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Abstract

This paper describes an investigation of potential
advantages and risks of applying an aggressive
asynchronous design methodology to Intel Architecture.
RAPPID ( RevoVing AynchmonousPentum® Procesor
Instruction Decodet), a prototype IA32 instruction
length decodng and geeling unt, was implemengd usng
self-timed techniquesRAPPID chip was fabricated ona
0.251 CMOS poces and teted siccesfully. Resilts
show significant advantages—in particular, performance
of 2.5-4.5ingtructiongdnS—iith manageal# risks usng
this desgn technology. RAPPID achievweetimesthe
throughputand haf the latency, dssipating only half the
power and requiring aboutthe ssame aea asan exsting
400MHz clocked cicuit.

1. Introduction

The RAPPID research project started in 1995 in Intel
Israel Dedgn Center, am conpleted in 1998 n Intel’s
Strategc CAD Lab in Oregn. The goal of the project
was to demonstrate the dhty to design highspeed
asynchronous circuits as a @ential sdution for
microprocesor desgn if ard when clocked desgn
becones too dificut. The RAPPID project aggressiwly
applied selftimed technigqies to evaluate therisks,
conpared prospecty adantages aginst a conparable
commercial prodwt, ard dewloped a useful
methodology.

Power, process ariations, ard increased clock
frequency present érmidable challenges ey, with
increasing risk indture pocess generatis. Selftiming
presents ptential sdutions to same of thesechallenges
and is alreadyused inindustry in restricted érms. This
work makes a coparisan between theinstructian length

decodig and steering logic of a 400MHz abcked desgn
and RAPPID in order to ewluate the rik versus reward of
using nore aggressivesdf-timing.

Selftimed nethodology utilizes handshaking to
guarantedunctionality. These potocols are othogonal to
implementation media, and have beenused or slown to
work in techndogies ranging from relays and vacuum
tubes to TTL, MOS, and RSFQ @vices andin multiple
implementation styles. Therebre, it stould be possibleto
implement selftimed circuits using anyfuture circuit or
implementation techndogy that krings ait advantages in
performance or pover.

The RAPPID mrethodology addstiming information to
handhaking [3], which enalles snaller, nore testale,
faster,andlower power circuits. Havever, it intraduces a
potential risk d increasedfailure rate if timing margins
are tight. This risk can k addressedin the iture with
beter desgn ard verificaion tools.

RAPPIDwas implemerted ona 0.25 CMOS proces.
The desgn uses gatic ard domino gates from a gardard
synchronous library, with a few custom circuts, suwch as
C-elenerts.

Potential adiantages D full self-timing in
microprocessors oude nicroarchitectual charges that
incorporate multiple frequency domains and pipelining
tecmiques trat nmetch a particliar problemrather than a
chip-wide corstraint. For exanple, RAPPID combines
frequency domains operaing at approxmately 3.6GHz,
900MHz, ard 700MHz. Sif-timed deiyns canresilt in
adwantages in power corsumption, performance aml
latercy. We disciss eachof these issas inmore detail in
the bodyof the paper.

The perceied risks at tle startof this desig included
testalility, sensitivity to noise o contral lines, timing
verification and potertial area imrease. Somof these
risks have beenassessed drare presded.



The design was motivated by the observation that
instruction length decoding could pose a bottleneck in
variable length instruction set architectures. As reported
in [1], our anaysis of the Pentium variable length
instruction set revealed two principal findings (Figure 1):
First, the average instruction length is about three bytes,
and instructions longer than seven bytes are rare. Second,
very few instruction types are used frequently. RAPPID
design exploits these findings.
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Figure 1. Pentium instruction set statistics;
bar graphs show relative dynamic frequencies,
line graphs indicate cumulative frequencies.

RAPPID comprises three stages. The Length Decoder
receives a sixteen-byte cache line and speculatively
computes 16 instruction lengths in parallel, assuming that
each byte starts a new instruction. A Tag Unit in the first
byte of an instruction passes a tag downstream to the first
byte of the next instruction; 4x16 Tag Units are
interconnected in a torus. The instructions are routed on
four separate 62-bit crossbar channelsto the output.

In the rest of this paper we present the RAPPID

microarchitecture, explain the design methodology,
compare RAPPID to a contemporary clocked design, and
discuss the risks versus rewards.

2. RAPPID microarchitecture and basic
operation

RAPPID receives 16-byte wide instruction cache lines
at its input, extracts the instructions, and places each
instruction separately in the output buffers. As shown in
Figure 2, sixteen paralel length decoders are employed,
which speculatively compute the length as if a new
instruction began at each byte position. A toruslike
distributed tagging and crossbar switching circuit with 16
columns and 4 rows packs the bytes into instructions and
steers them into four output buffers. These dimensions are
designed to balance the average computation rates.

Theinput FIFO

The Input FIFO (IF) holds 16-byte wide input cache
lines. The FIFO is an instruction delivery mechanism
designed to operate faster than the length Decode and
instruction steering Unit (DU). Keeping instruction
delivery off the critical path allows us to measure
unbiased maximum DU performance. The FIFO is
asynchronous, but its implementation details are not
described here, as it is used only as an interface to the
tester. Since RAPPID decoding operation is faster than
the testers ahlity to suply new data, the dta, ace
loadedin the FIFO, are reirculated. The FIFO is loaded
saidly through ascan regista. Ona the FIFO is filled,
RAPPID operationstarts, ad the lines are readrém the
FIFO. The FIFO can be read cglically, erabling
cortinuous operationfor performance measuemnerts. The
FIFO containsinstructian bytes, andthree aditional hts
for eachbyte, irdicating whether this byte is wed (U),
whether it is the ifst byte d a pedcted taken lbanch
instruction (B), ard whether it is a brarch target (T). The
predction and target lits are drived from the BIB
(brarch target buffer). If a line conains a predicted tadn
brarch, the bytes following the em of the bramh
instruction up to the end of the line andfrom the
beginning d the next line, which contans the branch
target, up to the branch target are marked unusel, i.e.,
their U bits are cleared. fe first line ater reset starts at

the frst byte (byte 0.
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Figure 2: RAPPID microarchitecture

Every byte in the IF is controlled separately, so the IF
effectively consists of sixteen separate 11-bit wide
parallel FIFOs. This structure alows the individual bytes
to be transferred to the DU when needed, without having
to wait for the DU to accept the next linein full.

The Length Decoding and Steering Unit

The core of RAPPID is the Length Decoding and
Steering Unit (DU). The DU consists of 16 identica
blocks, or columns, one for each input byte, and four
output buffers. Each column consists of a Byte Unit (BU),
comprising the Byte Latch, Byte Control, and Length
Decoder, and four identical Tag Units (TU) and Crossbar
Switches (XB). The Length Decoder implementation is
optimized for common instructions, such that length
decoding for common opcodes is faster than for rare ones
[1]. The TUs and XBs are arranged in 16 columns and
four rows, wrapped around in atorus. Each XB in the four
rows is connected to an output buffer.

Each column receives a byte from the instruction line
at the head of the IF, latches it in the Byte Latch, and
performs a speculative length decoding assuming that an
instruction starts at that byte. Each TU waits for the
following three events to occur (See Figure 4):

1. TAGIN: A tag arrives from one of the neighboring

columns upstream.

2. INSTRDY: Length caculation for the column is
completed and the instruction is ready, meaning
that all the instruction bytes are ready in their Byte
Latches.

3. XBRDY: The XB of the row is ready to accept a
new instruction.

Once these three events occur, which may happen in any
order, the tagged TU performs the following three
operations in parallel:

1. Sends the tag to the TU in the column of the next
instructian’s first byte in the next rav.

2. Transkrs the instructio bytes, almg with
additional information on the length and prefixes,
to its row’s XB, which in turn brwards themto
the autput buffer.

3. Notifies its coumn’s BU that the instructio has
been trangrredfrom the Byte Latch tothe XB.

Thatis, orce the (speclative) lergth calcdation has been
conpletedat the column receivng the tagard the XB in

the row of the receivng TU is ready(INSTRDY and

XBRDY have been asseted), the next tagged TU can

immediately perform the aboe three operatiosn

Whena BU is ndified by one d its four TUs that the

instruction has leen trangrred to the XB (operation 3
above), it gpens its Byte Latch, which permits decaling of
the next instructio to begin if it is availabe. The BU also



notifies the other BUs containing the remaining bytes of
this instruction that they may open their Byte Latches. In
this way, the length decoding (which is a long latency
operation) of bytes from the next cache line starts as soon
as the bytes from the previous line have been consumed.

The columns and rows are arranged in a torus. Hence
each row is a ring around that torus. As the tag wraps
around the torus and crosses from column 15 back to
column O, it falls to the next row. TUs in the fourth row
send the tag to the first row. The operation would be
balanced if the tagged column had decoded the length of
the instruction by the time the tag reaches it. Similarly, the
corresponding XB would have had to complete the
transfer of the previous instruction before the tag reaches
it. Thus, in a perfectly balanced situation, the TAGIN,
INSTRDY, and XBRDY events would occur
simultaneously. Unfortunately, this is not always the case
because the latency of length decoding depends on the
opcode, and special case handling of branches, long
instructions and prefixes incurs alonger latency.

The following example demonstrates the path of the
tag through the TUs, assuming a sequence of 3-byte long
instructions, as shown by the arrows in Figure 2: Column
Orow0" column3rowl1l” column6row?2” column
9row 3" column 12 row 0 ° column 15 row 1 °
column2row 2"

Balanced design. RAPPID’s eration consists of

indepenlent selftimed cyles. The ngjor cycles are(see
Figure 3):

From Input FIFO

» The lergth decodig ard instruction readycycle.
This cycle accepts a Ity from the IF, decodeghe
instructin length (as all necessabytes becane
available), and generates tle Instruction Ready
flag (based orthe calclated lemgth ard the Byte
Read bits from the Byte Latches @& the renaining
bytes in the instructio).

» The steerig logic cycle. This cyle aligns
instruction bytes from the Byte Latches and
forwards themto the autput buffer over the XB

» Tagcycle. This cycle directlyforwards the tagto
the start & the next instructiom, and also
synchronizes anl orders tk aboe two cycles.

Each cycle hes its claracteristic latety that can be

indepenlertly optmized baed on performance trgets.
The lergth decodiy cycle is optinized for common
instructions [1]. The tagcycle is optinized for conmon
lengths, as discased belowThe steerig logic cycle is
matched to the throughput and latency of the output
buffers. We can conpose tlese cygles, &ng
asynchronous protocols, ina scaleableaShion to achieve
the target system perbrmance. This architectue is
scaleable irboth the horizontal (length decodimy cycle)
ard vertical (steerig logic cycle) dimensions. We can
increase the performance through additiond parallelism to
acheve target perbrmance.

LENGTH 16 byte columns
DECODING Each operating at 0.72 GOPS average rate
CYCLE e Combined average rate 0.72x16=11.5 GOPS
On average, 5 instructions / cache line
Effective average rate 0.72x5=3.6 GIPS
16x4=64 Tag units
TAG Combined rate 3.6 GIPS
CYCLE 4-step top-down cycle at 0.9 Cycles/nS
On average, 5-step left-right cycle at 0.72 Cycles/nS
\ 4
4 output buffers
STEERING Each operating at 0.9 GIPS
LOGIC Combined rate 3.6 GIPS
CYCLE

Figure 3: RAPPID computation cycles and execution rates

Each cycle is balaned if the function can conplete
just bebre its reslis are regired. The cycle times are
deternined bythe scale ath wap factors. Asuming an

averag instruction length of three, each 16-byte cacte
line hdds alout five instructims. Therebre the length
decodig and tag cycles are balased if the TAGIN to



TAGOUT latency is one fifth of the decoding latency.
The XB latency is four times the tag cycle latency, hence
the TU and XB rows are scaled to four instances to keep
the steering logic cycle balanced relative to the other two.
RAPPID was designed to minimize the TAGIN to
TAGOUT latency (and hence the tag cycle time); the
other two cycles were scaled to match the average tag
cycletime.

These three intertwined cycles demonstrate one
advantage of the asynchronous solution. The TAG cycle
achieves the average rate of 3.6 GIPS (close to 4.5 GIPS
in some of the tests, as reported below), consuming on
average 720M cache lines per second. Lines with fewer
than five ingtructions (average length greater than three
bytes) are consumed faster, whereas lines with shorter
instructions are consumed slower. The tag cycle, being a
central point of gathering and distributing instructions, is
the performance-critical component in this architecture.
The steering logic cycles are shielded from variations in
the length decoding cycle by the tag cycle.

The Length Decoder is optimized for common
opcodes, based on our benchmark analysis, which
indicates that 15% of the decoding PLA minterms are
used 90% of the time. The length decoding for common
opcodes is done using domino logic; furthermore, the
decoding of the most common opcodes is pushed closer to
the outputs [1]. The rare opcodes are decoded using a
slower, self-timed NOR-NOR PLA.

Handling long instructions. RAPPID’s DU is optimized
for instructions up to seven bytes long, which constitute
99.8% of the cases. Longer instructions (up to 11 bytes)
are handled through a separate, slower protocol. Thus,
each TU can tag the seven TUs in seven neighboring
columns downstream in the next row down, and be tagged
by any of the seven TUsin the seven neighboring columns
upstream in the previous row up. The tags are sent via
dedicated point-to-point lines. There are seven tag lines at
the input and output of each TU.

Instructions longer than seven bytes are transferred to
two XBs and output buffers in two consecutive rows. The
first four bytes of the instruction (head) are transferred to
the XB in the row containing the tagged TU for the
instruction’s first byte, and the remaining bytes (tail) are
transferred to the XB in the next row down. When the
calculated length is greater than seven, the Byte Control
signals the columns containing the fifth byte of the
instruction, through three dedicated lines, that it holds the
first byte of the instruction’s tail. The fifth byte's Byte
Control modifies the length to 4, 5, 6, or 7, based on the
three bits received from the first byte’'s column (for total
instruction length of 8, 9, 10, or 11, respectively), and
sends an acknowledgment to the first byte's column.
Upon receiving this acknowledgment, the first byte's

column modifies the Length Decoder’s output to four.
The tagged TU in that column then operates as if the
instruction length were four. Four bytes are transferred to
the XB (together with an indication that it is the head of a
long instruction), and the tag is sent to the TU in the fifth
byte’'s column, in the next row down. The fifth byte's
column operates as if it were the first byte of a short
instruction. It transfers the tail to the XB in the tagged
TU’s row, and sends the tag to the first byte of the next
instruction.

Instruction prefix bytes, including length-modifying
prefixes, are handled in a similar manner.

Handling branch instructions. When a cache line
contains a predicted taken branch instruction, the tag
should be routed from the TU of the branch instruction’s
first byte to the TU of the branch target's first byte. The
target always resides in the next cache line (since the fetch
unit is designed to fetch the target cache line of predicted
taken branches), so the bytes in between the branch and
the target instruction are skipped. The first bytes of the
branch and target instructions are marked in the input
FIFO with B and T bits, respectively, and the unused
bytes in between the branch and target instructions have
their used (U) bits reset. The B and T bits from the Byte
Latch are routed to al four TUs in that column. When a
branch instruction is tagged, the corresponding TU does
not forward the tag to the first byte following its length
since that byte may not be the start of the target
instruction. Instead, a specia tag is sent to the next row
that asserts the INJECT signal. Each row has a local
INJECT signa that is routed to al TUs in that row.
When a row’s INJECT signal and a column’s T bit are
asserted, a tag is generated for that TU and the row’s
INJECT signal is de-asserted. This forwards the tag from
the branch to the target instruction without tagging
intermediate bytes. From that point onward, the operation
continues normally.

The logic generating the B, T, and U hits is not
implemented in RAPPID. They are supplied pre-decoded
inthelF.

3. RAPPID circuits

We briefly describe two principa RAPPID circuits.
The Tag Unit circuit demonstrates the use of pulse logic
and reduced handshake, whereas the Byte Control circuit
provides some insight into the complexity of the design.

The Tag Unit circuit

The Tag Unit (TU) is responsible for transferring the
tag from the column containing the first byte of an



instruction to the column containing the first byte of the
next instruction. There are seven Tagl n inputs to each
TU, and seven TagQut outputs (Figure 4). Additionaly,
special Tagl n and TagQut lines are used for branch
handling.

Transferring the tag to the next TU involves a full
reguest-acknowledge handshake cycle when using speed-
independent protocols. This means that for each of the
seven TagQut outputs there should be a TagQut Ack
acknowledge signal. Such a structure would significantly
complicate and slow down the TU logic and wiring. In
order to simplify the implementation, the TagQut signals
are implemented as self-timed pul ses, eliminating the need
for acknowledgment signals. The pulsed implementation
is correct only under the following timing assumptions [2,
3]:

«  When aTU sendsthe tag pulse to the next TU, the
receiving TU is ready to accept it, i.e. the self-
resetting signal TagAr ri ved (Figure 4) is off,

e The TagQut pulse is wide enough to cause the
state transition in the receiving TU, i.e. the
TagArri ved signal becomes asserted, and

e The TagQut pulseis narrow enough such that it
is deasserted before the TagArrived
indication in the receiving TU is de-asserted.

The first assumption is satisfied by the
microarchitecture. When a TU sends the tag downstream,
it resets its internal TagArri ved indication. The next
time this TU can receive atag is after the tag has wrapped
around. The tag should make at least four hops (over the
four rows) before returning to the same TU. This delay
can be guaranteed to be longer than the time it takes to
reset the TagAr ri ved indication.

The second and third assumptions are satisfied by
careful circuit design. The TagQut outputs are generated
from the TagArrived indication, which is in turn
generated by a self-resetting circuit.

InsthyB:D
XBRdy

Length, = — ) © TagOut,
Length, >— ) . Tagout,
Tagln, TagArrived
Tagin, 5— = ) D TagOut
Tagin, Length, O———/ !

Figure 4: Tag Unit circuit (partial diagram, not
showing branch control lines)

This timed circuit was “handdesigned with the
Relative Timing methodology [3] ard time-verified n
part with ATACS [4]. The circuits inplementing the
handshake irterfaces beteenthe TU, the Byte Control
andthe Crosslkar were alsooptimized using sinilar timed
circuits ard Relative Timing methodology.

Byte Unit cir cuit

The Byte Unit is shavn in Figure 5 The Byte Latchis
a simple transg@rent latch. kength decading ey require,
for same instructians, hits from the following threebytes.
In addition, if a lergth-modifying prefix byte preceaksthe
instruction, o if the lyte is @t of a long instructim,
additional cantra bits from upstreamare required. The
length decoder prodies seven ore-hot ercoded length
bits.

The Byte Controller FSM (BC) acknowledges the IFas
soon asanincoming byte is latched If the kyte is narked
unusel, the BC issues a pulse on the ByteRdy line.
Otherwise, it clees the latclandinitiateslengthdecading
(by asseting the latchDecale signal) and assets (non-
pused) ByeRdy. The InstructionReady FSM (IR) waits
for both the lccally decaded length andthe ByteRdy
signd from L-1 ndghboring columns downstream (if the
locally decaded length isL), before generating InstRdy
for the TU.

Once a tagarrives at tle column (TagArrived in
Figure 4is set) the lengthatder is ndified (this signal
is neead for handing prefixed and long instructians).
Furthermore, once the tag is sat out (one of the TagOut
signalsin Figure 4is set), inplying alsothat all tytes d
the present instruction have been steered out through the
XB, the AckGen FSM (AG) instructs IR ard BC to get
the rew byte. IR then serds the correspoding Preenpt
signds (acknowledging ByteRdy) downsteam to the
remeining bytes d the instructio so that the length
decoders dr these colmns can abort and reset upon
receivng the Freenpt signals.

At the (ronfirst-byte) colunns that do rot receiwe the
tag, the IDs may output the length cde andthe IRs nay
generate IrstRdy. However, as soonas Preenpt is
receiwed (ater signaling ByteReady, the BU is reset.

The control circuits in BU were designal using the3D
synthesis tol [5, 6 and optimized using theRelative
Timing methodology [3]. The acual circuit enploys some
pulsed signding and partial handshaes.
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Figure 5: Byte Unit circuit

4. RAPPID test results and comparisons

RAPPID silicon arrived in May 98 (the layout is
shown in Figure 6). It tested successfully, and the results

are explained and analyzed below.
Performance
RAPPID’s measured decoding and steering

performance is in the range of 2.5-4.5 instructions per
nanosecond. This is approximately three times the
performance of a synchronous three-issue design clocked
at 400MHz that achieves a peak decoding and steering
performance of 1.2 instructions per nSec. RAPPID’s
performance is very data dependent, and these results are
valid for an average instruction stream containing
common instructions of up to seven bytes long. RAPPID
is not optimized for uncommon instructions, and the
effects of rare, long, branch and prefixed instructions on
performance are not reported. Note that RAPPID’s
steering logic issues four instruction streams rather than

three, so the comparison is not completely fair.

RAPPID'’s performance was measured at nominal Vcc
(1.8V) and Temperature, while performance for clocked
design includes Vcc and temperature margins. However,
it is not necessary to add the margins to RAPPID, since
asynchronous circuits actually work faster in a system if
the Vcc and temperature conditions are more favorable.
Thisisin contrast to synchronous parts, which are limited
by the system clock. RAPPID was tested at varying levels
of Vcc for a subset of the instructions, and was
determined to be operational in the range 1.0-2.0V. The
part was not tested above 2.0V.

The latency from the Byte Latch to the Output Buffer
for common length-two instructions has been found to be
only 42% that of the 400MHz clocked circuit. The main
reasons for the reduced latency are the absence of clock
boundaries at which the fast data must wait, and the fact
that the instructions are transferred directly to the Output
Buffers through the XB switches. In a clocked design with
a multiple issue rate the first instruction becomes ready
before the last, due to the seria nature of length decoding,
but it still has to wait for the clock edge before the next



pipe stage can process it. In the asynchronous
implementation, every instruction is transferred as soon as
it becomes available and the time for which an instruction
waits is not frequency dependent.

Table 1 contains performance measurements for some
individual instructions. Tests X0-X8 use different mixes
of length-one and length-two instructions. These nine tests
consist of a single 16-byte wide cache line with O to 8
length-two instructions followed by 16 to O length-one
instructions (test Xi consists of i length-two instructions

8 COLUMNS 8 COLUMNS . . .
- e mm == w = == == == == fOllowed by 16-2i length-one instructions). The length-
AT TINTT T 11T 510! twoinstructionsin the X tests were of the type wherein
2q A RS OB (R the length can be determined by examining the first byte.
§§ | E I | ! | |i ! l' L Test 10 consists of eight length-two instructions, where the
EQV ! E E I I . i |: o !_J_ second byte is a ModR/M byte, which complicates length
A B E sme = ey e Ty :~ g l-::;:— 4 calculatiqn [7]. A timing problem (setup ti me at the Ienth
2 J*.I }'?ﬂ ';ill'.l El | J_.l'*i!'ﬂlil I-Ej i.; decoder input) restricted full use Qf the input !:IFO in
g5 E T T 2B == 224 some cases, so we opted to use a single cache line. The
g | @R R 2 © | single cache line is repeatedly read from the head of the
53 e g ek = = input FIFO, keeping the FIFO loop off the critical path.
§§ == =T = =] The tests used to measure the power aso contributed to
® H H !I:}E!! }h!l £ * % ﬂ the performance measurements.
SR S BT R s The measured performance numbers were correlated
: _!: et ‘:'L::i e s - 5 | with the COSMOS switch-level, unit-delay simulator, and
0 i .t &= EE l— L found to have an excellent correlation. This enabled us to
E 2 - 1 [ = 1 3 estimate the performance of tests that failed on silicon.
gg TR -i l.i
] i i
<3 - L
Figure 6: RAPPID layout (3.1x3.5mm)
Test Throughput Silicon/ No. Of No. of Test Description
[Inst./nSec.] COSMOS Instructions Lines
X0 4.42 Si 16 1 16 Length 1
X1 441 Si 15 1 1 Length 2, 14 Length 1
X2 4.39 Si 14 1 2 Length 2, 12 Length 1
X3 4.48 Si 13 1 3 Length 2, 10 Length 1
X4 4.44 Si 12 1 4Length2, 8 Length 1
X5 4.34 Si 11 1 5 Length 2, 6 Length 1
X6 4.21 Si 10 1 6 Length 2, 4 Length 1
X7 4.12 Si 9 1 7 Length 2, 2 Length 1
X8 4.00 S 8 1 8 Length 2
10 3.29 Si 8 1 8 Length 2 w/ModRM
Poweril 2.44 COSMOS 74 21 1% Integer power test
Poweri2 2.49 COSMOS 72 20 2" Integer power test
Powerf 2.93 COSMOS 81 26 FP Power test
Mix0 3.48 COSMOS 77 14 Length 1-5 mix
Mix1 3.35 COSMOS 98 18 Length 1-7 mix
C34 3.10 COSMOS 5 1 4Length 3,1 Length4
C223 3.65 COSMOS 6 1 2 Length 2, 4 Length 3

Table 1: RAPPID performance tests




Power

RAPPID power measured on silicon is compared to the
simulated power of the logic performing the length
decoding (marking) and instruction steering for a
comparable clocked circuit. The comparison was made
using the integer power test from the Pentium power test
suite. The results show that RAPPID consumes about one
half the energy as the clocked design.

Since execution times differ greatly between these
designs, we calculated the energy required to execute one
loop of the test program. The FIFO was placed in a mode
where it would not cycle the instructions. This permitted
usto avoid aliasing our power results with the high energy
FIFO circuit but limited us to evaluating a single cache
line at atime. Therefore we measured the power of each
instruction individually. The inner loop of the Pentium
integer power test contains ten instructions, so we
generated ten separate tests, each measuring the power of
one of the instructions. Each such test consists of one
instruction from the Pentium test padded by length one
instructions to the end of the line. Knowing the power
consumed by the length one instruction, we could
caculate the power for individua instructions and the
complete test suite.  These results compare processors
executing at different speeds and only compare a single
test; a more accurate comparison should include a power-
performance curve over a larger instruction mix, which is
beyond the scope of this research.

RAPPID was not optimized for low power, and its
superior efficiency is due only to its asynchronous design
and our specific asynchronous design methodologies. In
particular, data (instruction bytes) are not moved around
unless necessary; they are stored only once, in the Byte
Latch.

Area

RAPPID’s area is compared to the area of a circuit
performing the similar functionality designed on the same
0.25u process.  Apple-to-apple area comparison is
difficult because of the different requirements,
performance, and microarchitecture. The principal
sources of inaccuracy are:

1. The three issue instruction steering logic in the
clocked design contained considerably more
functionality than the comparable four issue
circuit in RAPPID.

2. Significant differences existed between the
floorplans.

3. RAPPID doesn't handle the instruction pointer,
illegal opcodes, bogus branches, and has only

length-modifying prefix handling.

4. Some of the clocked circuits contain unrelated

logic, and isolating the relevant partsis difficult.

5. RAPPID layout is not optimized for density due to

resource limitations.

Our analysis shows that RAPPID consumes 22% larger
area than the clocked design. This is a very reasonable
area penalty for the improvements in throughput, latency
and power. In conclusion, our analysis indicates that there
is no evidence for a large area penaty inherent to
asynchronous design.

Testability

Testability is considered a major potential risk for
asynchronous circuits, mainly because the production
testers are clock-based, and the tested devices have to
exhibit a clock accurate behavior. A chip that includes an
asynchronous unit does not behave in this way. Two
common ways to work around this problem are to
surround the asynchronous unit by a scan register and test
it using Built-In Self Test (BIST), and to use only test
vectors which are known to exhibit predictable behavior
with respect to the clock. For fully asynchronous chips, a
new type of tester will be required. Another testability
issue in self-timed circuits, wherein the correct behavior
of the circuit depends on relative delays, is that there may
be faults that are not represented or are not detectable
using the common stuck-at fault and delay models.

In RAPPID we used a BIST approach in which we
created a cellular automaton to feed vectors to RAPPID
[8]. A signature analyzer is placed on the output to
observe the signal states. The output signals and some
input signals were connected to the signature analyzer.
One modification was made to the cellular automaton to
test for two-opcode instructions which were too rare to be
generated by the automaton. A similar modification is
required to generate sequences of prefixes, but was not
implemented.

The BIST logic was not implemented on silicon due to
schedule constraints. It was designed at schematics level,
and simulated using COSMOS switch-level fault
simulator. Faults were injected in one column only, and
only in one of the Tag Units in this column, in order to
keep runtime reasonable. We expect the coverage for all
blocks to be nearly identical independent of their position
inthe array.

The stuck-at fault coverage for the Tag Unit was
98.6%, after eliminating the untestable weak feedback
faults in the domino keepers. The corresponding coverage
for the rest of the column (Length Decoder and Byte
Control) is 91.2%, lacking mainly because the prefix
handling logic was not exercised. Anaysis of the
undetected faults revealed an interesting type which is



specific to self-timed circuits. These circuits include some
transistors which are there in order to alow the circuit to
function correctly under a range of delays on gates and
wires. These transistors may become redundant under a
specific assignment of delays, as is the case with the unit
delay model in COSMOS. This is an issue for production
testing as well, since the condition at test time may be
different than required for detecting the fault. We
observed some undetected faults that are due to a
redundant transistor under the circuit’s relative delays.

Silicon debugging

Debugging an asynchronous circuit on silicon without
direct probing may be an issue since the circuit is self-
timed, and one cannot stop the clock and scan-out the
state signals. This is especially true with the self-resetting
pulsed circuits used in RAPPID, since by the time the
circuit stops, the signals have aready returned to their
initial states. A special debug feature was designed in
RAPPID to facilitate silicon debugging. Eight bits in the
scan-in chain are dedicated to this feature. Each bit, when
set, blocks the resetting of an internal state signal.
Additiona logic required to implement this blocking is
minimal. In most cases, it required adding just one input
to an aready existing gate. All these additions were done
off the critical paths, since the reset path is usually non-
critical. The frozen state signals were then scanned out
and observed. The debugging logic enabled us to identify
three different timing-related failures of the first silicon
we received in a very short time. We made a quick fix for
one of them, which proved to be correct and allowed usto
test the device.

5. Discussion

We summarize some of our key observations below. In
the early design stage, we learned how to optimize
asynchronous circuits mainly for high performance at the
microarchitecture level:

e Optimize for the common cases. We optimized the
tagging circuit for up to seven bytes and the length
decoder for common instructions [1].

e Employ timing assumptions, direct signaling and
pulsed logic to avoid the full handshake overhead
[3].

e Use a onehot domino circuit with automatic
completion detection, e.g., for the length decoder.

e Scalable parallel operation can balance the various
operational rates for performance: We used four
rows of tagging units and output buffers to match
tagging time to the instruction steering time.

e Preempting asynchronous circuits is possible: We

employed it in the length decoder to restart the
decoding in non-first-bytes, as well as in case of
prefixes and long instructions.

e Synchronization that requires wide inefficient
gates can at times be deferred by splitting the
design into concurrent paths and moving the
synchronization to a less expensive location. For
example, RAPPID does not synchronize all
sixteen bytes at the input; rather, the bytes
proceeds along concurrent paths, and only get
synchronized at the most opportune time by the
Tag Units.

In the later stages of the design, key observations were
mostly related to methods for asynchronous control circuit
optimizations [3]:

e Relative timing assumptions were used to simplify
the control circuits thus increasing their
performance.

e Reative timing assumptions were added to the
formal verification tool ANALYZE.

» Pulsed pipeline control simplified the circuit and
increased performance.

*  Footed rather than unfooted domino may yield a
faster circuit due to relaxed race conditions.

Self-timed circuits are a potentia solution to future
design problems like delay variations and clock
distribution. We are investigating the adaptive
synchronization scheme for communication among units
on chip in the presence of large clock skew [9] and a
scheme to embed self-timed modules without significant
latency penalty in globally synchronous systems [10]. We
are also designing a complete CAD system for timed
circuit design [11, 12, 13], and are working on Design for
Testability (DfT) solutions for the undetectable faults in
self-timed circuits. Such CAD and design techniques are a
potential solution to the issues we will face in the future,
given current trends of increasing clock frequency,
interconnect delays, and delay variations.

6. Conclusion

Our aggressive design methodology for asynchronous
systems has resulted in a circuit that achieves three times
the performance of its high-performance commercial
synchronous counterpart, incurring half the latency and
consuming half the power, at a comparable silicon area.
We have found that the main limitation to exploiting this
potentia isthe lack of appropriate CAD tools.
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