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Abstract

This paper describes an investigation of potential
advantages and risks of applying an aggressive
asynchronous design methodology to Intel Architecture.
RAPPID (“ Revolving Asynchronous Pentium® Processor
Instruction Decoder” ), a prototype IA32 instruction
length decoding and steering unit, was implemented using
self-timed techniques. RAPPID chip was fabricated on a
0.25µ CMOS process and tested successfully. Results
show significant advantages—in particular, performance
of 2.5-4.5 instructions/nS—with manageable risks using
this design technology. RAPPID achieves three times the
throughput and half the latency, dissipating only half the
power and requiring about the same area as an existing
400MHz clocked circuit.

1. Introduction

The RAPPID research project started in 1995 in Intel
Israel Design Center, and completed in 1998 in Intel’s
Strategic CAD Lab in Oregon. The goal of the project
was to demonstrate the ability  to design high-speed
asynchronous circuits as a potential solution for
microprocessor design if and when clocked design
becomes too difficult. The RAPPID project aggressively
applied self-timed techniques to evaluate the risks,
compared prospective advantages against a comparable
commercial product, and developed a useful
methodology.

Power, process variations, and increased clock
frequency present formidable challenges today, with
increasing risk in future process generations. Self-timing
presents potential solutions to some of these challenges
and is already used in industry in restricted forms. This
work makes a comparison between the instruction length

decoding and steering logic of a 400MHz clocked design
and RAPPID in order to evaluate the risk versus reward of
using more aggressive self-timing.

Self-timed methodology utilizes handshaking to
guarantee functionality. These protocols are orthogonal to
implementation media, and have been used or shown to
work in technologies ranging from relays and vacuum
tubes to TTL, MOS, and RSFQ devices and in multiple
implementation styles. Therefore, it should be possible to
implement self-timed circuits using any future circuit or
implementation technology that brings out advantages in
performance or power.

The RAPPID methodology adds timing information to
handshaking [3], which enables smaller, more testable,
faster, and lower power circuits. However, it introduces a
potential risk of increased failure rate if  timing margins
are tight. This risk can be addressed in the future with
better design and verification tools.

RAPPID was implemented on a 0.25µ CMOS process.
The design uses static and domino gates from a standard
synchronous library, with a few custom circuits, such as
C-elements.

Potential advantages of full self-timing in
microprocessors include microarchitectural changes that
incorporate multiple frequency domains and pipelining
techniques that match a particular problem rather than a
chip-wide constraint. For example, RAPPID combines
frequency domains operating at approximately 3.6GHz,
900MHz, and 700MHz. Self-timed designs can result in
advantages in power consumption, performance and
latency. We discuss each of these issues in more detail in
the body of the paper.

The perceived risks at the start of this design included
testability , sensitivity to noise on control lines, timing
verif ication, and potential area increase. Some of these
risks have been assessed and are presented.



The design was motivated by the observation that
instruction length decoding could pose a bottleneck in
variable length instruction set architectures. As reported
in [1], our analysis of the Pentium variable length
instruction set revealed two principal findings (Figure 1):
First, the average instruction length is about three bytes,
and instructions longer than seven bytes are rare. Second,
very few instruction types are used frequently. RAPPID
design exploits these findings.

Figure 1: Pentium instruction set statistics;
bar graphs show relative dynamic frequencies,

line graphs indicate cumulative frequencies.

RAPPID comprises three stages. The Length Decoder
receives a sixteen-byte cache line and speculatively
computes 16 instruction lengths in parallel, assuming that
each byte starts a new instruction. A Tag Unit in the first
byte of an instruction passes a tag downstream to the first
byte of the next instruction; 4x16 Tag Units are
interconnected in a torus. The instructions are routed on
four separate 62-bit crossbar channels to the output.

In the rest of this paper we present the RAPPID

microarchitecture, explain the design methodology,
compare RAPPID to a contemporary clocked design, and
discuss the risks versus rewards.

2. RAPPID microarchitecture and basic
operation

RAPPID receives 16-byte wide instruction cache lines
at its input, extracts the instructions, and places each
instruction separately in the output buffers. As shown in
Figure 2, sixteen parallel length decoders are employed,
which speculatively compute the length as if a new
instruction began at each byte position. A torus-like
distributed tagging and crossbar switching circuit with 16
columns and 4 rows packs the bytes into instructions and
steers them into four output buffers. These dimensions are
designed to balance the average computation rates.

The input FIFO

The Input FIFO (IF) holds 16-byte wide input cache
lines. The FIFO is an instruction delivery mechanism
designed to operate faster than the length Decode and
instruction steering Unit (DU).  Keeping instruction
delivery off the critical path allows us to measure
unbiased maximum DU performance.  The FIFO is
asynchronous, but its implementation details are not
described here, as it is used only as an interface to the
tester. Since RAPPID decoding operation is faster than
the tester’s ability  to supply new data, the data, once
loaded in the FIFO, are re-circulated. The FIFO is loaded
serially through a scan register. Once the FIFO is filled,
RAPPID operation starts, and the lines are read from the
FIFO. The FIFO can be read cyclically, enabling
continuous operation for performance measurements. The
FIFO contains instruction bytes, and three additional bits
for each byte, indicating whether this byte is used (U),
whether it is the first byte of a predicted taken branch
instruction (B), and whether it is a branch target (T). The
prediction and target bits are derived from the BTB
(branch target buffer). If  a line contains a predicted taken
branch, the bytes following the end of the branch
instruction up to the end of the line and from the
beginning of the next line, which contains the branch
target, up to the branch target are marked unused, i.e.,
their U bits are cleared. The first line after reset starts at
the first byte (byte 0).
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Figure 2: RAPPID microarchitecture

Every byte in the IF is controlled separately, so the IF
effectively consists of sixteen separate 11-bit wide
parallel FIFOs. This structure allows the individual bytes
to be transferred to the DU when needed, without having
to wait for the DU to accept the next line in full.

The Length Decoding and Steering Unit

The core of RAPPID is the Length Decoding and
Steering Unit (DU). The DU consists of 16 identical
blocks, or columns, one for each input byte, and four
output buffers. Each column consists of a Byte Unit (BU),
comprising the Byte Latch, Byte Control, and Length
Decoder, and four identical Tag Units (TU) and Crossbar
Switches (XB). The Length Decoder implementation is
optimized for common instructions, such that length
decoding for common opcodes is faster than for rare ones
[1]. The TUs and XBs are arranged in 16 columns and
four rows, wrapped around in a torus. Each XB in the four
rows is connected to an output buffer.

Each column receives a byte from the instruction line
at the head of the IF, latches it in the Byte Latch, and
performs a speculative length decoding assuming that an
instruction starts at that byte. Each TU waits for the
following three events to occur (See Figure 4):

1. TAGIN: A tag arrives from one of the neighboring

columns upstream.
2. INSTRDY: Length calculation for the column is

completed and the instruction is ready, meaning
that all the instruction bytes are ready in their Byte
Latches.

3. XBRDY: The XB of the row is ready to accept a
new instruction.

Once these three events occur, which may happen in any
order, the tagged TU performs the following three
operations in parallel:

1. Sends the tag to the TU in the column of the next
instruction’s first byte in the next row.

2. Transfers the instruction bytes, along with
additional information on the length and prefixes,
to its row’s XB, which in turn forwards them to
the output buffer.

3. Notif ies its column’s BU that the instruction has
been transferred from the Byte Latch to the XB.

That is, once the (speculative) length calculation has been
completed at the column receiving the tag and the XB in
the row of the receiving TU is ready (INSTRDY and
XBRDY have been asserted), the next tagged TU can
immediately perform the above three operations.

When a BU is notif ied by one of its four TUs that the
instruction has been transferred to the XB (operation 3
above), it opens its Byte Latch, which permits decoding of
the next instruction to begin if it is available. The BU also
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notifies the other BUs containing the remaining bytes of
this instruction that they may open their Byte Latches. In
this way, the length decoding (which is a long latency
operation) of bytes from the next cache line starts as soon
as the bytes from the previous line have been consumed.

The columns and rows are arranged in a torus. Hence
each row is a ring around that torus. As the tag wraps
around the torus and crosses from column 15 back to
column 0, it falls to the next row. TUs in the fourth row
send the tag to the first row. The operation would be
balanced if the tagged column had decoded the length of
the instruction by the time the tag reaches it. Similarly, the
corresponding XB would have had to complete the
transfer of the previous instruction before the tag reaches
it. Thus, in a perfectly balanced situation, the TAGIN,
INSTRDY, and XBRDY events would occur
simultaneously. Unfortunately, this is not always the case
because the latency of length decoding depends on the
opcode, and special case handling of branches, long
instructions and prefixes incurs a longer latency.

The following example demonstrates the path of the
tag through the TUs, assuming a sequence of 3-byte long
instructions, as shown by the arrows in Figure 2: Column
0 row 0 ¨ column 3 row 1 ¨ column 6 row 2 ¨ column
9 row 3 ¨ column 12 row 0 ¨ column 15 row 1 ¨
column 2 row 2 ¨ …

Balanced design. RAPPID’s operation consists of
independent self-timed cycles. The major cycles are (see
Figure 3):

• The length decoding and instruction ready cycle.
This cycle accepts a byte from the IF, decodes the
instruction length (as all necessary bytes become
available), and generates the Instruction Ready
flag (based on the calculated length and the Byte
Ready bits from the Byte Latches of the remaining
bytes in the instruction).

• The steering logic cycle.  This cycle aligns
instruction bytes from the Byte Latches and
forwards them to the output buffer over the XB.

• Tag cycle.  This cycle directly forwards the tag to
the start of the next instruction, and also
synchronizes and orders the above two cycles.

Each cycle has its characteristic latency that can be
independently optimized based on performance targets.
The length decoding cycle is optimized for common
instructions [1]. The tag cycle is optimized for common
lengths, as discussed below. The steering logic cycle is
matched to the throughput and latency of the output
buffers. We can compose these cycles, using
asynchronous protocols, in a scaleable fashion to achieve
the target system performance.  This architecture is
scaleable in both the horizontal (length decoding cycle)
and vertical (steering logic cycle) dimensions. We can
increase the performance through additional parallelism to
achieve target performance.

Figure 3: RAPPID computation cycles and execution rates

Each cycle is balanced if the function can complete
just before its results are required.  The cycle times are
determined by the scale and wrap factors.  Assuming an

average instruction length of three, each 16-byte cache
line holds about five instructions.  Therefore the length
decoding and tag cycles are balanced if the TAGIN to
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TAGOUT latency is one fifth of the decoding latency.
The XB latency is four times the tag cycle latency, hence
the TU and XB rows are scaled to four instances to keep
the steering logic cycle balanced relative to the other two.
RAPPID was designed to minimize the TAGIN to
TAGOUT latency (and hence the tag cycle time); the
other two cycles were scaled to match the average tag
cycle time.

These three intertwined cycles demonstrate one
advantage of the asynchronous solution. The TAG cycle
achieves the average rate of 3.6 GIPS (close to 4.5 GIPS
in some of the tests, as reported below), consuming on
average 720M cache lines per second. Lines with fewer
than five instructions (average length greater than three
bytes) are consumed faster, whereas lines with shorter
instructions are consumed slower. The tag cycle, being a
central point of gathering and distributing instructions, is
the performance-critical component in this architecture.
The steering logic cycles are shielded from variations in
the length decoding cycle by the tag cycle.

The Length Decoder is optimized for common
opcodes, based on our benchmark analysis, which
indicates that 15% of the decoding PLA minterms are
used 90% of the time. The length decoding for common
opcodes is done using domino logic; furthermore, the
decoding of the most common opcodes is pushed closer to
the outputs [1]. The rare opcodes are decoded using a
slower, self-timed NOR-NOR PLA.

Handling long instructions. RAPPID’s DU is optimized
for instructions up to seven bytes long, which constitute
99.8% of the cases. Longer instructions (up to 11 bytes)
are handled through a separate, slower protocol. Thus,
each TU can tag the seven TUs in seven neighboring
columns downstream in the next row down, and be tagged
by any of the seven TUs in the seven neighboring columns
upstream in the previous row up. The tags are sent via
dedicated point-to-point lines. There are seven tag lines at
the input and output of each TU.

Instructions longer than seven bytes are transferred to
two XBs and output buffers in two consecutive rows. The
first four bytes of the instruction (head) are transferred to
the XB in the row containing the tagged TU for the
instruction’s first byte, and the remaining bytes (tail) are
transferred to the XB in the next row down. When the
calculated length is greater than seven, the Byte Control
signals the columns containing the fifth byte of the
instruction, through three dedicated lines, that it holds the
first byte of the instruction’s tail. The fifth byte’s Byte
Control modifies the length to 4, 5, 6, or 7, based on the
three bits received from the first byte’s column (for total
instruction length of 8, 9, 10, or 11, respectively), and
sends an acknowledgment to the first byte’s column.
Upon receiving this acknowledgment, the first byte’s

column modifies the Length Decoder’s output to four.
The tagged TU in that column then operates as if the
instruction length were four. Four bytes are transferred to
the XB (together with an indication that it is the head of a
long instruction), and the tag is sent to the TU in the fifth
byte’s column, in the next row down. The fifth byte’s
column operates as if it were the first byte of a short
instruction. It transfers the tail to the XB in the tagged
TU’s row, and sends the tag to the first byte of the next
instruction.

Instruction prefix bytes, including length-modifying
prefixes, are handled in a similar manner.

Handling branch instructions. When a cache line
contains a predicted taken branch instruction, the tag
should be routed from the TU of the branch instruction’s
first byte to the TU of the branch target’s first byte. The
target always resides in the next cache line (since the fetch
unit is designed to fetch the target cache line of predicted
taken branches), so the bytes in between the branch and
the target instruction are skipped. The first bytes of the
branch and target instructions are marked in the input
FIFO with B and T bits, respectively, and the unused
bytes in between the branch and target instructions have
their used (U) bits reset. The B and T bits from the Byte
Latch are routed to all four TUs in that column.  When a
branch instruction is tagged, the corresponding TU does
not forward the tag to the first byte following its length
since that byte may not be the start of the target
instruction.  Instead, a special tag is sent to the next row
that asserts the INJECT signal.  Each row has a local
INJECT signal that is routed to all TUs in that row.
When a row’s INJECT signal and a column’s T bit are
asserted, a tag is generated for that TU and the row’s
INJECT signal is de-asserted.  This forwards the tag from
the branch to the target instruction without tagging
intermediate bytes. From that point onward, the operation
continues normally.

The logic generating the B, T, and U bits is not
implemented in RAPPID.  They are supplied pre-decoded
in the IF.

3. RAPPID circuits

We briefly describe two principal RAPPID circuits.
The Tag Unit circuit demonstrates the use of pulse logic
and reduced handshake, whereas the Byte Control circuit
provides some insight into the complexity of the design.

The Tag Unit circuit

The Tag Unit (TU) is responsible for transferring the
tag from the column containing the first byte of an



instruction to the column containing the first byte of the
next instruction. There are seven TagIn inputs to each
TU, and seven TagOut outputs (Figure 4). Additionally,
special TagIn and TagOut lines are used for branch
handling.

Transferring the tag to the next TU involves a full
request-acknowledge handshake cycle when using speed-
independent protocols. This means that for each of the
seven TagOut outputs there should be a TagOutAck
acknowledge signal. Such a structure would significantly
complicate and slow down the TU logic and wiring. In
order to simplify the implementation, the TagOut signals
are implemented as self-timed pulses, eliminating the need
for acknowledgment signals. The pulsed implementation
is correct only under the following timing assumptions [2,
3]:

• When a TU sends the tag pulse to the next TU, the
receiving TU is ready to accept it, i.e. the self-
resetting signal TagArrived (Figure 4) is off,

• The TagOut pulse is wide enough to cause the
state transition in the receiving TU, i.e. the
TagArrived signal becomes asserted, and

• The TagOut pulse is narrow enough such that it
is de-asserted before the  TagArrived
indication in the receiving TU is de-asserted.

The first assumption is satisfied by the
microarchitecture. When a TU sends the tag downstream,
it resets its internal TagArrived indication. The next
time this TU can receive a tag is after the tag has wrapped
around. The tag should make at least four hops (over the
four rows) before returning to the same TU. This delay
can be guaranteed to be longer than the time it takes to
reset the TagArrived indication.

The second and third assumptions are satisfied by
careful circuit design. The TagOut outputs are generated
from the TagArrived indication, which is in turn
generated by a self-resetting circuit.

Figure 4: Tag Unit circuit (partial diagram, not
showing branch control lines)

This timed circuit was “hand-designed”  with the
Relative Timing methodology [3] and time-verified in
part with ATACS [4]. The circuits implementing the
handshake interfaces between the TU, the Byte Control
and the Crossbar were also optimized using similar timed
circuits and Relative Timing methodology.

Byte Unit circuit

The Byte Unit is shown in Figure 5. The Byte Latch is
a simple transparent latch. Length decoding may require,
for some instructions, bits from the following three bytes.
In addition, if a length-modifying prefix byte precedes the
instruction, or if the byte is part of a long instruction,
additional control bits from upstream are required. The
length decoder produces seven one-hot encoded length
bits.

The Byte Controller FSM (BC) acknowledges the IF as
soon as an incoming byte is latched. If the byte is marked
unused, the BC issues a pulse on the ByteRdy line.
Otherwise, it closes the latch and initiates length decoding
(by asserting the LatchDecode signal), and asserts (non-
pulsed) ByteRdy. The InstructionReady FSM (IR) waits
for both the locally decoded length and the ByteRdy
signal from L-1 neighboring columns downstream (if the
locally decoded length is L), before generating InstRdy
for the TU.

Once a tag arrives at the column (TagArrived in
Figure 4 is set) the length decoder is notif ied (this signal
is needed for handling prefixed and long instructions).
Furthermore, once the tag is sent out (one of the TagOut
signals in Figure 4 is set), implying also that all bytes of
the present instruction have been steered out through the
XB, the AckGen FSM (AG) instructs IR and BC to get
the new byte. IR then sends the corresponding Preempt
signals (acknowledging ByteRdy) downstream to the
remaining bytes of the instruction so that the length
decoders for these columns can abort and reset upon
receiving the Preempt signals.

At the (non-first-byte) columns that do not receive the
tag, the LDs may output the length code and the IRs may
generate InstRdy. However, as soon as Preempt is
received (after signaling ByteReady), the BU is reset.

The control circuits in BU were designed using the 3D
synthesis tool [5, 6] and optimized using the Relative
Timing methodology [3]. The actual circuit employs some
pulsed signaling and partial handshakes.
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Figure 5: Byte Unit circuit

4. RAPPID test results and comparisons

RAPPID silicon arrived in May 98 (the layout is
shown in Figure 6). It tested successfully, and the results
are explained and analyzed below.

Performance

RAPPID’s measured decoding and steering
performance is in the range of 2.5-4.5 instructions per
nanosecond. This is approximately three times the
performance of a synchronous three-issue design clocked
at 400MHz that achieves a peak decoding and steering
performance of 1.2 instructions per nSec.  RAPPID’s
performance is very data dependent, and these results are
valid for an average instruction stream containing
common instructions of up to seven bytes long. RAPPID
is not optimized for uncommon instructions, and the
effects of rare, long, branch and prefixed instructions on
performance are not reported. Note that RAPPID’s
steering logic issues four instruction streams rather than

three, so the comparison is not completely fair.
RAPPID’s performance was measured at nominal Vcc

(1.8V) and Temperature, while performance for clocked
design includes Vcc and temperature margins. However,
it is not necessary to add the margins to RAPPID, since
asynchronous circuits actually work faster in a system if
the Vcc and temperature conditions are more favorable.
This is in contrast to synchronous parts, which are limited
by the system clock. RAPPID was tested at varying levels
of Vcc for a subset of the instructions, and was
determined to be operational in the range 1.0-2.0V.  The
part was not tested above 2.0V.

The latency from the Byte Latch to the Output Buffer
for common length-two instructions has been found to be
only 42% that of the 400MHz clocked circuit.  The main
reasons for the reduced latency are the absence of clock
boundaries at which the fast data must wait, and the fact
that the instructions are transferred directly to the Output
Buffers through the XB switches. In a clocked design with
a multiple issue rate the first instruction becomes ready
before the last, due to the serial nature of length decoding,
but it still has to wait for the clock edge before the next
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pipe stage can process it.  In the asynchronous
implementation, every instruction is transferred as soon as
it becomes available and the time for which an instruction
waits is not frequency dependent.

Figure 6: RAPPID layout (3.1×3.5mm)

Table 1 contains performance measurements for some
individual instructions. Tests X0-X8 use different mixes
of length-one and length-two instructions. These nine tests
consist of a single 16-byte wide cache line with 0 to 8
length-two instructions followed by 16 to 0 length-one
instructions (test Xi consists of i length-two instructions
followed by 16-2i length-one instructions). The length-
two instructions in the X tests were of the type wherein
the length can be determined by examining the first byte.
Test I0 consists of eight length-two instructions, where the
second byte is a ModR/M byte, which complicates length
calculation [7]. A timing problem (setup time at the length
decoder input) restricted full use of the input FIFO in
some cases, so we opted to use a single cache line. The
single cache line is repeatedly read from the head of the
input FIFO, keeping the FIFO loop off the critical path.
The tests used to measure the power also contributed to
the performance measurements.

The measured performance numbers were correlated
with the COSMOS switch-level, unit-delay simulator, and
found to have an excellent correlation. This enabled us to
estimate the performance of tests that failed on silicon.

Test Throughput
[Inst./nSec.]

Silicon/
COSMOS

No. Of
Instructions

No. of
Lines

Test Description

X0 4.42 Si 16 1 16 Length 1
X1 4.41 Si 15 1 1 Length 2, 14 Length 1
X2 4.39 Si 14 1 2 Length 2, 12 Length 1
X3 4.48 Si 13 1 3 Length 2, 10 Length 1
X4 4.44 Si 12 1 4 Length 2, 8 Length 1
X5 4.34 Si 11 1 5 Length 2, 6 Length 1
X6 4.21 Si 10 1 6 Length 2, 4 Length 1
X7 4.12 Si 9 1 7 Length 2, 2 Length 1
X8 4.00 Si 8 1 8 Length 2
I0 3.29 Si 8 1 8 Length 2 w/ModRM
Poweri1 2.44 COSMOS 74 21 1st Integer power test
Poweri2 2.49 COSMOS 72 20 2nd Integer power test
Powerf 2.93 COSMOS 81 26 FP Power test
Mix0 3.48 COSMOS 77 14 Length 1-5 mix
Mix1 3.35 COSMOS 98 18 Length 1-7 mix
C34 3.10 COSMOS 5 1 4 Length 3, 1 Length 4
C223 3.65 COSMOS 6 1 2 Length 2, 4 Length 3

Table 1: RAPPID performance tests
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Power

RAPPID power measured on silicon is compared to the
simulated power of the logic performing the length
decoding (marking) and instruction steering for a
comparable clocked circuit.  The comparison was made
using the integer power test from the Pentium power test
suite.  The results show that RAPPID consumes about one
half the energy as the clocked design.

Since execution times differ greatly between these
designs, we calculated the energy required to execute one
loop of the test program.  The FIFO was placed in a mode
where it would not cycle the instructions.  This permitted
us to avoid aliasing our power results with the high energy
FIFO circuit but limited us to evaluating a single cache
line at a time.  Therefore we measured the power of each
instruction individually.  The inner loop of the Pentium
integer power test contains ten instructions, so we
generated ten separate tests, each measuring the power of
one of the instructions.  Each such test consists of one
instruction from the Pentium test padded by length one
instructions to the end of the line. Knowing the power
consumed by the length one instruction, we could
calculate the power for individual instructions and the
complete test suite.   These results compare processors
executing at different speeds and only compare a single
test; a more accurate comparison should include a power-
performance curve over a larger instruction mix, which is
beyond the scope of this research.

RAPPID was not optimized for low power, and its
superior efficiency is due only to its asynchronous design
and our specific asynchronous design methodologies. In
particular, data (instruction bytes) are not moved around
unless necessary; they are stored only once, in the Byte
Latch.

Area

RAPPID’s area is compared to the area of a circuit
performing the similar functionality designed on the same
0.25µ process.  Apple-to-apple area comparison is
difficult because of the different requirements,
performance, and microarchitecture. The principal
sources of inaccuracy are:

1. The three issue instruction steering logic in the
clocked design contained considerably more
functionality than the comparable four issue
circuit in RAPPID.

2. Significant differences existed between the
floorplans.

3. RAPPID doesn’t handle the instruction pointer,
illegal opcodes, bogus branches, and has only

length-modifying prefix handling.
4. Some of the clocked circuits contain unrelated

logic, and isolating the relevant parts is difficult.
5. RAPPID layout is not optimized for density due to

resource limitations.
Our analysis shows that RAPPID consumes 22% larger

area than the clocked design. This is a very reasonable
area penalty for the improvements in throughput, latency
and power. In conclusion, our analysis indicates that there
is no evidence for a large area penalty inherent to
asynchronous design.

Testability

Testability is considered a major potential risk for
asynchronous circuits, mainly because the production
testers are clock-based, and the tested devices have to
exhibit a clock accurate behavior. A chip that includes an
asynchronous unit does not behave in this way. Two
common ways to work around this problem are to
surround the asynchronous unit by a scan register and test
it using Built-In Self Test (BIST), and to use only test
vectors which are known to exhibit predictable behavior
with respect to the clock. For fully asynchronous chips, a
new type of tester will be required. Another testability
issue in self-timed circuits, wherein the correct behavior
of the circuit depends on relative delays, is that there may
be faults that are not represented or are not detectable
using the common stuck-at fault and delay models.

In RAPPID we used a BIST approach in which we
created a cellular automaton to feed vectors to RAPPID
[8]. A signature analyzer is placed on the output to
observe the signal states. The output signals and some
input signals were connected to the signature analyzer.
One modification was made to the cellular automaton to
test for two-opcode instructions which were too rare to be
generated by the automaton. A similar modification is
required to generate sequences of prefixes, but was not
implemented.

The BIST logic was not implemented on silicon due to
schedule constraints. It was designed at schematics level,
and simulated using COSMOS switch-level fault
simulator. Faults were injected in one column only, and
only in one of the Tag Units in this column, in order to
keep runtime reasonable. We expect the coverage for all
blocks to be nearly identical independent of their position
in the array.

The stuck-at fault coverage for the Tag Unit was
98.6%, after eliminating the untestable weak feedback
faults in the domino keepers. The corresponding coverage
for the rest of the column (Length Decoder and Byte
Control) is 91.2%, lacking mainly because the prefix
handling logic was not exercised. Analysis of the
undetected faults revealed an interesting type which is



specific to self-timed circuits. These circuits include some
transistors which are there in order to allow the circuit to
function correctly under a range of delays on gates and
wires. These transistors may become redundant under a
specific assignment of delays, as is the case with the unit
delay model in COSMOS. This is an issue for production
testing as well, since the condition at test time may be
different than required for detecting the fault. We
observed some undetected faults that are due to a
redundant transistor under the circuit’s relative delays.

Silicon debugging

Debugging an asynchronous circuit on silicon without
direct probing may be an issue since the circuit is self-
timed, and one cannot stop the clock and scan-out the
state signals. This is especially true with the self-resetting
pulsed circuits used in RAPPID, since by the time the
circuit stops, the signals have already returned to their
initial states. A special debug feature was designed in
RAPPID to facilitate silicon debugging. Eight bits in the
scan-in chain are dedicated to this feature. Each bit, when
set, blocks the resetting of an internal state signal.
Additional logic required to implement this blocking is
minimal. In most cases, it required adding just one input
to an already existing gate. All these additions were done
off the critical paths, since the reset path is usually non-
critical. The frozen state signals were then scanned out
and observed. The debugging logic enabled us to identify
three different timing-related failures of the first silicon
we received in a very short time. We made a quick fix for
one of them, which proved to be correct and allowed us to
test the device.

5. Discussion

We summarize some of our key observations below. In
the early design stage, we learned how to optimize
asynchronous circuits mainly for high performance at the
microarchitecture level:

• Optimize for the common cases: We optimized the
tagging circuit for up to seven bytes and the length
decoder for common instructions [1].

• Employ timing assumptions, direct signaling and
pulsed logic to avoid the full handshake overhead
[3].

• Use a one-hot domino circuit with automatic
completion detection, e.g., for the length decoder.

• Scalable parallel operation can balance the various
operational rates for performance: We used four
rows of tagging units and output buffers to match
tagging time to the instruction steering time.

• Preempting asynchronous circuits is possible: We

employed it in the length decoder to restart the
decoding in non-first-bytes, as well as in case of
prefixes and long instructions.

• Synchronization that requires wide inefficient
gates can at times be deferred by splitting the
design into concurrent paths and moving the
synchronization to a less expensive location. For
example, RAPPID does not synchronize all
sixteen bytes at the input; rather, the bytes
proceeds along concurrent paths, and only get
synchronized at the most opportune time by the
Tag Units.

In the later stages of the design, key observations were
mostly related to methods for asynchronous control circuit
optimizations [3]:

• Relative timing assumptions were used to simplify
the control circuits thus increasing their
performance.

• Relative timing assumptions were added to the
formal verification tool ANALYZE.

• Pulsed pipeline control simplified the circuit and
increased performance.

• Footed rather than unfooted domino may yield a
faster circuit due to relaxed race conditions.

Self-timed circuits are a potential solution to future
design problems like delay variations and clock
distribution. We are investigating the adaptive
synchronization scheme for communication among units
on chip in the presence of large clock skew [9] and a
scheme to embed self-timed modules without significant
latency penalty in globally synchronous systems [10]. We
are also designing a complete CAD system for timed
circuit design [11, 12, 13], and are working on Design for
Testability (DfT) solutions for the undetectable faults in
self-timed circuits. Such CAD and design techniques are a
potential solution to the issues we will face in the future,
given current trends of increasing clock frequency,
interconnect delays, and delay variations.

6. Conclusion

Our aggressive design methodology for asynchronous
systems has resulted in a circuit that achieves three times
the performance of its high-performance commercial
synchronous counterpart, incurring half the latency and
consuming half the power, at a comparable silicon area.
We have found that the main limitation to exploiting this
potential is the lack of appropriate CAD tools.
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