h is not identically zero, but is equal to zero for some
values of x.

MIMO Case—Static State Feedback

For the multi-input multi-output case, we consider square systems (that
is systems with as many inputs as outputs) of the form

X

It

S +gi(X)uy + -+ gy(x)u,
hyi(x)

V1
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Vp = hy(x) (7.2.7)

Here x e R”, u e IR?, y € IR and !, &, hj, are assumed smooth. Now,
differentiate the j th output y; with respect to time to get

¥/
Vi = Lehj + % (Loh)u; (7.2.8)
i=1

In (7.2.8), note that if each of the (Lgh;)(x) = 0, then the inputs do
not appear in (7.2.8). Define v to be the smallest integer such that at

least one of the inputs appears in yj’f, that is,
P
V' o= LY+ D L (L ), (7.2.9)
i=1

with at least one of the L, (L/"‘lhj) # 0, for some x. Define the
p x p matrix A4 (x) as

LgJLfy'_lhl Lg,,Lfvl—lhl

A(x) = : ‘ (7.2.10)

Lgl fn_lhp o Lg,, Lfvp—]hp
Then, (7.2.9) may be written as
i L7 h, u;
- Ak | (7.2.11)
Yy L% h, “

If-A(x) € R”*? is bounded away from singularity (meaning that 4 - (x)
exists for all x and has bounded norm), the state feedback control law
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L/ h,
u = -A(x)"" + Ax) 'y (7.2.12)
Lfyp hp
yields the /inear closed loop system
2 Vi
= |- (7.2.13)
v
yp7ﬂ p

Note that the system of (7.2.13) is in addition decoupled. Thus, decou-
pling is achieved as a by-product of linearization. A happy consequence
of this is that a large number of SISO results are easily extended to this
class of MIMO systems. Thus, for example, once linearization has been
achieved, any further control objective such as model matching, pole
placement or tracking can be easily met. The feedback law (7.2.12) is
referred to as a static state feedback linearizing control law.

MIMO Case—Dynamic State Feedback

If A(x) as defined in (7.2.10) is singular, and the drift term in (7.2.11)
(i.e. the first term on the right-hand side) is not in the range of A4(x),
linearization may still be achieved by using dynamic state feedback. To
keep the notation from proliferating, we review the methods in the case
when p = 2 (two inputs, two outputs). A(x) then has rank | for all x.
Using elementary column operations, we may compress A(x) to one
column, i.e:,

an(x) o ]

ALITEO = [521()6) 0

with T(x) e R**? a nonsingular matrix. Now, defining the new inputs
w =T "Yx)u, (7.2.11) reads

' Lih ap(x)
= + Wy (7.2.14)
y272 Lf‘hhz a2](x)
Also, (7.2.7) now reads as
X = f(x)+ &i(x)w; + g2x)w; (7.2.15)
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where

[£:10x) &20x)] = [g1(x) g20x)] T(x)
Differentiating (7.2.14), and using (7.2.15), we get

+1 5 q
y;,,+l ) Ljﬁ' h, +L§lLf7'h1W1 + Lpayw '*'Lg,lallwl2
H 1+ 1 q q-
y272+ Lj-‘y- + hZ + L§|Lf72h2W1 + Lfazlwl + Lg;laZIWIZ

d” ng Lf‘YIhI +L£,Zd”w1 Wl
)

dsy ngLf”hz + ngﬁzlw,
The two large blocks in the equation can be condensed to yield:
N C(x, w,) + B(x w)[wl} (7.2.16)
£’Z+1 s » Wi W, 2.
Note the appearance of the control term w,. Specifying w, is
equivalent to the placement of an integrator before wy, that is to the

addition of dynamics to the controller. Now, note that if B(x, w;) is
bounded away from singularity, then the control law

il =B 1, w)Clx, w)+ B (x, w,) | (7.2.17)
ws 3 1 ) 1 s 1 Vs Lo
yields the linearized system
v+ 1
e - [“J (7.2.18)
Yo+ 1 V)
V2

The control law (7.2.17) is a dynamic state feedback, linearizing, and
decoupling control law. If B(x, w;) is singular, the foregoing procedure
may be repeated on B(x, w;). The procedure ends in finitely many

steps if and only if the system is right invertible (for details, see Des-
cusse & Moog [1985]).

7.2.2  Minimum Phase Nonlinear Systems

The linearizing control law (7.2.3) when applied to the system (7.2.1)
results in a first order input output system. Consequently, (n ~ 1) of the
original n states are rendered unobservable by the state feedback. To
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see this more clearly, consider the linear case, i.e., f(x) = 4Ax, g(x) = b,
and A(x) = ¢"x. Then, the condition

Leh(x) #0 <= cTb #0
and the control law of (7.2.3) is

w o= = (—cTax+v) (1.2.19)

cTh

resulting in the closed loop system

beT

)'c=[1———— b
c

AX + ——v
cTh

y = c'x (7.2.20)

From the fact that the control law (7.2.19) yields a transfer function of
~;— from v to y it follows that (n ~1) of the eigenvalues of the closed

loop matrix (7 - bcT /cTh)A are located at the zeros of the original Sys-
tem, and the last at the origin. Thus, the linearizing control laws may be
thought of as being the nonlinear counterpart of this specific pole place-
ment control law. The dynamics of the states rendered unobservable are
indeed the so-called zero-dynamics of the system (see (7.2.23)). Clearly,
in order to have internal stability (and boundedness of the states), it is
important to have the closed loop pole-zero cancellation be stable, i.e.
the system be minimum phase. This motivates the understanding and
definitions of minimum phas: nonlinear systems. We start with the
single-input single-output case.

7.2.2.1 The Single-Input Single-Output Case

The first definition to be made is that of relative degree (or pole-zero
excess).

Definition  Strong Relative Degree
The system (7.2.1) is said to have strong relative degree v if

Leh(x) = LiLgh(x) = -+ = LLF %h(x) = 0 forall x

and forall x, L,L/ - 1h(x) is bounded away from zero.
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Comments

a)  The system (7.2.1) is said to have strong relative degree v if the
output y needs to be differentiated v times before terms involving the
Input appear.

b) In the instance that the system has strong relative degree v, it is

possible to verify that, for each x° e IR”, there exists a neighborhood
U° of x° such that the mapping

T:U°->R"
defined as
T\(x) = zy = h(x)
Tyx) = z13 = Lih(x)
T,(x) = zy, = L7 'h(x) (7.2.21)
and T,,, ..., T, chosen such that
d
a[Ti(x)]g(x) =0 for i=~y+1,. .. n

- is a diffeomorphism onto its image (see Isidori [1986]).

If we denote by z;, € IR” the vector (zir, - .., zy,)T and by

z; € IR"™7 the vector (Ty+1, ..., T,)7, it follows that the equations
(7.2.1) may be replaced by

)T

211 = Zp

,217_1 = 217

21y = f1(21, 23) + g1(21, 27)u

22 = ‘I’(Z], 22)
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y = zy (7.2.22)

In the equations above, Si(zy, z;) represents L h(x) and g,(zy, z,)

represents L, L7 ~'A(x) in the new coordinates. ¥,(zy, z,) represents
LyTi(x) fori =y +1,..., n Also note that the input does not
directly influence the z, states. The representation of the system (7.2.1)
through (7.2.22) is called a normal form.

If x =0 is an equilibrium point of the undriven system, that is,
JS(0) = 0 and /4(0) = 0 (without loss of generality), then the dynamics

22 = \I’(O, 22) (7223)

are referred to as the zero-dynamics. Note that the subset

Lo = {(x e U°| h(x) = - = Ly 'h(x) = 0)
can be made invariant by choosing
‘ )
U = ————— V- fi(z,z5) + v 7.2.24)
2z 25) J1(zy, 23) (

The dynamics of (7.2.23) are the dynamics on this subspace.

Definition  Minimum Phase

The nonlinear system (7.2.1) is said to be globally (locally) minimum
phase if the zero-dynamics are globally (locally) asymptotically stable.

Comments

a) This definition may be strengthened to exponentially stable, in
which case we call the system exponentially minimum phase.

b)  The previous analysis identifies the normal form (7.2.22) and the

zero-dynamics of (7.2.23) only locally around any point x° of R".
Recent work of Byrnes & Isidori [1988] has identified necessary and
sufficient conditions for the existence of a globally defined normal form,
They have shown that a global version of the notion of zero-dynamics is

that of a dynamical system evolving on the smooth manifold of IR”

Lo = {x e R": h(x) = Ljh(x) = - = Ly h(x) = 0)
and hereby defined the vector field

L7h(x)
L,LP 'h(x)

Note that this is a vector field on Ly because f_(x) is tangent to Ly. If

fx) = fx)- &x) x e L
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1_40 is_ connected ar}d the zero-dynamics are globally asymptotically stable
(i.e. if the system is globally minimuym phase), then the normal forms of
(7.2.22) are globally defined if and only if the vector fields

§(X) adzg(x), ..., ad7~'g(x)

are complete (i.e. have no finite escape time), where

glx) = 7
L7 hx) &(x) S(x) , asabove

while

_ g = of _
ad;g = =< - ==
i3 o) &) ax 8)

i§ the so—c.all'ed’Lie bracket off,g? and ade g = adf. .. ady g iterated ;
tlmes: This is in turn. guaranteed by requiring that the vector fields in
question be globally Lipschitz continuous, for example.

_ T_he utility of the definition of minimum phase zero-dynamics
arises 1n the context of tracking: if the control objective is for the out-

put y(t) to track a pre-specified reference trajectory p,,(1), then the con-
trol input

Vo= yWY + aY(ym —l_y‘y—l) R al(ym‘y) (7225)

results in the following equation for the tracking error €=y =y,

e +ayed T+t e, = 0 (7.2.26)

It is important to note that the control law of (7.2.25) is not imple-

mented by diﬁ"erentiating Yy repeatedly but rather as a siqre Jeedback law
since

y = Lsh
Vo= Lph
yrl= Ly-ip
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If ay, ..., a, are chosen so that sY+a.s” !+ + a; is a Hurwitz

: -1
polynomial, then it is easy to see that eg, ég, . . ., ef ~! go to zero as ¢

tends to co. Further, if y,,, Y, . .., ¥ "' are bounded‘, then y, Voo
y* ! are also bounded and so is z,. The following proposition
guarantees bounded tracking, that is tracking with bounded states.

Proposition 7.2.1 Bounded Tracking in Minimum Phase Nonlinear Sys-

tems .

Ir the zero-dynamics of the nonlinear system (7.2.1) as defined in
(7.2.23) are globally exponentially stable. Fu_rther, \I{(zl_, Zy) in
(7.2.22) has continuous and bounded partial derivatives in
zi,zyand Yy, Yo - .., ¥~ are bounded ‘

Then  the control law (7.2.24)-(7.2.25) results in bounded tracking,
that is, x e IR" is bounded and y(¢) converges to y,, (¢).

Proof of Proposition 7.2.1

From the foregoing discussion, it only remains to show that z, isf
bounded. We accomplish this by using the converse theorem o
Lyapunov of theorem 1.5.1 (as we did for theorem 5.3.1).

Since (7.2.23) is (globally) exponentially stable and ¥ has bounded
derivatives, there exists v,(z,) such that

2
ai]za|? < vi(z2) € ay]zy]

ﬂl—‘I’(O,Zz) < -a3lz,y)?
de
LT (7.2.27)
d22
By assumption, the control law (7.2.24)—(7.2.25) yields bounded z,, i.e.
[z,(¢)] < k for all ¢ (7.2.28)
Using (7.2.27) for the system (7.2.22) yields
; ad 2, M -
vi(t) = ‘E‘I’(Zl,zz) S ~ajz|zy|f+ iz, (¥(z,22) =~ ¥(0, z3))
< ~—a3|22]2+a4k/|22| (7229)

where / is the Lipschitz constant of \I/(zl,.zz) in zy ( ¥ is globally
Lipschitz since it has bounded partial derivatives). It is now easy to see
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that
. x4 k/
vi =0 for |z, >
aj

Using this along with the bounds in (7.2.27), it is easy to establish that
z;is bounded. O

Comments

a)  Proposition 7.2.1 is a global proposition. If the zero-dynamics
were only locally exponentially stable, the proposition would yield that

2, is bounded for small enough z,, that is, for small enough y,,., ., . .
Ym~ L

b) The assumptions of proposition 7.2.1 call for a strong form of
stability—exponential stability. In fact, counter-examples to the proposi-
tion exist if the zero-dynamics are not exponentially stable—for example,
if some of the eigenvalues of ¢ ¥ (0, z;)/dz, evaluated at Zy = 0 lie on
the jw-axis.

¢)  However, the hypothesis of proposition 7.2.1 can be weakened con-
siderably without affecting the conclusion. In particular, it is sufficient
to ask only that the zero-dynamics of (7.2.23) converge asymptotically to
a bounded set (a form of exponential attractivity). To be concrete, the
€xponential minimum phase hypothesis can be replaced by the condition

.y

ZZT‘I/(O, 22) < —a3|22|2 for '22' > k (7230)

for some k& (large). Condition (7.2.30) is similar to (7.2.27) for the
Lyapunov function [ 2212 except that it holds outside a ball of radius k.
It is then easy to verify that all trajectories of the undriven zero-
dynamics (7.2.23) eventually converge to a ball and that the proof of
proposition 7.2.1 can be repeated to yield bounded tracking. This
remark is especially useful in the adaptive context where the assumption

of minimum phase zero-dynamics may be replaced by exponential
attractivity.

7.2.2.2 The Multi-Input Multi-Output Case

Definitions of zero-dynamics for the square multi-input multi-output
case are more subtle, as pointed out in Isidori & Moog [1987]. There
are three different ways of defining them, depending on which definition
of the zeros of an LTI system one chooses to generalize

2) the dynamics of the maximal controlled invariant manifold in the
kernel of the output map, or
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b) the output constrained dynamics (with output constrained to zero),
or
¢) the dynamics of the inverse system. -
It is also pointed out that the three different definitions co‘mc1de: if
the nonlinear system can be decoupled by static state feedback, in which
case the definition parallels the development of the SI.SO case above,
More specifically, if 4(x) as defined in (7.2.10) is non-singular, then we
proceed as follows. Define

,yl+...+‘yp = m

and z; e R™ by

- s 1
Z’ll' = (hy, th],..,, Lfy' 1hl,hz YYYYY Lf". hy,

Also, define z, e R" " by
2y = T|(X) ----- DMn-my = Tn—m(x)

with z7 = (27, z1') representing a diffeomorphism of the state variables
x. In these coordinates, the equations (7.2.1) read as

2y = zp
Z1y, = [1(z1,22) + &1(21, 22)u
Ziue) = Zi(n+2)

Zim = [p(21,22) + g (21,27)u
22 = ‘I/(Zl,22)+q>(21,22)u (7231)

Yi = 21
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Y2 = Zig, 4+

Yo = Zigm-v,+1) (7.2.32)

Above, f|(z, z,) represents Lf'h,(x) and g,(zy, z;) the first row of
A(x) in the (z,, z,) coordinates. The zero-dynamics are defined as fol-
lows. Let u be a linearizing control law, for example

&z, z3) Si(zy, 23)
wz,zy) = - : < (7.2.33)
gp(zl, z3) fp(zl: z3)
Then, if 0 € RR” is an equilibrium point of the undriven system, that is
f0)=0and h (0) = - = ,(0) = 0, the zero dynamics are the dynam-
ics of
z3 = ¥(0, z;)+ ¥(0, z,) u(0, Z,) (7.2.34)

It is verified in Isidori & Moog [1987] that the dynamics of (7.2.34) are
independent of the choice of linearizing feedback law. Proposition 7.2.1
and the remarks following it can be verified to hold with the hypothesis
being on the zero-dynamics of (7.2.34).

In the instance that the system (7.2.1) is not decouplable by static
state feedback, the definition of the zero-dynamics is considerably more
involved. We do not discuss it here since we will not use it.

723 Model Reference Control for Nonlinear Systems

The discussion thus far has been restricted to tracking control of linear-
izable nonlinear systems. For this class of systems the extension to
model reference adaptive control is easy: for the single-input single-
output case, consider y,,(/) to be the output of a linear time invariant
reference model with input r(1), specified by

Xm = AmXm + by r

Ym = Ch Xom (7.2.35)

Then, provided that the relative degree of the reference model is greater
than or equal to the relative degree v of the nonlinear system, the
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control law (7.2.24)-(7.2.25) is easily modified to
v-1 . )
- — [—Lﬂh VRt 2 am[yin—y’] ]
LeLp~'h i=0
S S
LeLp~ Th

[-L]h + e AL X + O AN by

+ 72_:1 oy [c,ﬂA,",,xm—L}h ] }
i=0
Note that the dimensions of the model play no role. This alsp relates to
the fact that the tracking error ¢g := y - y,, satisfies the equation

ef +aed '+ +aje =0 (7.2.36)

For the multi-input multi-output case, and the model of the form
Xy = AmXm + By 1
Ym = CmXp

with B, € R™*? (C, e R?*"™ the class of models that can be

matched is that for which y,,, has relative degree v,, yn> ha§ relative
degree v, and so on. As above, the model error eq := y — y,, satisfies

M(s)ey = 0 (7.2.37)
where
N |
= dia -
M(s) & T AT
U S (7.2.38)
§7

This is not unlike the results of Section 6.3, where linear multivariable
plants are found to match their diagonal Hermite forms. .

In the adaptive control sequel to this section, we will consider the
tracking scenarios for compactness. Also, as we have noted above, the
dimensions of the reference model and its parameters do not play much

of a role except to generate Yy, Vo - - ., Vil
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7.3 ADAPTIVE CONTROL OF LINEARIZABLE MINIMUM
PHASE SYSTEMS

In practical implementations of exactly linearizing control laws, the chief
drawback is that they are based on exact cancellation of nonlinear terms.
If there is any uncertainty in the knowledge of the nonlinear functions S/
and g, the cancellation is not exact and the resulting input-output equa-
tion is not linear. We discuss the use of parameter adaptive control to
get asymptotically exact cancellation. At the outset, we will assume that

h is known exactly but we will discuss how to relax this assumption
later,

7.3.1 Single-Input Single-Output, Relative Degree One Case

Consider a nonlinear system of the form (7.2.1) with Loh(x) bounded
away from zero. Further, let JS(x) and g(x) have the form

=

]
S(x) = 260 fi(x) (7.3.1)
i<l
n;
g(x) = 269 gi(x) (7.3.2)
i=1
where 6" =1, . ny; 052)', J=1,..., n,are unknown parame-

ters and f(x), g;(x) are known functions. At time t, our estimates of
the functions / and g are

n

Selx) = 260(1) fi(x) (7.3.3)
i=]

g(x) = 2 6P(t)g;(x) (7.3.4)
j=1

Here the subscript e stands for estimate and 6(¢), 6§%(¢) stand for the

estimates of the parameters §{!)", 0}2)' respectively at time ¢. Conse-

quently, the linearizing control law (7.2.3) is replaced by
1
U = ———1[-(L/h), +v 7.3.5
= Ty, e+ ) (7.3.5)

with (Lsh),, (Lgh), representing the estimates of Lsh, Loh respectively
based on (7.3.3), (7.3.4), i.e.,
ny

(Lsh), = 2 60(t) Lk (7.3.6)

i=1



310 Adaptive Control of Nonlinear Systems Chapter 7
ny
(Leh)e = 25 6%(1)Lgh (7.3.7)

j=1
; (1" g2
If we define 8* € R"'*"? to be the nominal parameter vector (61, 62),

6(t)e R™*" the parameter estimate, and ¢ = §-6° the parameter
error, then using (7.3.5) in (7.2.2) yields, after some calculation

o= v+ oW 4 g@7@ (7.3.8)
with
Ly h
wle R™ = - (7.3.9)
L h
and
Ly h
wWe R™ = | - L(—L(th——if-)lQ (7.3.10)
. e
Ly h

The control law for tracking is

vo= }')m + a(ym_'y)
and yields the following error equation rilatinrg the tracking error
T
eg:= Y -y, to the parameter error ¢7 = (¢ ¢?")

éo+aey = ¢lw (7.3.11)

where w e R"'"" is defined to be the concatenation of w;, w,. Equa-
tion (7.3.11) may be written

L 67w
S + «

which is of the form of the SPR error equation encountered in Chapter
2. The following theorem may now be stated.

€y =

Theorem 7.3.1 Adaptive Tracking

Consider an exponentially minimum phase, nqnlinegr system of the
form (7.2.1), with the assumptions on f, g as given in (7.3.3), (7.3.4).
Define the control law
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N N [_ ; _ ]
= T (Lrh)e + p,, + aly,—y) (7.3.12)
If (Lgh), as defined in (7.3.7) is bounded away from zero and y,,

is bounded.
Then  the gradient type parameter update law

¢ = ~eow (7.3.13)

yields bounded y(1), asymptotically converging to y,,(¢).
Further, all state variables of (7.2.1) are bounded.

Proof of Theorem 7.3.1

The Lyapunov function v(ey, ¢) = ¥ e} +%¢T¢ is decreasing along the

trajectories of (7.3.1 1), (7.3.13), with v(eo, ¢) = - e} < 0. Therefore,
€9 and ¢ are bounded, and €o€ L,. To establish that e is uniformly
continuous (to use Barbalat’s lemma—lemma 1.2.1), or alternately that
é9 is bounded, we need w—a continuous function of x (since (Lgh), is
oounded away from zero)—to be bounded. Now note that given a
bounded ey, y,, bounded implies y bounded. From this, and the
exponentially minimum phase assumption (proposition 7.2.1), it follows
that x is bounded. Hence w is bounded and ¢, is uniformly continuous,
and so eq tends to zero as ¢ —» co. O

Comments

a) The preceding theorem guarantees that €p converges to zero as

! - 0o. Nothing whatsoever is guaranteed about parameter conver-
gence. It is, however, easy to see that both e, ¢ converge exponentially
to zero if w is persistently exciting, i.e. if there exist @, ay, 6 > 0 such
that

lo+6

ay] > [wwfafz > o,/ (7.3.14)

lo
Unfortunately, the condition (7.3.14) is usually impossible to verify
explicitly ahead of time, since w is a complicated nonlinear function of
X, .

b)  One other popular way of dealing with parametric uncertainty is to
replace the control law in (7.3.12) by the “sliding mode” control law

1 .
Ty, VT e i+ ks (=) (7.3.15)
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The error equation (7.3.11) is then replaced by
e+ ksgne = d(t) (7.3.16)

where d(t) is a mismatch term (depending on the difference between
Leh and (Lgh),, Lrh and (Lsh),,...). This may be bounded using
bounds on f;, g; and the ¢;’s above. It is then possible to see that if
k> Sl.:p |d(t)]|, the error ¢; goes to zero, in fact in finite time. This phi-

losophy is not at odds with adaptation as discussed in theorem 7.3.1. In
fact, it could be used quite gainfully when the parameter error ¢(¢) is
small. However, if ¢ (¢) is large, the gain k& needs to be large, resulting in
unacceptable chatter, large control activity and other undesirable
behavior.

¢)  An hypothesis of theorem 7.3.1 is that (L;4), be bounded away
from zero for all x. Since (Lyh), as defined by (7.3.7) may indeed go
through zero, even if the ‘true’ Lyh is bounded away from zero, auxiliary
techniques need to be used to guarantee that (L;h), is bounded away
from zero. One popular technique is the projection technique, in which
the parameters 6{2 (), . . ., 62 (¢) are kept in a certain parameter range

which guarantees that (Lgh), is bounded away from zero, say by e (by
modifying the update law (7.3.13) as discussed in Chapter 2 and Chapter
3).

7.3.2 Extensions to Higher Relative Degree SISO Systems

We first consider the extensions of the results of the previous section to
SISO systems with relative degree v, that is, Lh = L,Lch = ---
= LeLp "*h =0 with L,L? ~'h bounded away from zero. The non-
adaptive linearizing control law is then of the form

U= — (L7h+y) (7.3.17)
Ll 'h
If / and g are not completely known but of the form (7.3.1), (7.3.2), we
need to replace L/ h and L,L/ "~ Uh by their estimates. We define these
as follows
(Lfh)e = L7k (7.3.18)

(LeLf " 'h)e = LgLp 'h (7.3.19)

Note that for v = 2, (7.3.18), (7.3.19) are not linear in the unknown
parameters 0;. For example,

It
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noon
(Lth), = 12} ,§ Ly, (Ly h)oM g5» (7.3.20)
and
ny on,
(LeLysh). = 12] E Ly, (Ly, h)g®g4» (7.3.21)
and so on,

The development of the preceding section can easily be repeated if
we define each of the parameter products to be a new parameter, in

which case the 6{"¢(" and 62 6" of (7.3.20) and (7.3.21) are parameters.
k . .
Let ® € R* be the k-(large!) dimensional vector of parameters 6("), 42,

(D g2 p(1) g1 .
065, 06, .. Thus, for example, if ¥ =3, 0 contains 6, ¢,
9?1)9}1), 0?1)951)95(1), 0}1)952), 0$])9§|)9£2)‘

For the purpose of tracki
control law to be implemented is purp cking, the

Vo= b e ) k()

where p, j are obtained as State feedback terms using y = Lrh(x)
y= L}h (x), and so on. In the absence of precise information about
Lih, Lth, ..., the tracking law to be implemented is

Ve = yI + a.,[y,},"—(Lf“h)e] torta(ym-y)  (71.3.22)
The adaptive control law then is

U =

- (Lph
L7 h), (= (Lph), +v,) (7.3.23)

This yields the error equation (with & :
parameter error)

=0()-0 representing the
e+ a,ey! + 4 ajep
LeLy~'h
(LgLp~ ‘jz)e

(L}h - (L]h)e)

L]

Lih +

(_(L}h)e + V) = v
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(—(L}h)e + ve) "
(LgLy~'h),
= dTw, + 07w, (7.3.24)
The two terms on the right-hand side arise, respectively, from the
mismatch between the ideal and actual linearizing law, and the
mismatch between the ideal tracking control v and the actual tracking

control v,. For definiteness, consider the case that v =2 and
ny = ny = 1. Then, with @7 = [#V), ¢ 1) gD gD ] we get

Ve — V

+ |LyLy~Yh — (LyLy~'h),)

(= (LEh)e +ve)

wl = -0 0 LAh L,L;h T,

it

wi = —laLyh 0 0 0] (7.3.25)

Note that w; and w; can be added to get a regressor w, It is of interest
to note that #Y cannot be explicitly identified in this case, since the
terms in the regressor multiplying it are zero. Also note that w is a func-
tion of x and also (/).

Consider now the form (7.3.24) of the error equation. For the pur-
poses of adaptation, we could use an error of the form

i

I

e; = Bed™ + -+ Beg (7.3.26)

with the transfer function

13—,57—’ +o 4 By

37+a737‘1 +...+al

(7.3.27)

strictly positive real. Indeed, if such a signal e, were measurable, the
basic tracking theorem would follow easily. The difficulty with con-

structing the signal in (7.3.26) is that ég,é0, ..., eg’”' are not measur-
able since

6"O. = th - ym

€0 = LPh - jinm (7.3.28)

and so on, with L}k not explicitly available since they may not be
known functions of x. An exception is a large class of electromechanical
systems of which the robot meaipulator equations are a special case, see
Section 7.3.3 below. In such systems, 8y, ..., 8, may be chosen so that
the transfer function in (7.3.27) is strictly positive real and the adaptive
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law of the previous section with e, as given by (7.3.26) yields the desired
conclusion. When the L}h’s are not available, the following approach
may be used.

Adaptive Control Using an Augmented Error
Motivated by the adaptive schemes of Chapter 3, we define the polyno-

mial
L(s) 1= s"+as" '+ 4 a (7.3.29)

so that equation (7.3.24) may be written as

eo = L's)(@Tw) (7.3.30)

where we used the hybrid notation of previous chapters and dropped the
exponentially decaying initial condition terms. Define the augmented
error

e = e+ [e"“L‘"(s)(w)—f:"(s)(ofw)] (7.3.31)
Using the fact that constants commute with [, - I(s), we get

e, = ep+ [@Tl:"(s)(w)—l:‘l(s)(tbrw)] (7.3.32)

Note that e, in (7.3.31) can be obtained from available signals, unlike
(7.3.32) which is used for the analysis. Using (7.3.30) in (7.3.32), we
have that

ey = ®TL (s)(w) (7.3.33)

Equation (7.3.33) is a linear error equation. For convenience, we will
denote

£ = L7 (s)(w) (7.3.34)

From the error equation (7.3.33), several parameter update laws are

immediately suggested. For example, the normalized gradient type algo-
rithm:

: : -e¢
0= ¢ = ——— 7.3.35
‘ [+ :7¢ ( )
As in the stability proofs of Chapter 3, we will use the following notation
(@) Bisa generic L, N Loo function which goes to zero as { - oo.

(b) v is a generic L, N Loo function.
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(¢) | z||, refers to the norm sup | z(7)|, that is the truncated L norm.
st

From the results of Chapter 2, a number of properties of &, e, follow
immediately, with no assumptions on the boundedness of &.

Proposition 7.3.2 Properties of the Identifier
Consider the error equation

e, = dT¢ (7.3.36)
with the update law
-e€
P = ——— 7.3.37
L ( )

Then & € Loo,<i> € L;_ﬂLoo and
[T e < y(L+IE] )

forsome y € L, N Loo.

for all ¢ (7.3.38)

Proof of Proposition 7.3.2: See theorem 2.4.2.

We are now ready to state and prove the main theorem.

Theorem 7.3.3 Basic Tracking Theorem for SISO Systems with Relative
Degree Greater than 1

Consider the control law of (7.3.22)-(7.3.23) applied to an exponentially
minimum phase nonlinear system with parameter uncertainty as given in
(7.3.1)-(7.3.2).

If Vos Voms + -
(LgL~'h), is bounded away from zero,
/e, h, L/"h, LgL/"h are Lipschitz continuous functions,
and w(x, 6) has bounded derivatives in x, 4,

Then  the parameter update law

. ¥»' ~! are bounded,

-er
= 7.3.39
¢ = pys (7.3.39)

with £ = i“‘(s)(w) yields bounded tracking, i.e., y -y, as
t = 0o and x is bounded.
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Remark: The proof is similar to the proof of theorem 3.7.1 in the linear
case. Although the scheme is based on the output error eg, the choice
o1 ~ o . .

L™ = M makes it identical to the Input error scheme.

Proof of Theorem 7.3.3
(a) Bounds on the Error Augmentation

Using the swapping lemma (lemma 3.6.5), we have (with notation bor-
rowed from the lemma) »

®TL Yw)-L - Y(@Tw) = ~Lo N ' w T d) (7.3.40)
Using the fact that & e L, and l:b" is stable (since L ~! is), we get
| (Ls'wT)@| < v w|, + vy (7.3.41)

Using lemma 3.6.4 and the fact that E:c'l is strictly proper and stable,
we get

| @TL ' w)-L'@Tw)| < 8| w|l, + 8 (7.3.42)
(b) Regularity of w,®Tw
The differential equation for Zy=0y, ...,y HTis
1 Vm
zy = M(s) (@Tw) + (7.3.43)
y-1 -
s Vol I

Sinf:e ® is bounded and Yms -« ¥~} are bounded by hypothesis, and
$"M (s) are all proper stable transfer functions, we have that

Izl < kifwll, + & (7.3.44)
Using (7.3.44) in the exponentially minimum phase zero-dynamics

Zy = ¥(z,z25) (7.3.45)

we get
"zl < kw), + k (7.3.46)

Equations similar to (7.3.44): (7.3.46) can also be obtained for Zy, 2y
since the transfer functions M, . . ., v~ a7 are strictly proper. Com-

bining (7.3.44) and (7.3.46), and noting that x is a diffeomorphism of
2),z; we see that
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I xll, € kllwll, + & (7.3.47)
and I xll, < kllw||, +k& (7.3.48)

Using the hypotheses that || dw/dx| and | dw/48| are bounded and
(7.3.48) we get

Iwill, < kljwl, + & (7.3.49)

Thus w is regular = £ = L 'wis regular by corollary 3.6.3. For 7w,
note that

%(@Tw) - 3Tw+ o W (7.3.50)

Using (7.3.49), and 3P e Loo we get

| Lo, < kil wil + & (7351
But from (7.3.43) and (7.3.45) we get that
I xll < k|l @Twll, + k (7.3.52)
so that
| wlle < klf@Twl, + k (7.3.53)

Combining (7.3.53) with (7.3.51) yields the regularity of ®7w.
(c) Stability Proof

From the regularity of £, &7 w, one can establish that 7 £/1 + || £, has
bounded derivative and so is uniformly continuous. By theorem 2.4.6,

le)l = 127 < BUL+El) (7.3.54)
where 8 — 0 as ¢ — oco.
Now

ep = e, +®TL 'w)-L " "(@Tw) (7.3.55)
Using (7.3.42),

leol =< fey| +Blwl, +8
Using (7.3.53), we have
leo] < |ey| + B8] ®Tw|, +8 (7.3.56)
Applying the BOBI lemma (lemma 3.6.2) to
eo = L7'(s)(@Tw)
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along with the established regularity of 7w, we get

12Twll, < ke, + k (7.3.57)
Using (7.3.57) in (7.3.56)
leol < |ey] + 8] eoll, + 8 (7.3.58)
and using (7.3.54) for e,, we find
leol < Bllecll, + 8 + Bl ], (7.3.59)
Since ¢ is related to w by stable filtering
NEle < kffwl, +k (7.3.60)

Using the estimate (7.3.53), followed by (7.3.57) in (7.3.59) yields
leol < Blleoll, + 8

Since 83— 0 as ¢ — 0o, we see from (7.3.61) that ey goes to zero as

!> oo (as in proof of theorem 3.7.1, using lemma 3.6.6). This in turn
can be easily verified to yield bounded w, x. 0O

(7.3.61)

Comments
2)  The parameter update law (7.3.35) appears not to take into account

prior parameter information such as the initial existence of 4}, 85, 07 6;
and so on. It is important, however, to note that the best estimate of

67 85 in the transient period may not be 6,(¢) 6;(¢). Since parameter con-
vergence is not guaranteed in the proof of theorem 7.3.3, it may also not

be a good idea to constrain the estimate of 67 6; to be close to 6;6;,. Note
however, that the number of parameters increases very rapidly with v.

b) In several problems, it turns out that L/h and LLj~ th depend
linearly on some unknown parameters. It is then clear that the develop-
ment of the previous theorem can be carried through.

¢) Thus far, we have only assumed parameter uncertainty in f and g,
but not in A. It is not hard to see that if A depends linearly on unk-
nown parameters, then we can mimic the aforementioned procedure
quite easily.

d)  Parameter convergence can be guaranteed in theorem 7.3.3 above
if w is persistently exciting in the usual sense (cf (7.3.14)).
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7.3.3. Adaptive Control of MIMO Systems Decouplable by Static State
Feedback

From the preceding discussion, it is easy to see how the linearizing,
decoupling static state feedback control law for minimum, phase, square
systems can be made adaptive—by replacing the control law of (7.2.12)
by

L,

u = AN - : +v (7.3.62)

Lfyp hy

€

Recall that if A(x) is invertible, then the linearizing control law is also

the decoupling control law. Thus, if A(x) and the L} A;’s depend
linearly on certain unknown parameters, the schemes of the previous
sections (those of Section 7.3.1 if v{ =v; =---=v, =1, and those of
Section 7.3.2 in other cases) can be readily adapted. The details are
more notationally cumbersome than insightful. Therefore, we choose
not to discuss them here. Instead, we will illustrate our theory on an
important class of such systems which partially motivated the present
work (see Craig, Hsu, and Sastry [1987])—the adaptive control of rigid
link robot manipulators. We sketch only a few of the details of the
application relevant to our present context, the interested reader is
referred to the paper referenced previously.

If ¢ € IR" represents the joint angles of a rigid link robot manipula-
tor, its dynamics may be described by an equation of the form

M(q)d + C(q,4) = u (7.3.63)

In (7.3.63), M(q) e R"™" is the positive definite inertia matrix, C(g, q)
represent the Coriolis, gravity and friction terms, and u € IR” represents
the control input to the joint motors (torques). In applications, M(q)

and C(q, ¢) are not known exactly, but fortunately they depend linearly
on unknown parameters such as payloads, frictional coefficients, ..., s0
that

M(q) = 23 6" M,(q) (7.3.64)

i=1
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ny
Clg, 9) = ,21 69 Ci(q, ¢) (7.3.65)
Writing the equation (7.3.63) in state space form with x7 = q7,4¢")

j l .
' s - p mn € sense f S C n

A(x) = M~ (g) (7.3.66)
{L}'h,
= -M~Y(g)C(q, ¢) (7.3.67)
L]"h,,J
while the decoupling control law is given by
u = Clg, 9) + M(q)v (7.3.68)

Note that the quantities in equation (7.3.66) depend on a complicated

fashion on the unknown parameters 80", 6" while the equation (7.3.68)
depends on them linearly. For the sake of tracking, v is chosen to be

Vo= Gt @2y - 4) + ai(gy - q) (7.3.69)

and the overall control law (7.3.68), (7 .
puted torque scheme. (7.3.68), (7.3.69) is referred to as the com-

To make the scheme adaptive, the law (7.3.68) is replaced by

U = Coq,q9) + My(q)v (7.3.70)
Let ey = g,, - g so that
. . nl
€o+areo+ e = M) Cig, 4) ol
i=1
ny
tMIN )T MG eP  (13.71)
- . i=1]
This may be abbreviated as
éO + aZéO + ajey = Wae (7.3.72)

X .
where W € IR” "1 *"2) s 4 function of g, g

,and ”, and‘Pis -
ter error vector. The parameter update law ’ the parame
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b = -WTe, (7.3.73)

where e, = ég+ B ey is chosen so that (s +8,)/(s% + a5 + «) is strictly
positive real. This can be shown to yield bounded tracking. The error
augmentation of Section 7.3.2 is not necessary in this application since
both y,y are available as states so that the L;A;’s do not have to be
estimated. Note that the system is minimum phase—there are in fact no
zero dynamics at all. It is, however, unfortunate that the signal W is a

function of ¢ —but this is caused by the form of the equations and may
be avoided by modifying the scheme as in the input error approach (cf.
Hsu et al [1987]). As in other examples, it is important to keep M(q)
from becoming singular, using prior parameter bounds.

7.4 CONCLUSIONS

We have presented some initial results on the use of parameter adaptive
control for obtaining asymptotically exact cancellation in linearizing con-
trol laws. We considered the class of continuous time systems decoupl-
able by static state feedback. The extension to continuous time systems
not decouplable by static state feedback is not as obvious for two rea-
sons

a)  The different matrices involved in the development of the control
laws in this case, namely, T(x), C(x, w,), B(x, w;) depend in extremely
complicated fashion on the unknown parameters.
b)  While the *“‘true” A(x) may have rank less than p, its estimate
A.(x) during the course of adaptation may well be full rank, in which
case the procedure of Section 7.2.1 cannot be followed.

The discrete time and sampled data case are also not obvious for
similar reasons:

a) The non-adaptive theory, as discussed in Monaco, Normand-Cyrot
& Stornelli [1986] is fairly complicated since

Vw1 = h o (f(xk) + gxiduk) (7.4.1)

is not linear in w; in the discrete time case and a formal series for (7.4.1)
in u; needs to be obtained (and inverted!) for the linearization. Conse-
quently the parametric dependence of the control law is complex.

b)  The notions of zero-dynamics are not as yet completely developed.
Further, even in the linear case, the zeros of a sampled system can be
outside the unit disc even when the continuous time system is minimum
phase and the sampling is fast enough (Astrom, Hagander & Sternby
[1984)).

Section 7.4 Concluding Remarks 323

Thus, the present chapter is only a first step in the development of a
comprehensive theory of adaptive control for linearizable systems.



CHAPTER 8
CONCLUSIONS

8.1 General Conclusions
In this book, we have attempted to give, at a fa_irly advanced }evel oj
rigor, a unified treatment of cur'rent methodologies for the design an
analysis of adaptive control algorithms. o . .
First, we presented several schemes for the adaptive identification
and control of linear time invariant systems. An output error schc?ﬁme;i
an input error scheme, and an indirect scheme were derived in a uni i
framework. While all the schemes were shown to be globally stable, t- e
assumptions that went into the derivation Qf the schemes were.qu1ti
different. For instance, the input error adgptlve control scheme did ([jlol
require a strictly positive real (SPR) condition fqr the reference ‘model.
This also had implications for the transient behavior of the adaptive sys-
tems. . :
A major goal of this book has been the presentation of a number od
recent techniques for analyzing the stability, parameter convergence an
robustness of the complicated nonlinear dynamics inherent in the adap}
tive algorithms. For the stability proofs, we presented a sequence 0
lemmas drawn from the literature on input-output L, stablhty.. For the
parameter convergence proofs, we used results_ from gqnerahzed ha}]r-
monic analysis, and extracted frequency-domain con.dltlons. F:jor ::N e
study of robustness, we exploited Lyapunoy and averaging methods. li
feel that a complete mastery of these techniques will lay the groundwor.
for future studies of adaptive systems.

324
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While we did not deal explicitly with discrete time systems, our
presentation of the continuous time results may be transcribed to the
discrete time case with not much difficulty. The operator relationships
that were used for continuous time systems (L, spaces) also hold true for
discrete time systems (I, spaces). In fact, many derivations may be
simplified in the discrete time case because continuity conditions (such
as the regularity of signals) are then automatically satisfied.

Averaging techniques have proved extremely useful and it is likely
that important developments will ‘still follow from their use. It is
interesting to note that the two-time scale approximation was not only
fundamental to the application of averaging methods to convergence
(Chapter 4) and to robustness (Chapter 5), but was also underlying in the
proofs of exponential convergence (Chapter 2), and global stability
(Chapter 3). This highlights the separation between adaptation and con-
trol, and makes the connections between direct and indirect adaptive
control more obvious.

Methods for the analysis of adaptive systems were a focal point of
this book. As was observed in Chapter 5, algorithms that are stable for
some inputs may be unstable for others. While simulations are
extremely valuable to illustrate a point, they are useless to prove any glo-
bal behavior of the adaptive algorithm. This is a crucial consequence of
the nonlinearity of the adaptive systems, that makes rigorous analysis
techniques essential to progress in the area.

8.2 Future Research

Adaptive control is a very active area of research, and there is a great
deal more to be done. The area of robustness is essential to successful
applications, and since the work of Rohrs et al, it has been understood
that the questions of robustness for adaptive systems are very different
from the same questions for linear time-invariant systems. This is due
in great part to the dual control aspect of adaptive systems: the refer-
ence input plays a role in determining the convergence and robustness
by providing excitation to the identification loop. A major problem
remains to quantify robustness for adaptive systems. Current theory
does not allow for the comparison of the robustness of different adaptive
systems, and the relation to non-adaptive robustness concepts. Closer
connections will probably emerge from the application of averaging
methods, and from the-frequency-domain results that they lead to.

Besides these fundamental questions of analysis, much remains to
be done to precisely define design methodologies for robust adaptive sys-
tems and in particular a better understanding of which algorithms are
more robust. Indeed, although the adaptive systems discussed in this
book have identical stability properties in the ideal case, there is
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evidence that their behavior is drastically different in the presence of
unmodeled dynamics. A better understanding of which algorithms are
more robust will also help in deriving guidelines for the improved design
of robust algorithms.

While we have extensively discussed the analysis of adaptive sys-
tems, we also feel that great strides in this area will come from experi-
ences in implementing the algorithms on several classes of systems.
With the advent of microprocessors, and of today’s multi-processor
environments, complicated algorithms can now be implemented at very
high sample rates. The years to come will see a proliferation of tech-
niques to effectively map these adaptive algorithms onto multiprocessor
control architectures. There is a great deal of excitement in the control
community at large over the emergence of such custom multiprocessor
control architectures as CONDOR (Narasimhan et a/ [1988]) and
NYMPH (Chen er a/ [1986]). In turn, such advances will make it possi-
ble to exploit adaptive techniques on high bandwidth systems such as
flexible space structures, aircraft flight control systems, light weight robot
manipulators, and the like. While past successes of adaptive control
have been on systems of rather low bandwidth and benign dynamics, the
future years are going to be ones of experimentation on more challenging
systems.

Two other areas that promise explosive growth in the years to come
are adaptive control of multi-input multi-output (MIMO) systems, and
adaptive control of nonlinear systems, explicitly those linearizable by
state feedback. We presented in this book what we feel is the tip of the
iceberg in these areas. More needs to be understood about the sort of
prior information needed for MIMO adaptive systems. Conversely, the
incorporation of various forms of prior knowledge into black-box models
of MIMO systems also needs to be studied. Adaptive control for MIMO
systems is especially attractive because the traditional and heuristic tech-
niques for SISO systems quickly fall apart when strong cross-couplings
appear. Note also that research in the identification of MIMO systems
is also relevant to nonadaptive algorithms, which are largely dependent
on the knowledge of a process model, and of its uncertainty. One may
hope that the recently introduced averaging techniques will help to
better connect the frequency-domain properties of adaptive and nona-
daptive systems.

A very large class of nonlinear systems is explicitly linearizable by
state feedback. The chief difficulty with implementing the linearizing
control law is the imprecise knowledge of the nonlinear functions in the
dynamics, some of which are often specified in table look-up form.
Adaptation then has a role in helping identify the nonlinear functions
on-line to obtain asymptotically the correct linearizing control law. This
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approach was discussed in this book, but it is still in its early develop-
ment.. However, we have found it valuable in the implementation of an
adaptive controller for an industrial robot (the Adept-I) and are
curr;ntly working on a flight control system for a vertical take-off and
landing aircraft (the Harrier).

' In addition to all these exciting new directions of research in adap-
five control, most of which are logical extensions and outgrowths of the
developments presented in the previous chapters, we now present a few
other new vistas which are not as obvious extensions.

A “Universal” Theory of Adaptive Control

Whl{e all the adaptive control algorithms developed in this book
required assumptions on the plant—in the single-input single-output
case, _the order of the plant, the relative degree of the plant, the sign of
ic; hlgh-freguency gain, and the minimum phase property of the plant—
1? Is Interesting to ask if these assumptions are a minimal set of assump-
tions. Indeed, that these assumptions can be relaxed was established by
Morse [1985, 1987), Mudgett and Morse [1985], Nussbaum [1983], and
Martensson [1985] among others. Chief under the assumptions’ that
could be relaxed was the one on the sign of the high-frequency gain.

There'is a simple instance of these results which is in some sense
repr;geptatlve of the whole family: consider the problem of adaptively
Stabilizing a first order linear plant of relative degree ! with unknown
gain ky; i.e.,

V, = ~ay ¥, + kyu (8.2.1)
with k, different from zero but otherwise unknown, and g, unknown. If

the sign of k, is known and assumed positive, the adaptive control law

U = do(z)y,, (8.2.2)
and

dy = -y (8.2.3)

can be shown to yield Vp = 0 as t - oo. Nussbaum [1983] proposed

:)hat if the sign of k, is unknown, the control law (8.2.2) can be replaced
y

u = d&(z)cos(do(z))yp (8.2.4)
with (8.2.3) as before. He then showed that Vp =0 as t - oo, with

dy(t) remaining boynded. Heuristically, the feedback gain d¢ cos(dp) of
(8.2.4) alternates in sign (“searches for the correct sign™) as d, is
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decreased monotonically (by (8.2.3)) until it is large enough and of the
‘““correct sign” to stabilize the equation (8.2.1).

While the transient behavior of the algorithm (8.2.3), (8.2.4) is
poor, the scheme has stimulated a great deal of interest to derive adap-
tive control schemes requiring a minimal set of assumptions on the plant
(universal controllers). A further objective is to develop a unified frame-
work which would subsume all the algorithms presented thus far. Adap-
tive systems may be seen as the interconnection of a plant, a parameter-
ized controller, and adaptation law or tuner (cf. Morse [1988]). The
parameterized controller is assumed to control the process, and the tuner
assumed to tune the controller. Tuning is said to have taken place when
a suitable tuning error goes to zero. The goal of a universal theory is to
give a minimal set of assumptions on the process, the parameterized
controller, and the tuner to guarantee global stability and asymptotic
performance of the closed loop system. Further, the assumptions are to
contain as special cases the algorithms presented thus far. Such a theory
would be extremely valuable from a conceptual and intellectual stand-
point.

Rule-Based, Expert and Learning Control Systems

As the discussions in Chapter 5 indicated, there is a great deal of work
needed to implement a given adaptive algorithm, involving the use of
heuristics, prior knowledge, and expertise about the system being con-
trolled (such as the amount of noise, the order of the plant, the number
of unknown parameters, the bandwidth of the parameters’ variation...).
This may be coded as several logic steps or rules, around the adaptive
control algorithm. The resulting composite algorithm is often referred to
as a rule-based control law, with the adaptation scheme being one of the
rules. The design and evaluation of such composite systems is still an
open area of research for nonadaptive as well as adaptive systems,
although adaptive control algorithms form an especially attractive area
of application.

One can conceive of a more complex scenario, in which the plant
to be controlled cannot be easily modeled, either as a linear or nonlinear
system because of the complexity of the physical processes involved. A
controller then has to be built by codifying systematically into rules the
experience gained from operating the system (this is referred to as query-
ing and representation of expert knowledge). The rules then serve as a
model of the plant from which the controller is constructed as a rule-
based system, i.e. a conjunction of several logic steps and control algo-
rithms, Such a composite design process is called a rule-based expert
controller design. The sophistication and performance of the controller
is dependent on the amount of detail in the model furnished by the
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expert kaowledge. Adaptation and learning in this framework consists

in refining the 'rule-based model on the experience gained during the
course of operation of the system.

‘thile 'this 'framework is extremely attractive from a practical point
of view, it is fair to say that no more than a few case studies of expert
control have bpen implemented, and state of the art in learning for rule-
pased rpodels 1s rudimentary. In the context of adaptive control, a very
interesting study is found in Astrom er gl [1986]. Adapted fro;n their

work is Figure 8.1 illustrating the structure
' 8.1, of an expert control
using an adaptive algorithm. P stem

| ALARMS, |
INTERRUPTS
RULE EXCITATION |, |
BASED MONITOR
OPERATOR
EXPERT
SYSTEM
IDENTIFIER
ALGORITHM [
/
EXOGENOUS
INPFUT ~— ™ CONTROL 4
ALGORITHM u PROCESS

Figure 8.1: Expert Adaptive Control System

Th; rule-base_:d sys:,tem _decides, based on the level of excitation, which of
a llbraryf of identification algorithms to use and, if necessary, to inject
new excitation. It also decides which of a family of control laws to use

and communicates its infcrcncing procedures to the operator. A supervi-
sor provides alarms and Interrupts.

Adaptation, Learning, Connectionism and all those things...

While the topics in the title have the same general philosophical goals
namely, '.[he upderstanding, modeling and contro] of a given process the:
_ﬁelds of 1d'ent1ﬁcation_ and adaptive control have made the largest str,ides
in becoming a design methodology by limiting their universe of
d_1scourse tp a §mall (but practically meaningful) class of systems with
lmear‘ or linearizable dynamics, and a finite dimensional state-space
Learning has, however, been merely parameter updating. .
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The goals of connectionism and neural networks (see for example
Denker [1986] and the parallel distributed processing models) have been
far more lofty: the universe of discourse includes human systems and
the learning mimics our own human development. A few applications
of this work have been made to problems of speech recognition, image
recognition, associative memory storage elements and the like, and it is
interesting to note that the ‘learning’ algorithms implemented in the suc-
cessful algorithms are remarkably reminiscent of the gradient type and
least-squares type of update laws studied in this book. We feel, conse-
quently, that in the years to come, there will be a confluence of the
theories and techniques for learning.

APPENDIX

Proof of Lemma 1.4.2

Let
1
r(t) = [a(r)x(r)ar (A1.4.1)
0
so that, by assumption
Ft) = a(t)x(t) < a(t)r(t) + a()u(r) (A1.4.2)
that is, for some positive s()
F)-a@)yr@t)-a@)u(r) + s(t) =0 (Al1.4.3)
Solving the differential equation with r(0) = 0
4 fa(o)da
rt) = ge' (a(r)u(r) - s(r)) dr (A1.4.4)
Since exp(.) and s(.) are positive functions
- ! fa(o')do'
r0) s [er a(ryu(ndr (A1.4.5)
0

By assumption x()<r@) + u(t) so that (1.4
r ' s .4.11) follows. Inequalit
(1.4.12) is obtained by Integrating (1.4.11) by parts. 0O e

33]
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Proof of Lemma 2.5.2
We consider the system
x(t) A()x(t)
y() Ct)x(t) (A2.5.1)

and the system under output injection

w(t) = AW + K@)C@)| w()
z(t) = C@)w() (A2.5.2)

where x,w e R", 4 e R"™ C ¢ R™*" K ¢ R"*™, and
y,z € R™,
It is sufficient to derive ec uations the inequalities giving 8/, 87, 85.

Derivation of 8’
Consider the trajectories x(r) and w(r), corresponding to systems

(A2.5.1) and (A2.5.2) respectively, with identical initial conditions

x(tg) = w(tg). Then
w(r)-x(r) = Jcb(f,v)K(a)C(u)w(a)dv (A2.5.3)
Lete(s) = K(o)C(o)w(s) /|K(s)C(o)w(o)| € IR", so that
| CEO0@) - x()]? = IiC(M(r,a)K(v)cw)w(a)da 2

2
< | [IC@ e, De@)] | K@) | Cl@)w(o)| da
fo

<[ICHwE)d [|CE)r, 0)e(@)|? k(o) 2de (A2.5.4)
1 to

using the definition of the induced norm and Schwartz inequality. On
the other hand, using the triangular inequality

1
h+ 4 7 log+ 46 =

[ Ic@mwPdr| =2 [ 1C@x@)| 2 dr

ty fo
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o+ 6
- f [ C(r)(W(r) - x(7))| *dr (A2.5.5)
lo
so that, using (A2.5.4), and the UCO of the original system

o+ 6 1

3
[1C@w@2d | 2 VB wity)
o

1
lo+6 4 r =
- f [ | C)w()|? dv [ [ C(1)®(r, 0)e(a)| || K(o)||dodr

ty 1o to

o+ 1

2 VB waol - | [ [COw®)|?ds

lg+6 ¢

[ [IK@IPICr) &, 0)e(o) 2dadr|  (A2.5.6)

o 1o

Changing the order of integration, the integral in the last parenthesis
becomes

o+ 6 th+ 6

fu K(d)||? f |C(r)¥(r, o) e(a)| *dr do (A2.5.7)
ty 4

Note that ty+6-0 < 3, |e(o)] =1, while ®(7, o) e(o) is the solution of
system (A2.5.1) starting at e(o). Therefore, using the UCO property on
the original system, and the condition on X (), (A2.5.7) becomes

to+ 6 g+ 46

[ 1 K@) [ 1CMe(r, 0)e()|2drdo < kyB, (A2.5.8)
to 4
Inequality (2.5.7) follows directly from (A2.5.6) and (A2.5.8).

Derivation of 8,
We use a similar procedure, using (A2.5.4)

[ICOwE)|? < |Clr)x(r)|?
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T 2
+ I fC(‘r) ®(r,0)K(0) C(c)w(o)do
to

< [Cx()]?
2

+ IIC(U)W(U)I | C(r) ®(7,0) e(a)| || K(o)|| do
to

< | Cmx(n)?
+ }1 C(v) wv)| 2duf[ C(n)®(r, a)e(o)|® || K(0)|)* do (A2.5.9)

to

and, forall tg <t <tp+6

! to+4 tr

[IC@wmI%dr < [ |C@x@) % + [ [| Coww)|

N ty folo

[1CE) @, 0)e(0)] || K (o) |Pdodr (A2.5.10)
to

and, using the Bellman-Gronwall lemma (lemma 1.4.2), together with
the UCO of the original system

H

[Ic@w@|ar < | wito)|?

o

t T
exp | [ [|C() 2, 0)e(o)| | K (o) | Pdodr | (A25.11)
i to

for all t, and in particular for ¢t = ¢y + 6. '
The integral in the exponential can be transformed, by changlr}g the
order of integration, as in (A2.5.8). Inequality (2.5.8) follows directly

from (A2.5.8) and (A2.5.11). 0O

Proof of Lemma 2.6.6 .
We wish to prove that for some 8, «;, @y >0, and for all x with x| =1
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to+6

2
ay = f [(WT+€T)X] dr 2 a; forallty=0 (A2.6.1)

o
[0}
By assumption, e € L,, so that f (e"x)*dr <m for some m > 0.
0
Since w is PE, there exist g, 81, 82> 0 such that
Iy+ao

B 2 [ wix)dr 2 for all £, > 0 (A2.6.2)
fo

LetéZa[l+Bﬂ],a1=81,a2=m+62[1+g1] so that
1 1

o+ o 2 to+d g+
f [(wT+eT)x] dr > f(wa)zdr~ f (eTx)dr
iy 1

o

> g, (H—B"l}—m:a, (A2.6.3)
1
and
lo+d 5 to+6 to+9
f [(WT+eT)x] dr < f wTx)2dr + f (eTx)*dr
iy iy i
< B, 'l +§7~] +m = a, (A2.6.4)
1
o

Proof of Lemma 2.6.7
We wish to prove that for some s, aj, >0, and for all x with | x| = |
o+6 2
ay 2 f [H(WT)X] dr 2 a; forall to=0 (A2.6.5)
to
Denote u = w'x and y = A(u) = AwTx) = A(wT)x (where the last

inequality is true because x does not depend on ¢). We thus wish to
show that

to+6

ay 2 [ yAnydr 2 a for all 15 > 0 (A2.6.6)
Iy

Since w is PE, there exists a, By, 82> 0 such that
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lg+o
B 2 [ uknydr 2 B
[
In this form, the problem appears on the relationship between truncated
L, norms of the input and output of a stable, minimum phase LTI sys-
tem. Similar problems are addressed in Section 3.6, and we will there-
fore use results from lemmas in that section.

Let 6 = mo, where m is an integer to be defined later. Since u is
bounded, and y = I:I(u), it follows that y is bounded (lemma 3.6.1) and
the upper bound in (A2.6.6) is satisfied. The lower bound is obtained
now, by inverting H in a similar way as is used in the proof of lemma
3.6.2. We let

forall 15 = 0 (A2.6.7)

r

2(s) = a(s) (A2.6.8)

(s+a)
where a >0 will be defined later, and r is the relative degree of ﬁ(s),
Thus
pis) = B i 5(6) (A2.6.9)
a

The transfer function from Z(s) to p(s) has relative degree 0. Being
minimum phase, it has a proper and stable inverse. By lemma 3.6.1,

there exist k,, k, = 0 such that

fo+4 g+
[ 220 < k[ yimydr + K (A2.6.10)
o g
Since # is bounded
1+
[ #nydr < kys (A2.6.11)

to

for some k3 >0. Using the results in the proof of lemma 3.6.2
((A3.6.14)), we can also show that, with the properties of the transfer

function a” /(s + a)"

to+6 lg+6
[ wrydr < [ 2nydr + —(:—kga + ky (A2.6.12)
ty 1)

where k, is another constant due to initial conditions. It follows that
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to+8 to+b

2 | r
’joy(r)dr | [ wdr-Lokso -k -k,

o

1\

| r
7(“1' M(ﬂl-—-&—k]o')—kz—k‘; (A26l3)

v

Note that r/a is arbitrary, and although k; depends on r/a, the con-
stants 8, k3, and o do not. Consequently, we can let r/a sufficiently
small that g, ~(r/a)kso 2 8,/2. We can also let m be sufficiently

large that mg, /2 -k, -k > 8,. Then t X .
satisfied with 27 R4 ! en the lower bound in (A2.6.6) is

“ = (A2.6.14)
o

Proof of Lemma 3.6.2

The f : e
herea‘f)tl:;? of lemma 3.6.2 relies on the auxiliary lemma presented

Auxiliary Lemma
Consider the transfer function

K(s) = (sfa)’ a>0 (A3.6.1)

where r is a positive integer.
Let k(¢) be the corresponding impulse response and define

(oo} T
8t-7) = [k)ds = [k(t-ode 1-720 (A362)
t-7

v o]
Then
k(t) = (r“fiF rlemw 4> (A3.6.3)
and k(t) = Q for ¢ <0. It follows that k(z) = 0 for all ¢, and
(0o} 1]
Ikl = gk(a)a’a = [k(t-0)do = | (A3.6.4)
- Q0

Similarly
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gu) = e (A3.6.5)

k=1
and g(t) = 0 for t <0. It follows that g(¢) = O for all ¢, and

Qo !
lglh = [go)de = [gt-o)ds = = (A36.6)
0 o a
O
We are now ready to prove lemma 3.6.2. Let r be the relative degree of
H, and
r
Z(s) = u(s) (A3.6.7)

(s+a)
where ¢ > 0 is an arbitrary constant to be defined later. Using (A3.6.7)

y(s) = Qia,ﬁlﬁ(s)f(s) (A3.6.8)

Since the transfer function from 2(s) to y(s) has relative degree 0 and is
minimum phase, it has a proper and stable inverse. By lemma 3.6.1

|z Hl, < bl yillp + by (A3.6.9)
We will prove that

Null, < cill zllp + €2 (A3.6.10)
so that the lemma will be verified with a| = ¢,b), a; = by +ca.

Derivation of (A3.6.10)
We have that

z(t) = e(t)+fk(t—‘r)u(‘r)dr (A3.6.11)
0

where €(f) is an exponentially decaying term due to the initial condi-
tions, and k(¢) is the impulse response corresponding to the transfer
function in (A3.6.7) (derived in the auxiliary lemma). Integrate
(A3.6.11) by parts to obtain

t 0
& z(t) = e(t) + u(t) [ k(t - o)do — u(0) [ k(t - o)do

‘\Jl’w\ (0 , ”.U:)ﬂ,(ﬂ N ‘fl\os(’ (A'S-B.\0>

(Jl,;\m . Fo (>0, .-

An OR
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t

—& k(t - o)do | u(r)dr (A3.6.12)
0 @ T

Using the results of the auxiliary lemma

t
2(1) = et) + u()-u(0)g(t) - [gt - i) dr  (A3.6.13)
0

Since g(_t) is e)‘(ponentially decaying, u(0)g(¢) can be included in ().
Also, using again the auxiliary lemma, together with lemma 3.6.1, and
then the assumption on #, it follows that

IA

r .
Wuclly = W zllp + el + — N tdly

IA

,
lzelly + 1elly + — kol uelly + {l-kz (A3.6.14)

Since a is arbitrary, let it be sufficiently large that L k< 1. Conse-
quently, ¢

I I ell, + —k,
“ U ”p < r “ Z ”P +
- —k, - =k,
i Ccl” zillp + €2 (A3.6.15)
£

Proof of Corollary 3.6.3
(a) From lemma 3.6.2.
(b) Since His strictly proper, both y and y are bounded.

(c) We have that y = ﬁ(u) and y = H(u). Using succesively lemma
3.6.1, the regularity of u, and lemma 3.6.2, it follows that for some con-
stants k), ..., ke

IA

vl < kil dlly + k2

IA

kall gl o + Ko

A

ksl vl o + ke (A3.6.16)

The proof can easily be extended to the vector case. 0O
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Proof of Lemma 3.6.4
Let
H(s) = hg+ H,(5) (A3.6.17)

where H | is strictly proper (and stable). Let 4, be the impulse response
corresponding to I:II. The output y(¢) is given by

t
Y(0) = ) + hou(t) + [yt = ryu(r)dr (A3.6.18)
0

where ¢(¢) is due to the initial conditions. Inequality (3.6.9) follows, if
we define

L]

!
Yi(t) = Lhol Bi(e) + [Ih(t = 7)| By(r)dr (A3.6.19)
0

and

Y2(1) = [t)] + [hol Bat) + [[ (¢ = 7)| By(r)dr (A3.6.20)
0

Since ¢ € Ly and k| € L, NL_, we also have that |¢ € L,
|y € L, NL_ . Since B, B; € L,, it follows that the last term of
(A3.6.19) and similarly the last term of (A3.6.20) belong to L, N LOo ,

and go to zero as { — ao (see e.g., Desoer & Vidyasagar [1975], exercise
3, p. 242). The conclusions follow directly from this observation. 0O

Proof of Lemma 3.6.5

Let [A4,b,cT,d] be a minimal realization of H, with 4 ¢ R™*",
b e R" ¢ce R" and d € R. Let x: R, »IR™, and yiI:R,>R
such that

Ax + b(qus)
y1 = cTx (A3.6.21)
and W:R,—>R"*" y,: R, - R such that

=-
1l

W = AW + bwT
cTwe (A3.6.22)

]

Y2
Thus

HWwle) = yi+dwTe)  HWNé = yy+ dwho (A3.6.23)
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Since

% (Wo) = Wo+ Wo = AW+ bwTg + W (A3.6.24)

it follows that
%(x—qu) = Ax-We)-W ¢

Yi=yr = cT(x-Wg¢) (A3.6.25)

The result then follows since

HwT ¢) - Hwh¢ = y~y, = H.(Wg) = H.(H,(wT)$) (A3.6.26)
o

Proof of Theorem 3.7.3

The proof follows the steps of the proof of theorem 3.7.1 and is only
sketched here.

() Derive properties of the identifier that are independent of the bound-
edness of the regressor

The properties of the identifier are the standard properties obtained in
theorems 2.4.1-2.4.4

W @wa) =l w, ) e |
BeLnL,
vely, VelLnL_

A +1(1) 2 kin >0 forallz >0 (A3.7.1)

- The inequality for a,,, 1(2) follows from the use of the projection in the

update law,

We also noted, in Section 3.3, that if r is bounded and Q4 IS
bounded away from zero, then 6 is also bounded, and the transformation
has bounded derivatives. The vector g of coefficients of the polynomial
¢ is also bounded. By definition of the transformation, 6(x*) = 6*,
Therefore, ¢ e Loo, Ve Ly,n Loo implies that ¢ € Loo, b €
LN L. Also, we have that (km /| @m s, llo) < cot) < ki / keppin, for
allz > 0.

(b) Express the system states and inputs in term of the control error
As in theorem 3.7.1,
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(c) Relate the identifier error to the control error

We first establish an equality of ratios of polynomials, then we transform
it to an operator equality. Using a similar approach as in the comments
before the proof, we have that

qa—-qa = am+l()\_6)—ékpﬁp

= _am+l(6—6‘) + am+l()\_6‘)"‘kpéﬁp

= _am+l(6_6')+(am+lq‘q_kpé)ﬁp (A37-2)
gh-db* = GX-ap.1d -Xody-gX +gd,
= am+l(‘2"‘2‘)+('am+l‘2"‘x0‘2m+qdp)
- am+l(‘2“2‘)
a a . d, . d
i R A N Y A’"]d,, (A3.7.3)
kp P d, d,
Therefore
é !d—é‘]+i{5—5‘]kpﬁp
o Sl x4
F-¢*  d-db o4 No dmfly |
= —Am+ C,.A + ——PF “(kp_am+l)"f" 'ij_
Ao Ao d, Ao
k P G R R 5
= ez dA - P+(co—c("))M'l—Ai (A3.7.4)
o A X Ao Ao

where we divided by x Xo to obtain proper stable transfer functions.
The polynomial X is Hurwitz and ¢ is bounded, so that the operator
g7 §, /X is a bounded operator.

We now transform this polynomial equality into an operator equal-
ity as in the comments before the proof. Applying both sides of (A3.7.4)
to u

S . k N - -1
a0y = =2 (co-e)M T () + ¢ T == (W) | (A3.1.5)
Xo €o Xo Xo

The right-hand side is very reminiscent of the signal z obtained in

the input error scheme. A filtered version of the signal M'lP(u)=r,,

appears, instead of r, with the error ¢y-c¢j. From proposition 3.3.1,
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with L = X, (cf. (3.3.17))
TSP I —r
M P =) - Lw- L (A3.7.6)
Ao Ao Ao

and since u = cor+6 ', it follows that

~ . P L[ -

M7 —w) = — = (o + G"%|  (A37.7)
Ao ¢ | Ao Ao

The right-hand side of (A3.7.5) becomes, using (A3.7.7) followed by the

swapping lemma (and using the notation of the swapping lemma)

Km | co—c5 1 1, - [ -
T TN —@Tm e 2 eT Ly L grg
€o 0 X Ao ¢o Ao Ao

k/ 1 N N ~¢0
= = T (o)) = R | A pelegr) | S02C0
¢ | Ao €0
- < I P
—67m) - 2R [Re@Nd ] | 37y
Ao ‘o

On the other hand using again the swappi i
‘ , pping lemma, the left-h
side of (A3.7.5) becomes s ¢ feli-hand

rSr r S S & ;
T =Y = g =Ty - TS, (S, 0 T) ) (A3.7.9)
Ao Ao
where the transfer functions A obs A ocs S',b, and S',C result from the appli-

cation of the swapping lemma. The output error is then equal t -
(3.7.2), (A3.7.5), (A3.7.8), (A3.7.9)) qual to (using

1 - -
Yp=VYm = —.M[(co—ca)r+¢TW]
Co

b o~a Lk, -
T M X0 | =2 == (o-ct)r) + 4 Gy
" Co Ao Ao
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. a 8 . " (P
- —kl—MAo[—qT;\:L(WT¢)+qTSrc ENtLT
m 0
. Co—CP
+ — Aoc Aob(cor) 0 2
¢ €o
K « -~
+ "C_Aoc Aob(w )d’ (A3710)
0

(d) Establish the regularity of the signals

As in theorem 3.7.1.

(e) Stability Proof

M XO is a stable transfer function and since g7 is bounded, q’s,/ XO isa

bounded operator, We showed that Jz, dT, ¢y € L,, so that, from
(A3.7.10) and part (a), an inequality such as (3.7.19) can be obtained.

As before w regular implies that 83— 0 as / - 0o. The boundedness of
all signals in the adaptive system then follows as in theorem 3.7.1. Simi-

larly, y,-y, € L, and tends to zero as ¢ —»op. Since the relative
degree of the transfer function from u — W is the same as the relative
degree of P, M, and therefore L ~ !, the same result is true for #w — Wy

Proof of Lemma 4.2.1

Define
!
w(t,x) = fd(r,x)e"(’—’)a'r (Ad.2.1)
0
and
{
wo(t, x) = [d(r, x)dr (A4.2.2)
0
From the assumptions
[wolt + 1o, X) = woltg, X)| < v(t)-t (A4.2.3)

forallt, 70> 0, x € B,. Integrating (A4.2.1) by parts
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t
Wl X) = wolt, x)~ e [emC-Dy(r x)gr (A4.2.4)
0
Using the fact that
{
e [e g, )y
! olt, x)dr Woll, X) = wo(t, x)e (Ad.2.5)

(A4.2.4) can be rewritten as

t
Well, X) = wo(t, x)e < + ¢ fe“('_’)(WO(l s X) = wo(r, x))dr (A4.2.6)
0

and, using (A4.2.3) and the fact that wo(0,x) =0,

t

[Ww(t,x)] < v(t)te- +e[e 4 ryy (1 - 1)y (A4.2.7)
0

Consequently,

z/ .y Q0 ’ ,
lew (t, x) < Sup 7[?128 “ ¥ p[ijr’e"dr’ (A4.2.8)

Since, for some B, 1d(t, x)| <8, we also have that v(r) < 8. Note
that, for all 1’ > 0, t'e~ "' < e and te" < 1, 50 that

lewe(t, x)] < sup [7 [t-’ te " | + (0 I
’ su —
e [0,\/:] € 1'25)/: v € e

Ve [ @
T ! = ! '
+ {Y[T]”’ dr + f«,[ilf'e-fdf' (A4.2.9)

\/: €
This, in turn, implies that
[ew (r, x) < ;9\/24-')«[L e lypgs 4 1 -Ve
e\l Y| = ! \/— ¢
\/? 3 \/; (1+Ve)e
= £(e) (A4.2.10)
From the assumption on v, it follows that é(e) € K. From (A4.2.1)
ow(t, x)
a7 -d@t,x) = -ew.(t, x) (A4.2.11)

so that the first part of the lemma is verified.
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If v(T) = a/T’, then the right-hand side of (A4.2.8) can be com-
puted explicitly

sup a€(t’) et = ad(l-r) T < aéd (A4.2.12)
)
and, with I" denoting the standard gamma function,
Ofoa () e Tdr' = adT(2-r) < a¢ (A4.2.13)
0
Defining £(¢) = 2a €, the second part of the lemma is verified. O

Proof of Lemma 4.2.2
Define w,(¢,x) as in lemma 4.2.1. Consequently,

!
M _ 9 fd(f,x)e“‘("’)dr
ox ax |4
t
= [ [J-’—d(f x)| e~ -7g7 (A4.2.14)
b lox 7
Since 9d(t, x) is zero mean, and is bounded, lemma 4.2.1 can be
d

X
applied to ﬂ%-’—)-c—)—, and inequality (4.2.6) of lemma 4.2.1 becomes ine-
X

ad(t, x)

1s bounded,
ax

quality (4.2.10) of lemma 4.2.2. Note that since

and d(¢,0) = O forallt 20, d(¢, x) is Lipschitz.

Since d(¢, x) is zero mean, with convergence fL‘m.ction ¥(T)| x|,

the proof of lemma 4.2.1 can be extended, with an addltlongl factor | x|.

This leads directly to (4.2.8) and (4.2.9) (although the function £(¢) may

ad(t, x)
ax

be different from that obtained with , these functions can be

replaced by a single £(¢)). O

Proof of Lemma 4.2.3
The proof proceeds in two steps. o
(a) For e sufficiently small, and for ¢ fixed, the transformation is a
homeomorphism.

Apply lemma 4.2.2, and let ¢ such that £(¢ )< 1. Let e <.
Given z € By, the corresponding x such that
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X = Z+ewll, z) (A4.2.15)

may not belong to B,. Similarly, given x € By, the solution z of
(A4.2.15) may not exist in B,. However, for any x,z satisfying
(A4.2.15), inequality (4.2.8) implies (4.2.16) and

(1-&@)z] < x| < (1+£(e)]¢] (A4.2.16)
Define
h'(e) = min h(l - ¢(e) _h_ = h(l-¢(@) (A4.2.17)
REN{0)
and note that 4(e) > /4 as e — 0.
We now show that
° for all ze By, there exists a unique x € B, such that
(A4.2.15) is satisfied,
. for all x e B,, there exists a unique ze€ B, such that

(A4.2.15) is satisfied.
In both cases, | x - z| < E(e)h.

The first part follows directly from (A4.2.15), (A4.2.16). The fact
that | x ~ z| < £(e)h also follows from (A4.2.15), (4.2.8) and implies that,
if a solution z exists to (A4.2.15), it must lie in the closed ball U of
radius ¢£(e)4 around x. It can be checked, using (4.2.10), that the map-
ping F(z) = x —¢ w(t, z) is a contraction mapping in U, provided that
E(<l, Consequently, F has a unique fixed point z in U. This solu-
tion is also a solution of (A4.2.15), and since it is unique in U, it is also
unique in B, (and actually in R"). For x ¢ By, but outside By, there is
no guarantee that a solution z exists in By, but if it exists, it is again
unique in B,. Consequently, the map x — z defined by (A4.2.15) is well
defined. From the smoothness of w, (¢, z) with respect to z, it follows
that the map is a homeomorphism.

(b) The transformation of variable leads to the differential equation
4.2.17)

Applying (A4.2.15) to the system (4.2.1)

ow, | . aw,
{“‘%]? = ffav(z)ﬂ[f(t,z,O)—fav<z)~—%J

+e[f(t,z+ewz,e)—f(t,z,e)]
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+e[f(t,z,e)—f(t,z,0)

= efgz) +ep'(t, x, 2z, € (A4.2.18)
where, using the assumptions, and the results of lemma 4.2.2
[D'(t, z,€)] < E(e)|z| + £ | z]| + ely] 2| (A4.2.19)

ow, .
For e < ¢, (4.2.10) implies that | + S has a bounded inverse for

allt 20,z e B,. Consequently, z satisfies the differential equation

I, ,
PR i [efav(z)+ep(t,z,e)]
dz
= efg(2) +ep(t, z, ¢ z(0) = Xxq (A4.2.20)
where
ow, | ow
plt,z, 6 = {1 + éa—;] P'(Z,Z,f)-f“é'jfav(z)] (A4.2.21)
and

P 2,01 S gy (600 + €N + ey + (ol ] 12

H

v(]z| (A4.2.22)

forallt 20,e<¢,z € B,, 0O

Proof of Lemma 4.4.1 '
The proof is similar to the proof of lemma 4.2.3. We consider the
transformation of variable

X = z+ew(t, 2) (A4.4.1)

with € < ¢, such that &(¢)) < 1. (4.4.1) becomes

-1
2 = [1+€%‘ f[fav(z)"‘[f(taz,o)_fav(z)"'_at_

+ [f(t,z+ew(,0)—f(t,z,0)]
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+ [f(t,z+ew¢,y)—f(t,z+ewE,O)]] (A4.4.2)
or

Z = efu2)+ep(t,z,6) +epy(t,z,y, 6 z(0) = xg  (A4.4.3)
where

1
Ipi(t,z,¢)] < Tt [g(f)!av + &(e) + Lo, ] | z|

it

Ee)ky|z] (A4.4.4)

and

(p20.2,0,00 S = byl = kbl (Ad4S)
(]

Proof of Theorem 4.4.2

The proof assumes that for all ¢ e [0,T /€], the solutions x(t), y(¢),
and z(¢) (to be defined) remain in By,. Since this is not guaranteed a
priori, the steps of the proof are only valid for as long as the condition is
verified. By assumption, x,(¢) e By, with h'<h. We will show that
by letting ¢ and 4 sufficiently small; we can let x(¢) be arbitrarily close
t0 x4(2) and y(¢) arbitrarily small. It then follows, from a contradiction
argument, that x(¢), y(t) € B, forall 1 e [0, T /e], provided that e and
hg are sufficiently small.

Using lemma 4.4.1, we transform the original system (4.4.1), (4.4.2)
into the system (4.4.11), (4.4.2). A bound on the error [ Z(t) = xg(2)]
can be calculated by integrating the difference (4.4.11)~(4.4.4), and by
using (4.4.7) and (4.4.12)

£ t
12(0) =Xl < el [|2(r) = x(7)] dr + <&k, [|z(r)] dr
0 0

+ eky ] | y(r)| dr (A4.4.6)
0

Bound on | y(t)]

To obtain a bound on | ¥(¢)], we divide the interval [0,T /€] in intervals
[4i,ti+1] of length AT (the last interval may be of smaller length, and
AT will be defined later). The differential equation for y is
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y = AWX)y +eglt, x,p) (A4.4.7)
and is rewritten on the time interval [¢;, ¢;, ;] as follows
y o= Ay +eglt, x,p) + (Ay, - Ay (A4.4.8)

where 4, = A(x(1)), and A, = A(x(t;)), so that the solution y(t), for
! e [t,t,], is given by

t
Ay (1 -4) A (t-7)
o vitefe™ Tg(r, x, y)dr

yit) = e
14
{
s [T U~ Ay dr (A4.4.9)
143
where y; = y(¢;). From the assumptions, it follows that
| Ax, — A |l < kglX| (r-8) < e(ly+13)h kA (A4.4.10)

and, using the uniform exponential stability assumption on A (x)
YOI S miple™ 04 Sy [(13 £1)) + (U, + 1) k,AT ] (Ad.4.11)

Let the last term in (A4.4.11) be denoted by ¢k;, and use (A4.4.11) as a
recursion formula for y;, so that

i-1

ly;| < [me‘”r ] i [yo| + ekbjgo [me'“r ] ’ (A4.4.12)
Choose AT sufficiently large that
me MT < e MT2Z o AT > %lnm (A4.4.13)
It follows that
ig [me'*” ]j < ‘§0 [e-mr/z ]j - 1 —e’l"”/z (A4.4.14)
Jj=0 =

Combining (A4.4.12)-(A4.4.14) and using the assumption y, € By

ek,

-\/2
——l_e‘MT/Z = e h0+6kc

lyil s e T2, 4 (A4.4.15)

Using this result in (A4.4.11), it follows that for all ¢ € [¢;, ¢;, ]

Xt /2 -Al - Al -1)
ly() < me M/ hge { )+mekce + eky
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< mhoe M2 & e(mk, + k) (A4.4.16)

Since the last inequality does not depend on i, it gives a bound on
|y()| forallt e [0, T/e).

Bound on z(t) - Xav(t)

We now return to (A4.4.6), and to the approximation error, using the
bound on | y(¢)] '

t {
12 = Xa(O)] < el [12(r) - X0 (7)] dr + et(e)k, [har
0 0

14

+ esz [mhoe""/zv+ e(mk, +kb)] dr  (A4.4.17)
0

so that, using the Bellman-Gronwall lemma (lemma 1.4.2)
[2(1) = xa(2)]

A

1
t[ [E(f)klh + kamhoe 2 & kye(mk, + k,,)] cetlal =" g

< (e + £o) [klh + %ﬁ% . kz(Mkc+k,,)J e/:r
o (A4.4.18)
and, using (4.4.10)
X0 = X0 < Wby (A4.4.19)
for some b7,
Assumptions

We assumed in the proof that all signals remained in Bj. By assump-
tion, x,,(t) € By, for some h'< h. Let ho, and e be sufficiently small
so that, for all € <er <, we have that mhg+ e(mk, + k,) < h (cf.
(A4.4.16)), and that y(e)by < h - h’ (cf. (4.4.27)). It follows, from a
simple contradiction argument, that the solutions x(¢), y(t) and z(¢)
remain in By, for all7 e [0, T/e], so that all steps of the proof are valid,
and (A4.4.19) is in fact satisfied over the whole time interval. 0O
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Proof of Theorem 4.4.3

The proof relies on the converse theorem of Lyapunov for exponentially
stable systems (theorem 1.4.3)., Under the hypotheses, there exists a
function v(x,,) : R"— IR ,, and strictly positive constants «, aj, a3, a4
such that, for all x,, € By,

oy Xp|? S v(Xa) S a]Xg|? (A4.4.20)
V(Xa) < —easl| xgyl? (A4.4.21)
4.4.4)
dv
3% < aglxgl (A4.4.22)

The derivative in (A4.4.21) is to be taken along the trajectories of the
averaged system (4.4.4).
We now study the stability of the original system (4.4.1), (4.4.2),

through the transformed system (4.4.11), (4.4.2), where x(z) is defined
in (4.4.9). Consider the following Lyapunov function

vz, y) = v(z)+—;—2~yTP(x(z))y (A4.4.23)
2

where P(x), p, are defined in the comments after the definition of uni-
form exponential stability of 4(x). Defining o'y = min(ay, ;—z D), it
follows that

@i (1z12+y1?) < iz, y) < ay(fz]2 +p|?)  (A4.4.24)

The derivative of v, along the trajectories of (4.4.11)-(4.4.2) can be
bounded, using the foregoing inequalities

—ea3[z|2 + eE(e)k1a4[z|2 +ekyaylz] |yl

o 15 S

a
- quly|2 +delyay|z| |y| + 2elsas]y|?

for e <¢ (so that the transformation x—z is well defined and
x| <2|z|). We now calculate bounds on the terms in (A4.4.25).

"’l(z’y) <
|[121 1512

(A4.4.25)
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Bound on | 9P/ x|
Note that P(x) can be defined by
[0}
P(x) = {e"‘r‘x)‘Qe’“")’dt (A4.4.26)
so that
Px) T l[a
o - !)' {[a_x; e T Qe
A (x)t A
+e Q [ax,- "‘)’” dt (A4.4.27)
The partial derivatives in parentheses solve the differential equation
d d A(x)t
4a 1. 90 9 4 34 (x
< [6x, e = A(x) ax, e mf} " "_a)(T) e (A4.4.28)
with zero initial conditions, so that
9 ‘ 94 (x)
2 Ay o [ A -7 04(x) 7
o { e o e gy (A4.4.29)

From the boundedness of 81; (x)
X,

> and from the exponential stability of

A(x), it follows that

9 4w )
”ax € x'” < mikgreM (A4.4.30)

With (A4.4.27), this implies that | 0P(x)/ x| is bounded by some

k2 0.

Bound on | 9x/dz| and | z]
On the other hand, using (4.4.9), (4.2.8) and (4.4.12)

1511 < e w0 <2

and |z|" < en(l, + Ee)k, + ky)

Using these results in (A4.4.25
ze R

(A4.4.31)
), and noting the fact that, for all y,
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dzl 1yl S 5 (P12 + @81y (A4.4.32)

it follows that

k
vi(z, y) £ —¢ [QJ“E(f)klazz—fl/}%M - 261/313042] |z|?

k
- 'a—2'q1—26l4(12~62/3 204 —262/313(12
P2
# 2e=Zloh [l + Ok + ko | | 1917
D2
= =2eara(e)]z]? - q(e)|yl? (A4.4.33)

1 a3
ale)>»—— as
2 oy

Note that, with this definition, e—0, while

(&) > =2
gle)—» — 4.
) 2! !

Let ¢ < ¢; be sufficiently small that a(e)>0 and 2ea;a(e) < g(e).
Then

vi(z,y) < -2eale)vi(z, p) (A4.4.34)

so that the z, y system is exponentially stable with rate of convergence
ea(e) (v; being bounded above and below by the square of the norm of
the state). The same conclusion holds for the x, y system, given the
transformation (4.4.9), with (4.4.10). Also, for ¢, A sufficiently small, all
signals are actually guaranteed to remain in B, so that all assumptions
are valid. 0O

Auxiliary Lemmas for Section 6.2

Lemma A6.2.1
Consider the least squares identification algorithm described by (6.2.8),
(6.2.9) with the sequence of resetting times {0, ¢,, ,,...}, that is

¢ (A6.2,1)

-PwwT o

(A6.2.2)

%(P“) = ww' 1 #

o R i s
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Pl) = kol 4 = 0,1y, 65,... (A6.2.3)
If w satisfies
liv
j wwldt = oI forall 4 (A6.2.4)
l
Then
| o(1)] < k| 0 6
b= e [6(0)] (A6.2.5)
Proof of Lemma A6.2.1
Note that for 1 #0, ¢, ¢,, . ..
w‘i(f"‘cﬁ) =0 (A6.2.6)
dt -
Thus
Pl ) o) = P y) (4. ) (A6.2.7)
so that
d(t;) = koP(7) o(ti_y) (A6.2.8)
and, with (A6.2.4)
o)) < |
é ()| Kot a, [o (- 1) (A6.2.9)

Recursion on (A6.2.9) yields (A6.2.5).

Comments

If @y =0, the lemma shows that #(t;) is bounded. If ;>0 and the

sequence /; is infinite, ¢(f;)—>0 as i - 0. Further, if the intervals
li +1 = t; are bounded, then ¢ (¢;)— 0 exponentially, 0O

Lemma A6.2.2

Consider the following linear systems
Zo = Azg + br (A6.2.10)

Z = (A+A4)z +(b+Abu)r (A6.2.11)

with 4 stable and A4, Ab both bounded and converging to zero as
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! - co.

I the input r is bounded

Then  given e¢>0, there exists £ >0 (independent of ¢) and a T(e)
such that

| z(t) - zo(t)] < ek forall =T (A6.2.12)
Proof of Lemma A6.2.2

From lemma 6.2.1, it follows that 4 + AA(¢) is asymptotically stable and
that there exists 7| such that the state transition matrix of 4 + AA(t)

satisfies
o, )l < m(exp(- a(t -7)) (A6.2.13)

for some m, >0 and t 27> T,. Using this estimate, it is easy to show
that z(¢) is bounded. Now, defining the error e() := z(t) - zo(t), we
have that

é .= Ade+ AAz + Abr (A6.2.14)

For T sufficiently large, A4 and Ab are arbitrarily small, so that e may
be showed to satisfy (A6.2.12). O

Lemma A6.2.3 Solution of the Pole Placement Equation

Consider two coprime polynomials: d, monic of order n, and 7, monic
of order < n - 1. Let k, be a real number.

Then  given an arbitrary polynomial c?c,(s) of order 2n - 1, there exist

unique polynomials 7, and a7c of order at most n - 1 so that

Ackyfiy, +d.d, = dy (A6.2.15)

Proof of Lemma A6.2.3

Since &, 71, and Jp are coprime and of order »n - 1, n, respectively, there
exist polynomials i, v of degree at most n, n — 1, respectively so that
ki, +vd, = 1 (A6.2.16)
Thus, we see that
Gdgk,h, +vdyd, = d,

Further, we may modify (A6.2.17) to

(A6.2.17)

Ao S

o SN e R

.
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(ddy - Gdy)k, i, + (Fdy + Gk, i) d, = dy  (A6.2.18)
for an arbitrary polynomial 4. Let
A = ddy - dd,
d. = Vdy + Gk,h, (A6.2.19)

Since d}, is of order n, we may choose § so that #. is of order < n — |
(for instance, as the quotient obtained by dividing i d,; by 3,, ). Then, d.
is constrained to be of order < n - 1, since the other two polynomials in
(A6.2.18), that is 7, k, i, and t?c , are of order < 2n - 1.

It is useful to note that if

dy = dys™ '+ +d,
dy = "4, 4+ B
kpfi, = aps" "'+ - +a
A, = aps" '+ o 4 a
de = bys" Pa o w by (A6.2.20)

then the linear equation relating the coefficients of 7, a7c to those of d},
is

[ aj 0 0 0 4 0 S0 0
ay  aq 00 6 &8 00
@p-1 Q-3 * * ° a; 0 Buoy Bu2 = - "B O
An  Qp-p ay ay By Buoy o B2 By
0 ayp o a3 ay | By o B3 By
o o0 - - - ag a3 0 1 T Be By
0 0 ] 0 ay 0 0 L B,

0 0 00 0 0 -0 1|




358 Appendix
[ a, ] [ d,
a d2
a, dn -1
a dn
. ; = A6.2.2]
b] dn +1 ( )
b2 dn +2
b,, ~1 d2n ~1
| b,, | L d2n

(A6.2.21) is of the form A(8")6; = d where 6" is the nominal plant

parameter, and 6> the nominal controller parameter. [

i
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