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Abstract

Numerical simulations of high-strain-rate and high-temperature deformation of pure metals
and alloys require realistic plastic constitutive models. Empirical models include the widely
used Johnson-Cook model and the semi-empirical Steinberg-Cochran-Guinan-Lund model.
Physically based models such as the Zerilli-Armstrong model, the Mechanical Threshold
Stress model, and the Preston-Tonks-Wallace model are also coming into wide use. In this
paper, we determine the Mechanical Threshold Stress model parameters for various tempers
of AISI 4340 steel using experimental data gleaned from the open literature. We compare
stress-strain curves and Taylor impact test profiles predicted by the Mechanical Thresh-
old Stress model with those from the Johnson-Cook model for 4340 steel. In addition,
temperature- and pressure-dependent shear modulus models, melting temperature models,
and a specific heat model for 4340 steel that are needed for such numerical simulations are
also described.

1 Introduction

The present work was motivated by the requirement of numerically simulating the
deformation and fragmentation of a heated AISI 4340 steel cylinder loaded by ex-
plosive deflagration. Such simulations require a plastic constitutive model that is
valid over temperatures ranging from 250 K to 1300 K and over strain rates rang-
ing from quasistatic to the order o6° /s. The Mechanical Threshold Stress (MTS)
model (Follansbee and Kocks [12], Kocks [27]) is a physically-based model that
can be used for the range of temperatures and strain rates of interest in these simu-
lations. In the absence of any MTS models specifically for 4340 steels, an existing

! Funded the by U.S. Department of Energy through the Center for the Simulation of
Accidental Fires and Explosions, University of Utah

Preprint submitted to Elsevier Science 29 August 2005



MTS model for HY-100 steel (Goto et al. [14, 15]) was initially explored as a sur-
rogate for 4340 steel. However, the HY-100 model failed to produce results that
were in agreement with experimental stress-strain data for 4340 steel. This paper
attempts to redress that lacuna by providing the MTS parameters for a number of
tempers of 4340 steel (classified by their Rockwell C hardness number). The MTS
model is compared with the Johnson-Cook (JC) model (Johnson and Cook [23, 24])
for 4340 steel and the relative advantages and disadvantages of these models are
discussed.

The MTS model requires a temperature and pressure dependent elastic shear mod-
ulus. We describe a number of shear modulus models and the associated melting
temperature models. Conversion of plastic work into heat is achieved through a
specific heat model that takes the transformation from the dcpl{ase to the fcc

(v) phase into account.

2 Models

In this section, we describe the MTS and JC plastic flow stress models. In addition,
we present the submodels that are required by the flow stress models: the Mie-
Gr'u”’neisen (MG) equation of state for calculating the pressure, the Steinberg-

Cochran-Guinan (SCG) and Burakovsky-Preston-Silbar (BPS) melting temperature
models, and the Chen-Gray (MTS), the Steinberg-Guinan (SG), and the Nadal-
LePoac (NP) shear modulus models. More details about the models may be found
in the cited references.

2.1 MTS Flow Stress Model

The Mechanical Threshold Stress (MTS) model (Follansbee and Kocks [12], Goto
et al. [15]) gives the following form for the flow stress

u(p,T)
Ho

oy(€, €, T) = 0, + (Sio; + Seoe) (1)

whereo, is the flow stressg, is the plastic strain¢ is the strain rate7 is the
temperatureg, is the athermal component of mechanical threshold styess
the shear modulus at 0 K and ambient pressuyés the intrinsic component of
the flow stress due to barriers to thermally activated dislocation matiois, the
strain hardening component of the flow stress. The scaling fastoasd S, are



temperature and strain rate dependent and take the Arrhenius form

I . /ai
ka 601)1
Si=l1-—2" 1n%
(gmb?*u(p, T) ¢

VAR
k’bT €0e !
c=|1- [ In " 3
> i <goeb3u(p,T) e ) } ©

1/pi

(@)

wherek, is the Boltzmann constant, is the magnitude of the Burgers’ vector,
(90, 9oe) are normalized activation energieg;; (éq.) are constant reference strain
rates, andd;, p;, q., p.) are constants. The strain hardening component of the me-
chanical threshold stress.{ is given by a modified Voce law
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andd, is the hardening due to dislocation accumulatiéncan be though of as
the contribution due to stage-IV hardeningy;( a.;, as;, as;, &) are constantsj(=
0,1), o.s is the stress at zero strain hardening ratg, is the saturation threshold
stress for deformation at 0 K., iS a constant, ané. is the maximum strain rate.
Note that the maximum strain rate for which the model is valid is usually limited
to about107/s.

2.2 JC Flow Stress Model

The Johnson-Cook (JC) model (Johnson and Cook [23]) is purely empirical and
has the form

ay(€p, €, 1) = 09 [1 + B(ep)”] 1+ ClIn(é)][1— (T")™] (10)
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whereg, is the equivalent plastic straifjs the plastic strain raté¢g,, B, C, n,m)
are material constants,
é (T -T,)

&f=— Tr=

- o (12)

éo is a reference strain raté, is a reference temperature, afig is the melt tem-
perature.

2.3 Mie-Gilineisen Equation of State

The hydrostatic pressurg)(is calculated using a temperature-corrected Miér@isen
equation of state of the form (Zocher et al. [43], see also Wilkins [40], p. 61)

~ nC3n—1) [n— - 1)] o
_ Py +ToB: = (12)

where( is the bulk speed of soung, is the initial densityp is the current density,

I'y is the Giineisen’s gamma at reference state= dU,/dU, is a linear Hugoniot
slope coefficient[J; is the shock wave velocity/, is the particle velocity, and&

is the internal energy per unit reference specific volume. The internal energy is
computed using

1 Co(T — Ty)
E:—/ AT ~ 20— 10) 13

whereV, = 1/p, is the reference specific volume at temperaftlire: 7,, andC,
is the specific heat at constant volume.

2.4 SCG Melting Temperature Model

The Steinberg-Cochran-Guinan (SCG) melting temperature model (Steinberg et al.
[36]) is based on a modified Lindemann law and has the form

o p
ety = = (14)

T (p) = Ty exp [2@ (1 - :})

whereT,, is the melting temperaturé,,, is the melt temperature at= 1, a is the
coefficient of the first order volume correction toiBeisen’s gammad’().

2.5 BPS Melting Temperature Model

An alternative melting relation that is based on dislocation-mediated phase tran-
sitions is the the Burakovsky-Preston-Silbar (BPS) model (Burakovsky et al. [8]).



The BPS model has the form
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wherep is the pressure; = p/p, is the compressiony, is the shear modulus at
room temperature and zero pressyrg,= 9du/0p is the derivative of the shear
modulus at zero pressurf, is the bulk modulus at room temperature and zero
pressureK, = 0K /0p is the derivative of the bulk modulus at zero presshrs,

a constant) = b3 /vy s Whereb is the magnitude of the Burgers’ vectoyy s is the
Wigner-Seitz volume; is the coordination numbed is a constantp.(7,,) is the
critical density of dislocations, anfd is the Boltzmann constant.

2.6 MTS Shear Modulus Model

The Chen-Gray (MTS) shear modulus model has been used in conjunction with
the MTS plasticity model by Goto et al. [15]. This model is of the form (Varshni
[38], Chen and Gray [10])

_ D
cap(Ty/T) — 1

w(T) = o (17)

wherey is the shear modulus at OK, ariel 7, are material constants.

2.7 SCG Shear Modulus Model

The Steinberg-Cochran-Guinan (SCG) shear modulus model (Steinberg et al. [36],
Zocher et al. [43]) is pressure dependent and has the form
_ op p  Op L
e, T) = o+ 5 i + (T = 3000 m=p/po (18)
where, i is the shear modulus at the reference state@G00 K,p = 0,7 =1),p
is the pressure, and is the temperature. When the temperature is aligyethe
shear modulus is instantaneously set to zero in this model.

2.8 NP Shear Modulus Model

A modified version of the SCG model has been developed by Nadal and Le Poac
[32] that attempts to capture the sudden drop in the shear modulus close to the



melting temperature in a smooth manner. The Nadal-LePoac (NP) shear modulus
model has the form

wp. T) = 1) Kuo + a”p> (1-T)+ Cim ke T] L C= (67T2)2/3f2

J(T ap /3 3
(19)
where
L 1+1/¢ - 1
J(T) :=1+exp [_HC/(l—T)] for T := T € [0,1+ (], (20)

1o IS the shear modulus at 0 K and ambient pressure a material parametet;
is the Boltzmann constant; is the atomic mass, anfis the Lindemann constant.

2.9 Adiabatic Heating and Specific Heat Model

A part of the plastic work done is converted into heat and used to update the tem-
perature. The increase in temperatufe/) due to an increment in plastic strain
(Ag,) is given by the equation

X0y
AT = —Ae (22)
pCh 8
wherey is the Taylor-Quinney coefficient, ar@, is the specific heat. The value
of the Taylor-Quinney coefficient is taken to be 0.9 in all our simulations (see
Ravichandran et al. [34] for more details on the variationy @fith strain and strain

rate).

A relation for the dependence 6f, upon temperature is used for the steel (Leder-
man et al. [29]).

A+ B t+C |t’_a if T<Tec

p: / . (22)
A2+B2t+02t_a if T'>Tec
T

t=—-—1 23
= (23)

whereT., is the critical temperature at which the phase transformation from the
to they phase takes place, ard, A, By, B», o, &’ are constants.

3 Submodel Parameters and Validation

The shear modulus, melting temperature, equation of state, and specific heat models
affect the accuracy of the MTS model predictions. We have used the BPS melting



temperature model, the NP shear modulus model, the Mim&sen equation of

state, and the Lederman specific heat models in the process of determining the
MTS model parameters and subsequent simulations. We verify the accuracy of
these models in this section and present the parameters used. Note that some of
these parameters are new and have been determined so as to fit the experimental
data.

3.1 Shear Modulus Models for 4340 Steel

The parameters used in the shear modulus models are shown in Table 1. The pa-
rameters for the MTS model have been obtained from a least square fit to the data
at a compression of 1. The valuesqf andou/0p for the SCG model are from
Guinan and Steinberg [16]. The derivative with respect to temperature has been
chosen so as to fit the data at a compression of 1. The NP shear model parameters
1o andC' have also been chosen to fit the data. A value of 0.5 f@ suggested

by Nadal and Le Poac [32]. However, this value leads to a higher valuaotigh
temperatures.

Figure 1 shows the performance of the three models for three values of compres-
sion. The melting temperature is determined using the BPS model discussed earlier.
The initial density is taken to be 7830 kginThe MTS model shows no pressure
dependence of the shear modulus unless the melting temperature is computed as
a function of pressure. However, the model behaves well at low temperatures for
n = 1. Both the SCG and NP shear modulus models are pressure dependent and
provide a good fit to the data. We have used the NP shear modulus model for subse-
guent calculations for 4340 steel because of its smooth transition to zero modulus
at melt.

Table 1
Parameters used in shear modulus models for 4340 steel.

MTS shear modulus model
po (GPa) D (GPa) Ty (K)
85.0 10.0 298

SCG shear modulus model
uo (GPa)  9du/dp  Ou/oT (GPa/K)
81.9 1.8 0.0387

NP shear modulus model
wo (GPa)  du/dp ¢ C  m(amu)
90.0 1.8 0.04 0.080 55.947
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Fig. 1. Comparison of experimental data with model predictions of shear modulus for 4340
steel. The experimental data are for AlISI 1010 steel and SAE 304 stainless steeel (Fukuhara
and Sanpei [13]).

3.2 Melting Temperature Model for 4340 Steel

Figure 2 shows a comparison of the predictions from the SCG (Equation 14) and
BPS (Equation 15) models with experimental data for iron from Burakovsky et al.
[8] (includes data from Williams et al. [41] and Yoo et al. [42]). The BPS model
performs better at high pressures, but both models are within experimental vari-
ability below 100 GPa. The parameters used in the models are shown in Table 2.
The bulk and shear moduli and their derivatives for iron have been obtained from
Guinan and Steinberg [16]. The parameters for the BPS model at zero pressure
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Fig. 2. Comparison of experimental data and model predictions of melting temperature for
4340 steel as a function of pressure.

have been obtained from Burakovsky and Preston [7] and Burakovsky et al. [9],
and the lattice constani) has been taken from Jansen et al. [22]. The SCG model
parameters have been obtained from Gust [17]. An initial depgitf 7830 kg/ni

has been used in the model calculations.

3.3 Equation of State for 4340 Steel

The pressure in the steel is calculated using the Mi@ga@isen equation of state
(equation 12) assuming a linear Hugoniot relation. Tharmérsen gammd’() is
assumed to be a constant over the regime of interest. The specific heat at constant
volume is assumed to be the same as that at constant pressure and is calculated using
equation (22). Table 3 shows the parameters used in the pressure calculation. The

Table 2
Parameters used in melting temperature models for 4340 steel.

Steinberg-Cochran-Guinan (SCG) model

Tmo(K) T a
1793 1.67 1.67

Burakovsky-Preston-Silbar (BPS) model
Ko(GPa) K, po(GPa) g x 2 bpe(Tw) o A wws(4%) a(d)
166 5.29 81.9 18 1 8 0.78 29 130 a*/2 2.865
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Fig. 3. Comparison of experimental data with model predictions of equation of state for
4340 steel.

bulk speed of sound and the linear Hugoniot slope coefficient have been obtained
from Brown et al. [5] for iron. The Gmeisen gamma value has been interpolated
from the values given by Gust et al. [18]. An initial temperatufg) ©f 300 K and

an initial density of 7830 kg/fhave been used in the model calculations.

Figure 3 compares model predictions with experimental data for iron (Bancroft
et al. [1], McQueen et al. [31], Barker and Hollenbach [4]), mild steel (Katz et al.
[26]), 300 series stainless steels (McQueen et al. [31]), and for AISI 4340 steel
(Gust et al. [18]). The high pressure experimental data are not along isotherms and
show the temperature increase due to compression. The equation of state provides
a reasonable match to the experimental data at compressions below 1.2 which is
reasonable for the simulations of interest in this paper. Improved equations of state
should be used for overdriven shocks.

3.4 Specific Heat Model for 4340 Steel

The constants for the specific heat model (equation 22) were fit with a least squares
technique using experimental data for iron (Wallace et al. [39], Shacklette [35]) and
AISI 3040 steel ([19]). The constants used in the simulations are shown in Table 4.

Table 3
Constants used in the Mie-@teisen equation of state for 4340 steel.

C[) (m/s) Sa Iy
3935 1.578 1.69
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Fig. 4. Comparison of experimental data and model prediction of specific heat for 4340
steel as a function of temperature.

The variation of specific heat with temperature that is predicted by the model is
compared to the experimental data in Figure 4. The transition from the phase

to the fccy phase is clearly visible in the figure. However, we do not consider such

a phase change in the melting temperature model and assume that the iron remains
bcc at all pressures.

4 Determination of MTS Model Parameters

The yield strength of high-strength low-alloy (HSLA) steels such as 4340 steel can
vary dramatically depending on the heat treatment that it has undergone. This is due
to the presence of bcc ferrite-bainite phases along with the dominant bcc matensite
phase at room temperature. At higher temperatures (below-thé&ransition) the
phases partially transform into the fcc austenite and much of the effect of heat treat-
ment is expected to be lost. Beyond the transition temperature, the alloy is mostly
the fccy phase that is expected to behave differently from the lower temperature
phases. Hence, purely empirical plasticity models require to be recalibrated for

Table 4

Constants used in specific heat model for 4340 steel.
Tc A1 Bl Cl [0 AQ BQ 02 Oél
(K)  (Ikg-K) (I/kg-K) (I/kg-K) (J/kg-K)  (Ikg-K) (I/kg-K)

1040 190.14 -273.75 41830 0.20 465.21  267.52 58.16 0.35
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different levels of hardness of this material and for different temperatures. In the
absence of relevant microstructural models for the various tempers, we assume that
there is a direct correlation between the Rockwell C hardness of the alloy steel and
the yield stress based on data in the Handbook [19].

The experimental data used to determine the MTS model parameters are from the
sources shown in Table 5. All the data are for materials that have been oil quenched
after austenitization. More details can be found in the cited references. The 4340

VAR (vacuum arc remelted) steel has a higher fracture toughness than the standard
4340 steel. However, both steels have similar yield behavior (Brown et al. [6]).

The experimental data are either in the form of true stress versus true strain or shear
stress versus average shear strain. These curves were digitized manually with care
and corrected for distortion. The error in digitization was around 1% on average.
The shear stress-strain curves were converted into an effective tensile stress-strain
curves by assuming von Mises plasticity as discussed in Goto et al. [14]. The elastic
portion of the strain was then subtracted from the total strain assuming a Young’s
modulus of 213 MPa to get true stress versus plastic strain curves.

The first step in the determination of the parameters for the MTS models is the
estimation of the athermal component of the yield stresk This parameter is de-
pendent on the Hall-Petch effect and hence on the characteristic martensitic packet
size. The packet size will vary for various tempers of steel and will depend on the
size of the austenite crystals after they phase transition. We assume that this
constant is independent of the temper and take the value to be 50 MPa based on the
value used for HY-100 steel (Goto et al. [14]).

Table 5
Sources of experimental data for 4340 steel.

Material Rockwell Normalize Austenitize Tempering Reference

Hardness Temp.(C) Temp.(C) Temp.(C)

4340 Steel C-30 Johnson and Cook [24]
4340 Steel C-32 900 538 Brown et al. [6]
4340 Steel C-38 900 870 557 Larson and Nunes [28]
4340 Steel C-38 850 550 Lee and Yeh [30]
4340 VAR Steel C-45 900 845 425 Chietal. [11]
4340 VAR Steel C-49 900 845 350 Chietal. [11]
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4.1 Determination of; and go;

From equation (1), it can be seen thatan be found ik, ando, are known and.
is zero. Assuming that, is zero when the plastic strain is zero, and using equation

(2), we get the relation

(5 G ) )] e

K Ho Goi pb? €

Modified Arrhenius (Fisher) plots based on equation (24) are used to determine the
normalized activation energyy;) and the intrinsic thermally activated portion of
the yield stressd;). We follow the procedure outlined by Goto et al. [14] for HY-
100 steel. The parameters used for HY-100 stegkf 10'3/s,p; = 1/2, ¢; = 3/2)
lead to a good fit to the data &. = 38. However, the value of the normalized
activation energyyy; for k. = 30 is around 40, which is not reasonable. Since the
suggested values pf should be between 0 and 1 and thosejfahould be between
1 and 2, we have instead used- 2/3,¢; = 1, andéy; = 10%/s to generate the Fisher
plots. These values lead to reasonably good fits to the experimental data both for
the intrinsic and the strain dependent parts of the mechanical threshold stress.

The shear modulug:j was calculated using the NP shear modulus model discussed
in Sections 2.8 and 3.1. The yield stress at zero plastic strgywas computed as

the intersection of the stress-plastic strain curve with the stress axis. The value of
the Boltzmann constanky{) was taken as 1.3806503e-23 J/K and the magnitude of
the Burgers’ vectort) was assumed to be 2.48e-10 m. The density of the material
was assumed to be constant with a value of 7830 kgfimbles 6, 7, and 8 show

the intrinsic strengthening component values used to calcgjatado;.

The straight line fits to the modified Arrhenius data are shown in Figures 5(a), (b),
(c), and (d). The spread in the data #®r 30 (Figure 5(a)) is quite large and may

be due to the inclusion of both tension and shear data in the plot. The difference
between the yield stress of steels from tension and shear tests at the same strain
rate and temperature has been observed both by Johnson and Cook [24] for 4340
steel and by Goto et al. [14] for HY-100. However, this difference is small at low
strains and is not expected to affect the intrinsic part of the yield stress much. A
more probable cause could be that the range of temperatures and strain rates is
quite limited and more data at higher strain rates and temperatures are needed to
get a statistically significant correlation.

The Fisher plot data foR, 32 gives a value of normalized activation energy that is
negative. We are unable to determine the cause of this in the absence of sufficient
stress-strain data. Numerous choicesrgfp;, ¢;, andé,; have been explored in
order to achieve and positive valuegf for the . 32 temper. The failure to obtain

a positive value ofyy; suggests that either the data presented in Brown et al. [6]
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are inaccurate or that thR. 32 temper has some special characteristics that are
not accounted for by the MTS model. We have chosen not to use the data for this
temper of 4340 steel in the determination of the MTS parameters. However, we
do compare the experimental data with our model predictions based on the other
tempers of 4340 steel.

Figure 5(b) shows the fit to the Fisher plot data for 4340 steel of hardre38.

The fit can be improved if the values suggested for HY-100 steel are used. The low
strain rate data from Larson and Nunes [28] are the outliers near the top of the plot.
The hardness of this steel was estimated from tables given in [19] based on the
heat treatment and could be higher thian38. However, the Larson and Nunes
[28] data are close to the data from Lee and Yeh [30] as can be seen from the plot.
A close examination of the high temperature data shows that there is a slight effect
due to then to v phase transformation at high temperatures.

The stress-strain data for 4340 st&el5 shows anomalous temperature dependent
behavior under quasistatic loading, i.e., the yield stress at 373 K is higher than
that at 298 K. The fit to the Fisher plot data for this temper of steel is shown in
Figure 5(c). The fit to the data can be improved if the value ot assumed to be

150 MPa andy; is assumed to be equal to 2. However, larger values, ain lead

to large negative values of at small strains - which is unphysical. The fit to the
data for theR. 49 temper is shown in Figure 5(d). The fit is reasonably good but

Table 6
Fisher plot data used to calculajg ando; for 4340 steel of hardned?. 30 andR,. 32.

(ko T/ub® In(éoi /€))% [(0y —0a)/plP T (K) €é(/s) o, (MPa) pu(GPa)

R.=30
0.08333 0.044658 298 0.002 802.577 79.745
0.0782424 0.0432816 298 0.009 768.052 79.745
0.0700974 0.0425718 298 0.1 750.461 79.745
0.0619864 0.0469729 298 1.1 861.843 79.745
0.0408444 0.0447093 298 570 803.874 79.745
0.0747152 0.0435192 500 604 710.861 72.793
0.122804 0.044074 735 650 648.71 64.706

R.=32
0.08333 0.0465053 298 0.002 849.751 79.745
0.124676 0.0462771 422 0.002 801.391 75.477
0.188357 0.0476432 589 0.002 775.139 69.730
0.211691 0.0478448 644 0.002 759.94 67.837
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Table 7
Fisher plot data used to calculaig ando; for 4340 steel of hardned?. 38.

[koT/ub® In(éoi /€))% [(0y — 0a)/u"" T (K) €(ls) o, (MPa) 1 (GPa)
R.=38
0.0775492 0.0563156 258 0.0002 1134.12 81.121
0.0911186 0.0542514 298 0.0002 1057.67  79.745
0.0412876 0.0565499 298 500 1122.38  79.745
0.0375715 0.0576617 298 1500 1154.16  79.745
0.117866 0.0551309 373 0.0002 1048.86 77.164
0.0900788 0.0508976 573 500 857.017 70.281
0.0819713 0.0531021 573 1500 910.012 70.281
0.134713 0.0420956 773 500 597.559  63.398
0.11695 0.0461642 773 2500 678.83 63.398
0.173098 0.0367619 973 1500  448.348 56.515
0.165137 0.037095 973 2500  453.773 56.515
0.237617 0.0263176 1173 1500 261.902 49.632
0.226689 0.0287519 1173 2500 291.972 49.632
0.322911 0.0199969 1373 1500 170.886 42.75
0.30806 0.0220299 1373 2500  189.782 42.75

could definitely do with more high strain rate and high temperature data.

The values obr; and gy; for the four tempers of 4340 are shown in Table 9. The
value ofg; for the R. 38 temper is quite low and leads to values of the Arrhenius
factor (S;) that are zero beyond temperatures of 800 K. In the following section,
we consider the effect of dividing thB,. 38 data into high and low temperature
regions.

4.1.1 High temperature effects enand gy,

More data at higher temperatures and high strain rates are required for better char-
acterization of thez, 30, . 45, andR,.. 49 tempers of 4340 steel. In the absence of
high temperature data, we can use data forRh&8 temper at high temperatures

to obtain the estimates of, and go;. To determine what these high temperature
parameters should be, we divide tRge38 data into low temperature and high tem-
perature parts. We assume that at temperatures of 573 K and above, all tempers of
4340 steel behave alike. We also assume that changes occur in the intrinsic part of
the yield stress and the normalized activation energy beyond the phase transition
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Table 8

Fisher plot data used to calculaig ando; for 4340 steel of hardned?. 45 andR,. 49.

(ko T/ ub® In(égi /)] %  [(0y —aa)/plPt T (K) é(s) o, (MPa) u(GPa)

R.=45
0.0514817 0.0645752 173 0.0001 1429.17 84.046
0.0214507 0.0679395 173 1000 1538.34 84.046
0.0934632 0.0611362 208 0.0001 1255.45 79.745
0.038943 0.0683132 208 1000 1473.83 79.745
0.120899 0.062664 373 0.0001 1260.43 77.164
0.0503745 0.0653759 373 1000 1339.85 77.164

R.=49
0.0514817 0.0682425 173 0.0001 1548.31 84.046
0.0214507 0.0711498 173 1000 1645.07 84.046
0.0934632 0.0674349 208 0.0001 1446.46 79.745
0.038943 0.0710307 208 1000 1559.63  79.745
0.120899 0.0653628 373 0.0001 1339.46 77.164
0.0503745 0.0694326 373 1000 1461.75 77.164

temperature of iron (1040 K). The resulting low and high temperature Fisher plots
for R. 38 4340 steel are shown in Figures 6 (a) and (b).

A comparison of Figures 5(b) and 6(a) shows that the low temperature Fisher plot
has a distinctly lower slope that the plot that contains all&h&8 data. The high
temperature plot (Figure 6(b)) shows that the slope of the Fisher plot changes
slightly after thea to v phase transition. The values of and go; for tempera-

tures between 573 K and 1040 K are 1577.2 MPa and 0.371, respectively. After the
phase transition at 1040 K, these quantities take values of 896.1 MPa and 0.576,
respectively.

The modified plots of the hardness dependent values ahd g,; close to room

Table 9
Values ofo; andgyg; for four tempers of 4340 steel.

HardnessR.) o; (MPa) go;

30 867.6 3.31
38 14741 0.44
45 1636.6 1.05
49 1752 1.26
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Fig. 5. Fisher plots for the intrinsic component of the MTS model for various tempers of
4340 steel.

temperature are shown in Figure 7. The parameters foRth&8 temper of 4340
steel change te; = 1266.3 MPa andy,; = 1.85 if only relatively low tempera-
ture data are considered. This valugygfleads to reasonable values$fat high

temperatures but the fit to the experimental stress-strain data féi.tB8 temper
becomes poor if these values are used.

An alternative is to use all th&,. 38 data lower than 1040 K to determine the
phase parameters for this temper and to use the data above 1040 K{gphhse
parameters for all tempers. The result of fitting straight lines to the Fisher plot data
for R, 38 is shown in Figure 8. The fits show a jump in value at 1040 K that is not
ideal for Newton iterations in a typical elastic-plastic numerical code. However,
this jump is more physical than continuous curves that are different for different
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Fig. 6. Fisher plots for the intrinsic component of the MTS modelR#p38 4340 steel.
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Fig. 7. Values ot; andg; obtained from the Fisher plots for various tempers of 4340 steel
close to room temperature.

tempers of 4340 steel. The valuesogfand gy; for the R, 38 temper (in the alpha
phase) now are 1528 MPa and 0.412, respectively. The valyg ©f again very

low and may point to an anomaly in the experimental data presented by Lee and
Yeh [30].

Straight line fits to ther; and g,; versusR,. data can be used to estimate these
parameters for intermediate tempers of thehase of 4340 steel. These fits are
shown in Figure 9. The fit for,; excludes the anomalous value B 38 4340
steel.
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Fig. 9. Values ofs; and gy; obtained from the Fisher plots for various tempers of dhe
phase of 4340 steel.

4.2 Determination ofg., and go.s

Once estimates have been obtainedf@ndyg;, the value ofS;o; can be calculated

for a particular strain rate and temperature. From equation (1), we then get

L1 o
—(

O = —

S | a oy — 04) — Si0; (25)

which can be used to determine the value of the saturation valy)eof the struc-
tural evolution stressi(). Given a value of ., equation (9) can be used to compute
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Table 10
Fisher plot data used to calculajg s ando.s, for 4340 steel of hardneds, 30.

T/ b n(éeso /)] In(oes) To(K) Ts(K) ¢ (/S) o0es (MP) 1 (GPa)

R.=30
0.075541 20.986 298 298 0.002 1300 79.745
0.070454 19.807 298 298 0.009 400 79.745
0.062309 19.989 298 298 0.1 480 79.745
0.054198 19.968 298 298 11 470 79.745
0.038728 20.986 298 344 570 1300 78.571
0.064987 20.125 500 532 604 550 71.984
0.10315 19.807 735 758 650 400 64.126

o0es @and the corresponding normalized activation eneggy X from the relation

kT '
I(005) = In(000s) — go”mln (606 ) . (26)

The value ofr., can be determined either from a plotfversus the plastic strain

or from a plot of the tangent modulé$o.) versuso.. The value ofS. is required
a-priori befores, can be calculated. Following Goto et al. [14], we assumedat

€0ess Pe» Ge, aNdgq. take the values 10s, 10 /s, 2/3, 1, and 1.6, respectively. These
values are used to calculate at various temperatures and strain rates. The values

of o; and gy; used to compute. vary with hardness for temperatures below 573

K, and are constant above that temperature as discussed in the previous section.
Adiabatic heating is assumed at strain rates above 500 /s.

Representative plots of, versus the plastic strain is shown in Figure 10(a) and the
corresponding versuso, plot is shown in Figure 10(b) for th&. 38 temper at a
strain rate of 1500 /s. Similar plots for tli& 49 temper at a strain rate of 0.0001 /s
are shown in Figures 10(c) and (d). Errors in the fitting-p&nd g,; can cause the
computed value of, to be above or below zero at zero plastic strain. The plotted
value of the tangent modulus is the mean of the tangent moduli at each vatue of
(except for the first and last points). The saturation stres$ is the value at which

o. becomes constant éris zero.

The data used to compute the parametets and go., are shown in Tables 10,
11, 12, and 13. The straight line fit to the data for fhe30 temper is shown in
Figure 11(a). The fit to the phase forR. 38 4340 steel is shown in Figure 11(b).
Similar Fisher plots forz, 45 andR,. 49 4340 steel are shown in Figures 11(c) and

(d).

The correlation between the modified Arrhenius relation and the data is quite poor
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Fig. 10. Plots used to determine the saturation vaiyg) ©f the structure evolution stress

(0¢).

suggesting that the strain dependent part of the mechanical threshold stress does not
follow an Arrhenius relation. However, we do not have information on the standard
deviation of the experimental data and therefore cannot be confident about this
possibility. We continue to assume, following [14] for HY-100, that a modified
Arrhenius type of temperature and strain rate dependence is acceptable for 4340
steel.

Values ofo.y and go.s computed from the fits are shown in Table 14. There is
considerable variation among the values of the normalized activation energy and
the saturation stress at 0 K between the various tempers. For intermediate tempers
a median value of 0.284 is assumed §gr, and the mean value of 705.5 MPa is
assumed for .. Straight line fits to the data, as shown in Figure 12 could also
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Table 11
Fisher plot data used to calculajg s ando.s, for 4340 steel of hardneds, 38.

BT/ In(éeso/é)] In(oes) To(K) T (K) €(/s) oes (MPa) 1 (GPa)

R.=38
0.07092 21.129 258 258  0.0002 1500 81.121
0.08333 20.986 298 298  0.0002 1300 79.745
0.10779 21.254 373 373  0.0002 1700 77.164
0.036227 20.212 298 320 500 600 79.183
0.075873 20.05 573 591 500 510 69.826
0.11153 19.552 773 785 500 310 63.096
0.037964 20.618 298 371 1500 900 77.886
0.070669 20.367 573 614 1500 700 69.246
0.14023 20.03 973 988 1500 500 56.154
0.098146 20.125 773 815 2500 550 62.342
0.13342 20.088 973 995 2500 530 55.989
0.19164 19.519 1173 1185 1500 300 49.282
0.25895 18.891 1373 1381 1500 160 42.505
0.18261 19.163 1173 1193 2500 210 49.047
0.24641 19.376 1373 1388 2500 260 42.289
Table 12

Fisher plot data used to calculajg s ando.s, for 4340 steel of hardneds, 45.
{ka/Mbg ln(éeSO/é)] ln(065> To (K) T (K) €(/ls) oes (MPa) u(GPa)

R.=45
0.047192 19.414 173 173  0.0001 270 84.046
0.085675 17.034 298 298 0.0001 25 79.745
0.11082 19.715 373 373 0.0001 365 77.164
0.021177 19.139 173 211 1000 205 83.067
0.034507 18.683 298 327 1000 130 79.004
0.043234 18.826 373 397 1000 150 76.553

be used to determine the valuesggf, ando.,, for intermediate tempers of 4340
steel. The data above 1040 K are assumed to be foy gifese of 4340 steel. Fits

to the data at these high temperatures lead to values of 0.294 and 478.36 MPa for
Joes @Ndo .0, respectively, for the phase.
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Table 13
Fisher plot data used to calculajg s ando. s, for 4340 steel of hardneds, 49.

BT/ In(éeso/é)] In(oes) To(K) T (K) €(/s) oes (MPa) 1 (GPa)

R.=49
0.047192 19.254 173 173  0.0001 230 84.046
0.085675 19.376 298 298 0.0001 260 79.745
0.11082 19.756 373 373 0.0001 380 77.164
0.02075 18.951 173 207 1000 170 83.17
0.035325 19.45 298 334 1000 280 78.826
0.043234 19.45 373 397 1000 280 76.553

4.3 Determination of hardening rate

The modified Voce rule for the hardening rai® (equation (5)) is purely empirical.

To determine the temperature and strain rate dependericavefplot the variation

of theta versus the normalized structure evolution stress assuming hyperbolic tan-
gent dependence of the rate of hardening on the mechanical threshold stress. We
assume that = 3.

Figures 13(a), (b), (c), and (d) show some representative plots of the variation of
with F' := tanh(ao./o.s)/ tanh(a). As the plots show, the value 6f (the value
of  at F' = 1) can be assumed to be zero for most of the data.

It is observed from Figure 13(a) that there is a strong strain rate dependefice of
that appears to override the expected decrease with increase in temperature for the
R. 30 temper of 4340 steel. It can also been seemftimalmost constant at 298 K

and 0.002/s strain rate reflecting linear hardening. However, the hyperbolic tangent
rule appears to be a good approximation at higher temperatures and strain rates.

The plot for R. 38 4340 steel (Figure 13(b)) shows a strong temperature depen-
dence off with the hardening rate decreasing with increasing temperature. The
same behavior is observed for all high strain rate data. However, for the data at a

Table 14
Values ofo.s andgg.s for four tempers of 4340 steel.

HardnessR.) oeso (MPa)  goes

30 1316.1 0.088
38 1058.4 0.232
45 173.5 0.336
49 274.9 1.245
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Fig. 11. Fisher plots for the structure evolution dependent component of the MTS model
for various tempers of 4340 steel.

strain rate of 0.0002/s, there is an increasé with increasing temperature. Fig-
ures 13(c) and (d) also show an increasé mwith temperature. These reflect an
anomaly in the constitutive behavior of 4340 steel for relatively low temperatures
(below 400 K) (Tanimura and Duffy [37]) that cannot be modeled continuously
using an Arrhenius law and needs to be characterized in more detail.

Fits to the experimental data of the form shown in equation (6) have been attempted.
The resulting values afy, a1, ag2, andagz are plotted as functions at, in Fig-

ures 14(a), (b), (c), and (d), respectively. The points show the values of the con-
stants for individual tempers while the solid line shows the median value. These
figures show that the constants vary considerably and also change sign for differ-
ent tempers. On average, the strain rate dependence is small for all the tempers but
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Fig. 12. Values ob.,, andgg.s obtained from the Fisher plots for various tempers ofd¢he
phase of 4340 steel.

significant. TheR. 30 andR, 45 data points in Figure 14(d) reflect an increase in
hardening rate with temperature that is nonphysical at high temperatures. Instead
of using these fits to the experimental data, we have decided to ignore the strain
rate dependence of the hardening rate and fit a curve to all the data taking only tem-
perature dependence into account (as shown in Figure 15). Distinctions have not
been made between various tempers of 4340 steel to determine this average hard-
ening rate. However, we do divide the data into two parts based om-thphase
transition temperature.

The resulting equations fék as functions of temperature are

15719 — 10.4957T (MPa) forT < 1040K
90:{579 0.495T (MPa) < 1040 27

7516 — 3.77967 (MPa)  forT > 1040K

This completes the determination of the parameters for the MTS model.

5 Comparison of MTS model predictions and experimental data

The performance of the MTS model for 4340 steel is compared to experimental data
in this section. In the figures that follow, the MTS predictions are shown as dotted
lines while the experimental data are shown as solid lines with symbols indicting
the conditions of the test. Isothermal conditions have been assumed for strain rates
less than 500/s and adiabatic heating is assumed to occurs at higher strain rates.

Figure 16(a) shows the low strain rate experimental data and the corresponding
MTS predictions for the?,. 30 temper of 4340 steel. Comparisons for moderately
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Fig. 13. Plots used to determinketag as a function of temperature and strain rate.

high strain rates and high temperatures for )e30 temper are shown in Fig-

ure 16(b). The model matches the experimental curves quite well for low strain
rates (keeping in mind the difference between the stress-strain curves in tension
and in shear). The high strain rate curves are also accurately reproduced though
there is some error in the initial hardening modulus for the 650 /s and 735 K case.
This error can be eliminated if the effect of strain rate is included in the expression
for 6,. The maximum modeling error for this temper is around 15%.

We have not used th&,. 32 experimental data to fit the MTS model parameters.

As a check of the appropriateness of the relation between the parameters and the
R. hardness number, we have plotted the MTS predictions versus the experimen-
tal data for this temper in Figure 17. Our model predicts a stronger temperature
dependence for this temper than the experimental data. However, the initial high
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Fig. 14. Variation of the constants fit to the hardening rate equation for various tempers of
4340 steel.

temperature yield stress is reproduced quite accurately while the ultimate tensile
stress is reproduced well for the lower temperatures.

The low strain rate stress-strain curves far38 4340 steel are shown in Figure 18.
High strain rate stress-strain curves for fhe38 temper are shown in Figures 19(a),

(b), and (c). The saturation stress predicted at low strain rates is around 20% smaller
than the observed values at large strains. The anomaly at 373 K is not modeled
accurately by the MTS parameters used. On the other hand, the high strain rate
data are reproduced quite accurately by the MTS model with a modeling error of
around 5% for all temperatures.

Experimental data for thé. 45 temper are compared with MTS predictions in
Figures 20 (a) and (b). The MTS model under predicts the low strain rate yield
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stress and initial hardening modulus by around 15% for both the 173 K and 373
K data. The prediction is within 10% for the 298 K data. The anomaly at 373 K is
clearly visible for the low strain rate plots shown in Figure 20(a). The high strain
rate data are reproduced quite accurately for all three temperatures and the error is
less than 10%.

Comparisons for th&. 49 temper are shown in Figures 21 (a) and (b). The model
predicts the experimental data quite accurately for 173 K and 298 K at a strain
rate of 0.0001/s. However, the anomalous behavior at 373K is not predicted and a
modeling error of around 15% is observed for this temperature. For the high strain
rate cases shown in Figure 21(b), the initial hardening modulus is under-predicted
and saturation is predicted at a lower stress than observed. In this case, the modeling
error is around 10%.

The comparisons of the MTS model predictions with experimental data shows that
the predictions are all within an error of 20% for the range of data examined. If we
assume that the standard deviation of the experimental data is around 5% (Hanson
[20]) then the maximum modeling error is around 15% with around a 5% mean.
This error is quite acceptable for numerical simulations, provided the simulations
are conducted within the range of conditions used to fit the data.

6 MTS model predictions over an extended range of conditions

In this section, we compare the yield stresses predicted fur40 temper of 4340
steel by the MTS model with those from the Johnson-Cook (JC) model over a
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Fig. 16. Comparison of MTS prediction with experimental data from Johnson and Cook
[24] for the R, 30 temper of 4340 steel.

range of strain rates and temperatures. In the plots shown in this section, the yield
stress ¢,) is the Cauchy stress, the plastic straif) {s the true plastic strain, the
temperaturesi() are the initial temperatures and the strain ratase the nominal

strain rates. The effect of pressure on the density and melting temperature has been
ignored in the MTS calculations discussed in this section.

6.1 Parameters for the Johnson-Cook model

The value ofo, for 4340 steel in the Johnson-Cook model varies with the temper
of the steel. We have fit the yield stress verstishardness curve for 4340 steel
from the ASM handbook [19] to determine the valueogffor various tempers.
The equation for the fitis

oy = exp(A R, + Az) (MPa) (28)
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Fig. 17. Comparison of MTS prediction with experimental data from Brown et al. [6] for
the R, 32 temper of 4340 steel.
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Fig. 18. Comparison of MTS prediction with experimental data from Larson and Nunes
[28] for the R, 38 temper of 4340 steel at 0.0002/s strain rate.

where A; = 0.0355 In(MPa),A; = 5.5312 In(MPa), and?. is the Rockwell-C
hardness of the steel. The value®fo, = 0.6339 is assumed to be a constant for

all tempers. The strain hardening exponentié 0.26 and the strain rate depen-
dence parameter() is 0.014, for all tempers. The reference strain kgtes 1 /s.

For temperatures less than 298 K, thermal softening is assumed to be linear and the
parametern takes a value of 1. Above 298 K and lower than 104@Ks assumed

to be 1.03, and beyond 1040 K, is taken as 0.5 (Lee and Yeh [30]). The reference
temperatureq,) is 298 K and the melt temperatur&,() is kept fixed at 1793 K.

These parameters provide a reasonable fit to the experimental data presented earlier
in the context of the MTS model.
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Fig. 19. Comparison of MTS prediction with experimental data from Lee and Yeh [30] for
the R. 38 temper of 4340 steel at high strain rates.
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Fig. 20. Comparison of MTS prediction with experimental data from Chi et al. [11] for the
R, 45 temper of 4340 steel.

6.2 Yield stress versus plastic strain

Figures 22(a) and (b) show the yield stress-plastic strain curves predicted by the
MTS and JC models, respectively. The initial temperature is 600 K and adiabatic
heating is assumed for strain rates above 500 /s. The strain rate dependence of
the yield stress is less pronounced for the MTS model than for the JC model. The
hardening rate is higher at low strain rates for the JC model. The rapid increase in
the strain-rate dependence of the yield stress at strain rates above 1000 /s (Nicholas
[33]) is not predicted by either model and is probably due to the limited high rate
data used to fit the models.

The temperature dependence of the yield stress for a strain rate of 1000 /s is shown
in Figures 23(a) and (b). Both models predict similar stress-strain responses as a
function of temperature. However, the initial yield stress is higher for the MTS
model and the initial hardening rate is lower that that predicted by the JC model for
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Fig. 21. Comparison of MTS prediction with experimental data from Chi et al. [11] for the
R, 49 temper of 4340 steel.

initial temperatures of 300K and 700 K. For the high temperature data, the MTS
model predicts lower yield stresses.

6.3 Yield stress versus strain rate

The strain rate dependence of the yield stress (at a temperature of 600 K) predicted
by the MTS and JC models is shown in Figures 24(a) and (b), respectively. The JC
model shows a higher amount of strain hardening than the MTS model. The strain
rate hardening of the MTS model appears to be closer to experimental observations
(Nicholas [33]) than the JC model.

The temperature and strain rate dependence of the yield stress at a plastic strain

of 0.3 is shown in Figures 25(a) and (b). Above the phase transition temperature,
the MTS model predicts more strain rate hardening than the JC model. However, at
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Fig. 22. Comparison of MTS and JC predictions of yield stress versus plastic strain at
various strain rates fdf, = 600 K.

Strain rate = 1000/s, various T (MTS) Strain rate = 1000/s, various T (JC)
2500 2500
— T= 300K — T= 300K
T= 700 K T= 700 K
— T=1100K — T=1100K
2000 —— T=1600K 2000 —— T=1600K
_ 1500 /"\~\ _ 1500 /”'—'—'_\
« «©
Ay [
=) =)
> >
© 1000 © 1000}
500 500
0 0
0 0.2 04 _ 06 0.8 1 0 0.2 04 _ 06 0.8 1
P P
(a) MTS Prediction. (b) JC Prediction.

Fig. 23. Comparison of MTS and JC predictions of yield stress versus plastic strain at
various strain rates far= 1000 /s.

700 K, both models predict quite similar yield stresses. At room temperature, the
JC model predicts a higher rate of strain rate hardening than the MTS model and is
gualitatively closer to experimental observations.

6.4 Yield stress versus temperature

The temperature dependence of the yield stress for various plastic strains (at a strain
rate of 1000 /s) is shown in Figures 26(a) and (b). The sharp change in the value of

34



T = 600 K, various sp (MTS) T = 600 K, various sp JC)
2000 2000

- / 1500

1000 /// 1000

o (MPa)
c (MPa)

500 -4 -2 0 2 4 6 500 —4 -2 0 2 4 6
10 10 1(98p/dt /9 10 10 10 10 1(98p/dt /9 10 10

(a) MTS Prediction. (b) JC Prediction.

Fig. 24. Comparison of MTS and JC predictions of yield stress versus strain rate at various
plastic strains fofl;; = 600 K.
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Fig. 25. Comparison of MTS and JC predictions of yield stress versus strain rate at various
temperatures for, = 0.3 .

the yield stress at the phase transition temperature may be problematic for Newton
methods used in the determination of the plastic strain rate. We suggest that at tem-
peratures close to the phase transition temperature, the high temperature parameters
should be used in numerical computations. The figures show that both the models
predict similar rates of temperature dependence of the yield stress.

The temperature dependence of the yield stress for various strain rates (at a plastic

strain of 0.3) is shown in Figures 27(a) and (b). In this case, the MTS model pre-
dicts at smaller strain rate effect at low temperatures than the JC model. The strain
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Fig. 26. Comparison of MTS and JC predictions of yield stress versus temperature at vari-
ous plastic strains far = 1000/s.
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Fig. 27. Comparison of MTS and JC predictions of yield stress versus temperature at vari-
ous strain rates for, = 0.3 .

rate dependence of the yield stress increases with temperature for the MTS model
while it decreases with temperature for the JC model. The JC model appears to pre-
dict a more realistic behavior because the thermal activation energy for dislocation
motion is quite low at high temperatures. However, the MTS model fits high tem-
perature/high strain rate experimental data better than the JC model and we might
be observing the correct behavior in the MTS model.
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6.5 Taylor impact tests

For further confirmation of the effectiveness of the MTS model, we have simulated
three-dimensional Taylor impact tests using the Uintah code (Banerjee [2]). Details
of the code, the algorithm used, and the validation process have been discussed
elsewhere (Banerjee [2, 3]).

It is well known that the final length of a Taylor impact cylinder scales with the ini-
tial velocity. Figure 28 shows some experimental data on the final length of cylin-
drical Taylor impact specimens as a function of initial velocity. We are interested
in temperatures higher than room temperature. For clarity, we have separated the
high temperature tests from the room temperature tests by adding an initial internal
energy component to the initial kinetic energy density. We have simulated three
Taylor tests at three energy levels (marked with crosses on the plot).

The four cases that we have simulated have the following initial conditions:

(1) Case 1:R. =30; Ly = 25.4 mm;Dy = 7.62 mm;U, = 208 m/s;T, = 298 K;
Source Johnson and Cook [23].

(2) Case 2:R. = 40; Ly = 30.0 mm; Dy = 6.0 mm;U, = 312 m/s;Ty = 725 K;
Source Gust [17].

(3) Case 3:R. =40; Ly = 30.0 mm;Dy = 6.0 mm;U, = 160 m/s;T, = 1285 K;
Source Gust [17].

(4) Case 4:R.=40; Ly = 30.0 mm;Dy = 6.0 mm;U, =612 m/s;T, = 725 K;

The MTS model parameters for tiig 30 temper of 4340 steel have been discussed

1
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Jones et al. (1987)

House et al. (1995)
Simulated

X% pqo]

e
0.9F q
% .
v

v
* @

L/L,
&

0.7F

11/2 Py 1}35+ 0, C, (2’1‘0 - 2942]‘”21/mm3)3 85 4
Fig. 28. The ratio of the final length to the initial length of Taylor impact specimens as a
function of initial energy density. The experimental data are from Gust [17], Johnson and
Cook [23], Jones and Gillis [25], and House et al. [21]. The tests that we have simulated
are marked with crosses.
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earlier. The MTS parameters for tlie 40 temper of 4340 steel can either be cal-
culated using the linear fit for various hardness levels (shown in Figure 9) or by

a linear interpolation between thie. 38 and theR, 45 values. MTS model pa-
rameters at temperatures above 1040 K take the high temperature values discussed
earlier. The initial yield stress in the Johnson-Cook model is obtained froi the

oo relation discussed earlier. The computed final profiles are compared with the
experimental data in Figures 29(a), (b), (c), and (d).

For the room temperature test (Figure 29(a)), the Johnson-Cook model accurately
predicts the final length, the mushroom diameter, and the overall profile. The MTS
model underestimates the mushroom diameter by 0.25 mm. This difference is within
experimental variation (see House et al. [21]).

The simulations at 725 K (Figure 29(b)) overestimate the final length of the speci-
men. The legend shows two MTS predictions for this case - MTS (1) and MTS (2).
MTS (1) uses parametess andg, that have been obtained using the fits shown in
Figure 9. MTS (2) used parameters obtained by linear interpolation betweén the

38 andR. 45 values. The MTS (2) simulation predicts a final length that is slightly
less than that predicted by the MTS (1) and Johnson-Cook models. The mushroom
diameter is also slightly larger for the MTS (2) simulation.

The final length of the specimen for Case 2 is not predicted accurately by either
model. We have confirmed that this error is not due to discretization. Volumetric
locking does not occur with the numerical method used (the explicit Material Point
Method). In the absence of more high temperature Taylor impact data it is unclear
if the error is within experimental variation. The final mushroom diameter is not
provided by [17]. However, the author mentions that no fracture was observed in
the specimen. Hence, a smaller final length due to fracture of the base can be dis-
counted.

The third case (Figure 29(c)) was simulated at an initial temperature of 1285 K
(above thev-y phase transition temperature of iron). The MTS and Johnson-Cook
models predict almost exactly the same behavior for this case. The final length is
overestimated by both the models. Notice that the final lengths shown in Figure 28
at or near this temperature and for similar initial velocities vary from 0.65 to 0.75 of
the initial length. The simulations predict a final length that is approximately 0.77
times the initial length - which is to the higher end of the range of expected final
lengths. The discrepancy may be because the models do not predict sufficient strain
hardening at these high temperatures.

In all three cases, the predictions from the MTS and the Johnson-Cook models
are nearly identical. To determine if any significant difference between the pre-
dictions of these models can be observed at higher strain rates, we simulated the
geometry of Case 2 with a initial velocity of 612 m/s. The resulting profiles pre-
dicted by the MTS and the Johnson-Cook models are shown in Figure 29(d). In this
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case, the MTS model predicts a slightly wider mushroom than the Johnson-Cook
model. The final predicted lengths are almost identical. Interestingly, the amount of
strain hardening predicted by the MTS model is smaller than that predicted by the

Lo =25.4 mm; DO =7.62 mm; UO =208 m/s; TO =298 K L0 =30 mm; DO = 6 mm; U0 =312 m/s; TO =725 K
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Fig. 29. Comparison of MTS and JC predictions of final Taylor specimen profiles with
experimental results.
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Johnson-Cook model (as can be observed from the secondary bulge in the cylinder
above the mushroom). We conclude that the Johnson-Cook and MTS models pre-
sented in this paper predict almost identical elastic-plastic behavior in the range of

conditions explored. Please note that quite different sets of data were used to deter-
mine the parameters of these models and hence the similarity of the results indicate
the underlying accuracy of the parameters.

7 Remarks and Conclusions

We have determined parameters for the Mechanical Threshold Stress model and the
Johnson-Cook model for various tempers of 4340 steel. The predictions of the MTS
model have been compared with experimental stress-strain data. Yield stresses pre-
dicted by the Johnson-Cook and the MTS model have been compared for a range
of strain rates and temperatures. Taylor impact tests have been simulated and the
predicted profiles have been compared with experimental data.

Some remarks and conclusions regarding this work are given below.

(1) The MTS and Johnson-Cook models predict similar stress-strain behaviors
over a large range of strain rates and temperatures. Noting that the parame-
ters for these models have been obtained from different sets of experimental
data, the similarity of the results, especially in the Taylor test simulations, is
remarkable. We suggest that this is an indication of the accuracy of the models
and the simulations.

(2) The MTS model parameters are considerably easier to obtain than the Johnson-
Cook parameters. However, the MTS simulations of the Taylor impact tests
take approximately 1.5 times longer than the Johnson-Cook simulations. This
is partly because the shear modulus and melting temperature models are not
evaluated in the Johnson-Cook model simulations. Also, the MTS model in-
volves more floating point operations than the Johnson-Cook model. The Johnson-
Cook model is numerically more efficient than the MTS model and would be
preferable for large numerical simulations involving 4340 steel.

(3) The Nadal-LePoac shear modulus model and the Burakovsky-Preston-Silbar
melting temperature model involve less data fitting and are the suggested mod-
els for elastic-plastic simulations over a large range of temperatures and strain
rates. The specific heat model that we have presented leads to better predic-
tions of the rate of temperature increase close tanthephase transition of
iron. The shear modulus and melt temperature models are also valid in the
range of strain rates of the order of®13. The Mie-Gtineisen equation of
state should probably be replaced by a higher order equation of state for ex-
tremely high rate processes.

(4) The relations between the Rockwell C hardness and the model parameters that
have been presented provide reasonable estimates of the parameters. However,
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(5)

(6)

(7)

more data for the?. 30, 45, and 49 tempers are needed for better estimates
for intermediate tempers. There is an anomaly in the strain rate and temper-
ature dependence of the yield strength /ar50 and higher tempers of 4340
steel. We would suggest that the valuesipi9 steel be used for harder tem-
pers. For tempers below, 30, the fits discussed earlier provide reasonable
estimates of the yield stress.

The strain hardening (Voce) rule in the MTS model may be a major weakness
of the model and should be replaced with a more physically based approach.
The experimental data used to determine the strain hardening rate parameters
appear to deviate significantly from Voce behavior is some cases.

The determination of the values @f. ando.,, involves a Fisher type mod-

ified Arrhenius plot. We have observed that the experimental data fak the

45 andR, 49 tempers do not tend to reflect an Arrhenius relationship. More
experimental data (and information on the variation of the experimental data)
are required to confirm this anomaly and is beyond the scope of this work.
The superiority of the MTS model for simulating 4340 steel is not as obvious
as it is for OFHC copper and Tantalum-Tungsten alloys. More experimental
strain-strain and Taylor impact data at high temperatures and high strain rates
are needed to confirm this observation.
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