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The Lagrangian Relaxation Method for 

Solving Integer Programming Problems 

Marshall L. Fisher 
University of Pennsylvania, Philadelphia, Pennsylvania 

One of the most computationally useful ideas of the 1970s is the observation that many hard integer program- 
ming problems can be viewed as easy problems complicated by a relatively small set of side constraints. 

Dualizing the side constraints produces a Lagrangian problem that is easy to solve and whose optimal value 
is a lower bound (for minimization problems) on the optimal value of the original problem. The Lagrangian 
problem can thus be used in place of a linear programming relaxation to provide bounds in a branch and bound 
algorithm. This approach has led to dramatically improved algorithms for a number of important problems in 
the areas of routing, location, scheduling, assignment and set covering. This paper is a review of Lagrangian 
relaxation based on what has been learned in the last decade. 
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1. Introduction 
It is well known that combinatorial optimization 
problems come in two varieties. There is a small num- 
ber of "easy" problems which can be solved in time 
bounded by a polynomial in the input length and 
an all-too-large class of "hard" problems for which 
all known algorithms require exponential time in the 
worst-case. Among the hard problems, there are "eas- 
ier hard" problems, like the knapsack problem, that 
have pseudo-polynomial algorithms that run in poly- 
nomial time if certain numbers in the problem data 
are bounded. 

One of the most computationally useful ideas of 
the 1970s is the observation that many hard problems 
can be viewed as easy problems complicated by a 
relatively small set of side constraints. Dualizing the 
side constraints produces a Lagrangian problem that 
is easy to solve and whose optimal value is a lower 
bound (for minimization problems) on the optimal 
value of the original problem. The Lagrangian prob- 
lem can thus be used in place of a linear programming 
relaxation to provide bounds in a branch and bound 
algorithm. As we shall see, the Lagrangian approach 
offers a number of important advantages over linear 
programming. 

There were a number of forays prior to 1970 into 
the use of Lagrangian methods in discrete optimiza- 
tion, including the Lorie-Savage (1955) approach to 
capital budgeting, Everett's proposal for "general- 
izing" Lagrange multipliers (Everett 1963) and the 

philosophically-related device of generating columns 

by solving an easy combinatorial optimization prob- 
lem when pricing out in the simplex method (Gilmore 
and Gomory 1963). However, the "birth" of the 
Lagrangian approach as it exists today occurred 
in 1970 when Held and Karp (1970, 1971) used a 
Lagrangian problem based on minimum spanning 
trees to devise a dramatically successful algorithm for 
the traveling salesman problem. Motivated by Held 
and Karp's success Lagrangian methods were applied 
in the early 1970s to scheduling problems (Fisher 
1973) and the general integer programming problem 
(Shapiro 1971, Fisher and Shapiro 1974). Lagrangian 
methods had gained considerable currency by 1974 
when Geoffrion (1974) coined the perfect name for 
this approach-"Lagrangian relaxation." Since then 
the list of applications of Lagrangian relaxation has 
grown to include over a dozen of the most infa- 
mous combinatorial optimization problems. For most 
of these problems. Lagrangian relaxation has pro- 
vided the best existing algorithm for the problem 
and has enabled the solution of problems of practical 
size. 

This paper is a review of Lagrangian relaxation 
based on what has been learned in the last decade. 
The reader is referred to Shapiro (1979a) for another 
recent survey of Lagrangian relaxation from a some- 
what different perspective. The recent book by 
Shapiro (1979b) marks the first appearance of the term 
Lagrangian relaxation in a textbook. 

1861 
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2. Basic Constructions 
We begin with a combinatorial optimization problem 
formulated as the integer program 

Z = min cx 

s.t. Ax = b, 

Dx < e 

x > 0 and integral. (P) 

where x is n x 1,b is m x 1, e is k xl and all 
other matrices have conformable dimensions. Let 
(LP) denote problem (P) with the integrality con- 
straint on x relaxed, and let ZLP denote the optimal 
value of (LP). 

We assume that the constraints of (P) have been 
partitioned into the two sets Ax = b and Dx < e so as 
to make it easy to solve the Lagrangian problem 

ZD(u) = min cx+u(Ax - b), 

Dx and integral, e, 

x > 0 and integral, (LRu) 

where u = (u,..., Urn,) is a vector of Lagrange multi- 

pliers. By "easy to solve" we of course mean easy rel- 
ative to (P). For all applications of which I am aware, 
the Lagrangian problem has been solvable in polyno- 
mial or pseudo-polynomial time. 

For convenience we assume that (P) is feasible and 
that the set X = {x IDx < e, x > 0 and integrall of fea- 
sible solutions to (LRu) is finite. Then ZD(u) is finite 
for all u. It is straightforward to extend the develop- 
ment when these assumptions are violated or when 
inequality constraints are included in the set to be 
dualized. 

It is well known that 
ZD(u)_ 

<Z. This is easy to 
show by assuming an optimal solution x* to (P) and 
observing that 

ZD(u) < cx* + u(Ax* - b) = Z. 

The inequality in this relation follows from the def- 
inition of ZD(u) and the equality from Z = cx* and 
Ax* - b = 0. If Ax = b is replaced by Ax < b in (P), 
then we require u > 0 and the argument becomes 

ZD(u) < cx* + u(Ax* - b) < Z 

where the second inequality follows from Z = cx*, 
u > 0 and Ax* - b < O0. Similarly, for Ax > b we require 
u <O0 for ZD(U) Z to hold. 

We will discuss in a later section methods for deter- 
mining u. In general, it is not possible to guarantee 
finding u for which ZD(u) = Z, but this frequently 
happens for particular problem instances. 

The fact that ZD(u) < Z allows (LRu) to be used in 
place of (LP) to provide lower bounds in a branch 

and bound algorithm for (P). While this is the most 
obvious use of (LRu), it has a number of other uses. 
It can be a medium for selecting branching vari- 
ables and choosing the next branch to explore. Good 
feasible solutions to (P) can frequently be obtained 
by perturbing nearly feasible solutions to (LR,). 
Finally, Lagrangian relaxation has been used recently 
(Cornuejols et al. 1977, Fisher et al. 1979) as an ana- 
lytic tool for establishing worst-case bounds on the 
performance of certain heuristics. 

3. Example 
The generalized assignment problem is an excel- 
lent example for illustrating Lagrangian relaxation 
because it is rich with readily apparent structure. The 
generalized assignment problem (GAP) is the integer 
program 

mn 

Z = minE cijx (1) 
i=1 j=1 

Ex, = l, j=1,...,n, (2) 
i=1 

n 

E-aijxi 
_< 

b,, i= 1,..., m, (3) 
j=1 

xi1 = 0 or 1, all i and j. (4) 

There are two natural Lagrangian relaxations for 
the generalized assignment problem. The first is 
obtained by dualizing constraints (2). 

mn n M 

ZD1(u) = minEE cijxi + E Exi- 1 
i=lj=1 j=1 i=l 

subject to (3) and (4) 
m n n 

= min : E(cij + U)xij - 
EUj i=1j=1 j=1 

subject to (3) and (4). (LR1,) 

This problem reduces to m 0-1 knapsack problems 
and can thus be solved in time proportional to 
n Em, bi. 

The second relaxation is obtained by dualizing con- 
straints (3) with v > 0. 

mn n Mr n 

ZD2(v) = minEE cxijXij 1+ vi Eaijxij 
- bi 

i=1j=1 i= i=1 

subject to (2) and (4) 
n m 

= min (cij + viaij)xi --sEvibi 
j=1 i=e i=1 

subject to (2) and (4). (LR2v) 
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This relaxation is defined for v > 0, which is a 
necessary condition for ZD2(v) < Z to hold. Since con- 
straints (2) are generalized upper bound (GUB) con- 
straints, we will call a problem like (LR2t) a 0-1 GUB 
problem. Such a problem is easily solved in time pro- 
portional to nm by determining 

mini(cij 
+ viaij) for 

each j and setting the associated xij = 1. Remaining xij 
are set to zero. 

4. Issues 
A little thought about using (LR1,) or (LR2v) within 
a branch and bound algorithm for the generalized 
assignment problem quickly brings to mind a number 
of issues that need to be resolved. Foremost among 
these is: 

(1) How will we select an appropriate value for u? 
A closely related question is: 

(2) Can we find a value for u for which ZD(u) is 
equal to or nearly equal to Z? 

The generalized assignment problem also shows 
that different Lagrangian relaxations can be devised 
for the same problem. Comparing (LR1u) and (LR2v), we see that the first is harder to solve but might pro- 
vide better bounds. There is also the question of how 
either of these relaxations compares with the LP relax- 
ation. This leads us to ask: 

(3) How can we choose between competing relax- 
ations, i.e., different Lagrangian relaxations and the 
linear programming relaxation? 

Lagrangian relaxations also can be used to provide 
good feasible solutions. For example, a solution to 
(LR2v) will be feasible in the generalized assignment 
problem unless the "weight" of items assigned to one 
or more of the "knapsacks" corresponding to con- 
straints (3) exceeds the capacity bi. If this happens, 
we could reassign items from overloaded knapsacks 
to other knapsacks, perhaps using a variant of a bin- 
packing heuristic, to attempt to achieve primal feasi- 
bility. In general we would like to know: 

(4) How can (LRu) be used to obtain feasible solu- 
tions for (P)? 

How good are these solutions likely to be? 
Finally, we note that the ultimate use of Lagrangian 

relaxation is for fathoming in a branch and bound 
algorithm, which leads us to ask: 

(5) How can the lower and upper bounding capa- 
bilities of the Lagrangian problem be integrated 
within branch and bound? 

The remainder of this paper is organized around 
these five issues, which arise in any application of 
Lagrangian relaxation. A separate section is devoted 
to each one. In some cases (issues (1) and (3)) gen- 
eral theoretical results are available. But more often, 
the "answers" to the questions we have posed must 
be extrapolated from computational experience or 

theoretical results that have been obtained for specific 
applications. 

5. Existing Applications 
Table 1 is a compilation of the applications of 
Lagrangian relaxation of which I am aware. I have 
not attempted to include algorithms, like those 
given in Bilde and Krarup (1977) and Camerini and 
Maffioli (1978), that are described without reference to 
Lagrangian relaxation, but can be described in terms 
of Lagrangian relaxation with sufficient insight. Nor 
have I included references describing applications of 
the algorithms in Table 1. For example, Mulvey and 
Crowder (1979) describe a successful application of 
the Lagrangian relaxation in Cornuejols et al. (1977) to 
a specialized uncapacitated location problem involv- 
ing data clustering. Finally, the breadth and devel- 
oping nature of this field makes it certain that other 
omissions exist. I would be happy to learn of any 
applications that I have overlooked. 

This list speaks for itself in terms of the range of 
hard problems that have been addressed and the types 
of embedded structures that have been exploited in 
Lagrangian problems. Most of these structures are 
well-known but two require comment. The pseudo- 
polynomial dynamic programming problems arising 
in scheduling are similar to the 0-1 knapsack prob- 
lem if we regard the scheduling horizon as the knap- 
sack size and the set of jobs to be scheduled as the 
set of items available for packing. The notation VUB 
stands for "variable upper bound" (Schrage 1975) and 
denotes a problem structure in which some variables 
are upper bounded by other 0-1 variables. An example 
of this structure is given in j7. 

6. Determining u 
It is clear that the best choice for u would be an opti- 
mal solution to the dual problem 

ZD= max ZD(u) (D) 

Most schemes for determining u have as their objec- 
tive finding optimal or near optimal solutions to (D). 

Problem (D) has a number of important structural 
properties that make it feasible to solve. We have 
assumed that the set X = {x IDx < e, x > 0 and 
integral} of feasible solutions for (LR,) is finite, so we 
can represent X as X = {xt, t = 1,..., T}. This allows 
us to express (D) as the following linear program with 
many constraints. 

ZD = max w, 

w cx't + u(Axt - b), t = 1,..., T. (D) 



Fisher: The Lagrangian Relaxation Method for Solving Integer Programming Problems 
1864 Management Science 50(12S), pp. 1861-1871, m2004 INFORMS 

Table 1 Applications of Lagrangian Relaxation 

Problem Researchers Lagrangian problem 

Traveling salesman 
Symmetric Held and Karp (1970, 1971) Spanning tree 

Helbig Hansen and Krarup (1974) Spanning tree 
Asymmetric Bazarra and Goode (1977) Spanning tree 
Symmetric Balas and Christofides (1976) Perfect 2-matching 
Asymmetric Balas and Christofides (1976) Assignment 

Scheduling 
n Im Weighted tardiness Fisher (1973) Pseudo-polynomial 

dynamic programming 
1 Machine weighted tardiness Fisher (1976) Pseudo-polynomial DP 
Power generation systems Muckstadt and Koenig (1977) Pseudo-polynomial DP 

General IP 
Unbounded variables Fisher and Shapiro (1974) Group problem 
Unbounded variables Burdet and Johnson (1977) Group problem 
0-1 variables Etcheberry et al. (1978) 0-1 GUB 

Location 
Uncapacitated Cornuejols et al. (1977) 0-1 VUB 

Erlenkotter (1978) 0-1 VUB 
Capacitated Geoffrion and McBride (1978) 0-1 VUB 
Databases in computer networks Fisher and Hochbaum (1980) 0-1 VUB 

Generalized assignment 
Ross and Soland (1975) Knapsack 
Chalmet and Gelders (1976) Knapsack, 0-1 GUB 
Fisher et al. (1980) Knapsack 

Set covering-partitioning 
Covering Etcheberry (1977) 0-1 GUB 
Partitioning Nemhauser and Weber (1978) Matching 

The LP dual of (D) is a linear program with many 
columns. 

T 

ZD = min tA,cxt, 
t=l 

T 

ZAt Axt = b, 
t=l 

T 

At = 
1, t=l 

At > 
O, 

t = 1,... T. (P) 

Problem (P) with At required to be integral is equiv- 
alent to (P), although (P) and (LP) generally are not 
equivalent problems. 

Both (D) and (P) have been important constructs 
in the formulation of algorithms for (D). Problem (D) 
makes it apparent that ZD(u) is the lower envelope of 
a finite family of linear functions. The form of ZD(u) 
is shown in Figure 1 for m = 1 and T = 4. The func- 
tion ZD(u) has all the nice properties, like continuity 
and concavity, that make life easy for a hill-climbing 
algorithm, except one-differentiability. The function 
is nondifferentiable at any ii where (LR,) has multi- 
ple optima. Although it is differentiable almost every- 
where, it generally is nondifferentiable at an optimal 
point. 

An m-vector y is called a subgradient of ZD(u) at i 
if it satisfies 

ZD(u) < ZD(i) + y(u - U), for all u. 

It's apparent that ZD(u) is subdifferentiable every- 
where. The vector (Axt - b) is a subgradient at any 
u for which xt solves (LRu). Any other subgradient 
is a convex combination of these primitive subgradi- 
ents. With this perspective, the well-known result that 
u* and A* are optimal for (D) and (P) if and only if 
they are feasible and satisfy a complementary slack- 
ness condition can be seen to be equivalent to the 
obvious fact that u* is optimal in (D) if and only if 0 
is a subgradient of ZD(u) at u*. 

Stimulated in large part by applications in 
Lagrangian relaxation, the field of nondifferentiable 
optimization using subgradients has recently become 
an important topic of study in its own right with 
a large and growing literature. Our review of algo- 
rithms for (D) will be brief and limited to the fol- 
lowing three approaches that have been popular 
in Lagrangian relaxation applications: (1) the sub- 
gradient method, (2) various versions of the sim- 
plex method implemented using column generation 
techniques, and (3) multiplier adjustment methods. 
Fisher et al. (1975) and Held et al. (1974) contain 
general discussions on the solution of (D) within the 
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Figure 1 The Form of Z,(u) 

ZD(u) 

w= Cx2+u(Ax2-b) -w=cX4 + +u(Ax4-b) 

xw = cx3 +u(Ax3 - b) 

10, 
u 

context of Lagrangian relaxation. Balinski and Wolff 
(1975) is a good general source on nondifferentiable 
optimization. 

The subgradient method is a brazen adaptation of 
the gradient method in which gradients are replaced 
by subgradients. Given an initial value uo a sequence 
Suk } is generated by the rule 

uk+l = uk + tk(Axk - b) 

where xk is an optimal solution to (LRk) and tk is 
a positive scalar step size. Because the subgradient 
method is easy to program and has worked well 
on many practical problems, it has become the most 
popular method for (D). There have also been many 
papers, such as Camerini et al. (1975), that suggest 
improvements to the basic subgradient method. 

Computational performance and theoretical con- 
vergence properties of the subgradient method are 
discussed in Held et al. (1974) and their references, 
and in several references on nondifferentiable opti- 
mization, particularly Goffin (1977). The fundamental 
theoretical result is that ZD(Uk) - ZD if tk - 0 and 

=0 
ti -- oo. The step size used most commonly in 

practice is 

t, 
- - kZD(u')) 

II Axk - b112 
where Ak is a scalar satisfying 0 < Ak < 2 and Z* is a 
upper bound on ZD, frequently obtained by applying 
a heuristic to (P). Justification of this formula is given 
in Held et al. (1974). Often the sequence Ak is deter- 
mined by setting A0 = 2 and halving Ak whenever 
ZD(u) has failed to increase in some fixed number of 
iterations. This rule has performed well empirically, 
even though it is not guaranteed to satisfy the suffi- 
cient condition given above for optimal convergence. 

Unless we obtain a uk for which ZD(Uk) equals the 
cost of a known feasible solution, there is no way 

of proving optimality in the subgradient method. To 
resolve this difficulty, the method is usually termi- 
nated upon reaching an arbitrary iteration limit. 

Usually uo = 0 is the most natural choice but in 
some cases one can do better. The generalized assign- 
ment problem is a good example. Assuming ci > 0 for 
all ij, the solution x = 0 is optimal in (LR1u) for any 
u satisfying ui < cij for all i and j. Setting u9 = mini cij 
is thus a natural choice. It is clearly better than uo = 0 
and, in fact, maximizes the lower bound over all u for 
which x = 0 is optimal in (LR1,). 

Another class of algorithms for (D) is based on 
applying a variant of the simplex method to (P), 
and generating an appropriate entering variable on 
each iteration by solving (LR0), where ii is the cur- 
rent value of the simplex multipliers. Of course, using 
the primal simplex method with column generation 
is an approach with a long history (Gilmore and 
Gomory 1963). However, this approach is known 
to converge very slowly and does not produce 
monotonically increasing lower bounds. These defi- 
ciencies have prompted researchers to devise col- 
umn generation implementations of dual forms of 
the simplex method, specifically the dual simplex 
method (Fisher 1973) and the primal-dual simplex 
method (Fisher et al. 1975). The primal-dual sim- 
plex method can also be modified slightly to make it 
the method of steepest ascent for (D). Hogan et al. 
(1975) and Marsten (1975) have had success with an 
interesting modification of these simplex approaches 
that they call BOXSTEP. Beginning at given uo, a 
sequence uk} is generated. To obtain uk+l from uk, we 
first solve (D) with the additional requirement that 

lui - uk I < for some fixed positive 8. Let jik denote 
the optimal solution to this problem. If lii - u- I < 8 
for all i then jik is optimal in (D). Otherwise set 
uk+1 = uk + tk(iik - Uk) where tk is the scalar that solves 

maxZD(Uk + t(i, k -_ k)) t 
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This line search problem is easily solved by Fibonacci 
methods. 

Generally, the simplex-based methods are harder to 
program and have not performed quite so well com- 
putationally as the subgradient method. They should 
not be counted out, however. Further research could 
produce attractive variants. We note also that the 
dual, primal-dual and BOXSTEP methods can all be 
used in tandem with the subgradient method by ini- 
tiating them with a point determined by the subgra- 
dient method. Using them in this fashion to finish off 
a dual optimization probably best exploits their com- 
parative advantages. 

The third approach, multiplier adjustment meth- 
ods, are specialized algorithms for (D) that exploit the 
structure of a particular application. In these meth- 
ods, a sequence uk is generated by the rule uk+l = 
uk + tkdk where tk is a positive scalar and dk is a 
direction. To determine dk we define a finite and usu- 
ally small set of primitive directions S for which it is 
easy to evaluate the directional derivative of ZD(u). 
Usually directions in S involve changes in only one 
or two multipliers. For directions in S, it should be 
easy to determine the directional derivative of ZD(u). 
Directions in S are scanned in fixed order and dk 
is taken to be either the first direction found along 
which ZD(u) increases or the direction of steepest 
ascent within S. The step size tk can be chosen either 
to maximize ZD(Uk + tdk) or to take us to the first point 
at which the directional derivative changes. If S con- 
tains no improving direction we terminate, which, of 
course, can happen prior to finding an optimal solu- 
tion to (D). 

Successful implementation of primitive-direction 
ascent for a particular problem requires an artful 
specification of the set S. S should be manageably 
small, but still include directions that allow ascent 
to at least a near optimal solution. Held and Karp 
(1970) experimented with primitive-direction ascent 
in their early work on the traveling salesman prob- 
lem. They had limited success using a set S consisting 
of all positive and negative coordinate vectors. This 
seemed to discourage other researchers for some time, 
but recently Erlenkotter (1978) devised a multiplier 
adjustment method for the Lagrangian relaxation 
of the uncapacitated location problem given in 
Cornuejols et al. (1977) in the case where the number 
of facilities located is unconstrained. Although dis- 
covered independently, Erlenkotter's algorithm is a 
variation on a method of Bilde and Krarup that was 
first described in 1967 in a Danish working paper and 
later published in English as Bilde and Krarup (1977). 
While there has been no direct comparison, Erlenkot- 
ter's method appears to perform considerably better 
than the subgradient method. Fisher and Hochbaum 
(1980) have experimented with multiplier adjustment 

for another location problem and found the method 
to work well, but not quite so well as the subgradient 
method. 

Fisher et al. (1980) have successfully developed 
a multiplier adjustment method for the generalized 
assignment problem in which one multiplier at a time 
is increased. This method has led to a substantially 
improved algorithm for the generalized assignment 
problem. 

7. How Good Are the Bounds? 
The "answer" to this question that is available in the 
literature is completely problem specific and largely 
empirical. Most of the empirical results are summa- 
rized in Table 2. Each line of this table corresponds 
to a paper on a particular application of Lagrangian 
relaxation and gives the problem type, the source 
in which the computational experience is given, the 
number of problems attempted, the percentage of 
problems for which a u was discovered with ZD(u) = 

ZD = Z, and the average value of ZD(u*) x 100 divided 
by the average value of Z, where ZD(u*) denotes the 
largest bound discovered for each problem instance. 
Except as noted for the generalized assignment prob- 
lem, all samples included a reasonable number of 
large problems. In some cases the sample included 
significantly larger problems than had been previ- 
ously attempted. Frequently, standard test problems 
known for their difficulty were included. Table 2 is 
based on the results reported in each reference for all 

problems for which complete information was given. 
Of course, Table 2 gives highly aggregated informa- 
tion, and interested readers are urged to consult the 
appropriate references. 

These results provide overwhelming evidence that 
the bounds provided by Lagrangian relaxation are 
extremely sharp. It is natural to ask why Lagrangian 
bounds are so sharp. I am aware of only one analytic 
result that even begins to answer this question. This 
result was developed by Cornuejols et al. (1977) for 
the K-median problem. 

Given n possible facility locations, m markets, and a 
nonnegative value ci for serving market i from a facil- 
ity at location j, the K-median problem asks where 
K facilities should be located to maximize total value. 
Let 

1, if a facility is placed in location j, 

YJ = 0, otherwise; 

= 1, if market i is served from location j, 
0, otherwise. 
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Table 2 Computational Experience with Lagrangian Relaxation 

Number of Percentage of 
problems problems with Ave. ZD(u*) 

Problem type Source solved Z, = Z Ave. Z 

Traveling salesman 
Symmetric Held and Karp (1971) 18 55.5 99.5 
Asymmetric Bazarra and Goode (1977) 8 0.0 97.5 

Scheduling 
n/m Weighted tardiness Fisher (1973) 8 37.5 96.2 
1 Machine weighted tardiness Fisher (1976) 63 49.2 99.6 
Power generation systems Muckstadt and Koenig (1977) 15 0.0 98.9 

General IP Fisher et al. (1975) 11 0.0 83.2 
Location 

Uncapacitated Cornuejols et al. (1977) 33 66.6 99.9 
Capacitated Geoffrion and McBride (1978) 6 50.0 99.4 
Databases in computer networks Fisher and Hochbaum (1980) 29 51.7 95.9 

Generalized assignment 
Lagrangian* relaxation 1 Chalmet and Gelders (1976) 249** 96.0 99.8 
Lagrangian* relaxation 1 Fisher et al. (1980) 15 80.0 98.6 
Lagrangian* relaxation 2 Chalmet and Gelders (1976) 249** 0.0 69.1 

* See r3 for a definition of Lagrangian relaxations 1 and 2. 
** Mostly small problems. The largest had m = 9 and n = 17. 

If yj = 0 we must have xij = 0 for all i. Thus the 
K-median problem can be formulated as the integer 
program 

m n 

Z = max E cijxij, (5) 
i=1 j=1 

j=1 

n 

Ey = K, (7) 
j=1 

0 
< xij < yj ! 1, for all i and j, (8) 

xij and yj integral, for all i and j. (9) 

A Lagrangian relaxation is obtained by dualizing 
constraints (6). 

m n m M 

ZD(u) 
= max E cijxij Ui ij 

i=1j=l i=1 i=1 

subject to (7), (8) and (9) 
m n m 

= max Z (cij + ui)xij 
- 

ui 
i=1 j=1 i=1 

subject to (7), (8) and (9). 

This problem has the 0-1 VUB structure described 
in g4. To solve, we first observe that the VUB con- 
straints (8) and the objective of the Lagrangian prob- 
lem imply that 

S y, if ci + ui 0, 
0, otherwise. 

Hence, defining -5 = Em max(0, cij + ui) optimal yj's 
must solve 

n 

max E cji, 
i=1 

n 

-yj=K, j=1 

y = Oorl, j=1,...,n, 

which is a trivial problem. 
Let ZD = 

minu ZD(u) and assume ZD > 0. Cornuejols 
et al. (1977) proved that 

K-lK 1 K 

(ZD - Z) / ZD < K < - 
- 

K e 

and exhibited examples that show this bound to be 
the best possible. 

This is an interesting first step towards under- 
standing why Lagrangian relaxation has worked well 
on so many problems. Further study of this type is 
needed to understand and better exploit the power of 
Lagrangian relaxation. 

8. Selecting Between Competing 
Relaxations 

Two properties are important in evaluating a relax- 
ation: the sharpness of the bounds produced and 
the amount of computation required to obtain 
these bounds. Usually selecting a relaxation involves 
a tradeoff between these two properties; sharper 
bounds require more time to compute. It is generally 
difficult to know whether a relaxation with sharper 
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bounds but greater computation time will result in a 
branch and bound algorithm with better overall per- 
formance. However, it is usually possible to at least 
compare the bounds and computation requirements 
for different relaxations. This will be demonstrated for 
the generalized assignment example. 

Two Lagrangian relaxations, (LR1,) and (LR2,), 
were defined for this problem. The linear program- 
ming relaxation of formulation (1)-(4) provides a 
third relaxation. 

Consider first the computational requirements for 
each relaxation. We know that solving (LR1,) requires 
time bounded by n Y'.' bi and solving (LR2,) requires 
time proportional to nm. From this it would seem 
that the first relaxation requires greater computation, 
although it is difficult to know how many times each 
Lagrangian problem must be solved in optimizing the 
duals. It is also impossible to know analytically the 
time required to solve the LP relaxtion of (1)-(4). 

Chalmet and Gelders (1976) reports computational 
times for the three relaxations for examples ranging 
in size from m = 4 and n=6 to m=9 and n= 
17. The subgradient method was used to optimize 
the dual problems. On average, the first relaxation 
required about 50% more computational time than the 
second. This is much less than would be expected 
from comparison of worst-case bounds on times to 
solve Lagrangian problems because the subgradient 
method converged more quickly for the first relax- 
ation. Solving the LP relaxation required one-fourth 
of the time for (LR1,) for small problems but 2.5 times 
for large problems. 

Now consider the relative sharpness of the bounds 
produced by these relaxations. Let ZDl 

= max, ZD1 (u), 
let ZD2 = maxv0> ZD2(v), and let 

ZcpA 
denote the opti- 

mal value of the LP relaxation of (1)-(4). 
A glance at the computational experience reported 

in the last two lines of Table 2 for the two Lagrangian 
relaxations strongly suggests that relaxation 1 pro- 
duces much sharper bounds than relaxation 2. This 
observation can be verified using an analytic result 
given by Geoffrion (1974). This result will also allow 
us to compare ZD1 and ZD2 with ZpA. 

The result states that in general ZD > ZLP. Con- 
ditions are also given for ZD = ZLp. The fact that 

ZD > ZLP can be established by the following series of 
relations between optimization problems. 

ZD = max {min cx + u(Ax - b)} 
u X 

s.t. Dx 
> e, x > 0 and integral; 

> max {min cx + u(Ax - b) } u x 

s.t. 
Dx>_e, x>_0 

(By LP duality) = max max ve - ub 

s.t. vD < c + uA 

(By LP duality) = min cx 
x 

s.t. Ax =b, Dx > e, 
x>_0, 

= ZLP. 

This logic also reveals a sufficient condition for 
ZD = ZLP. Namely, ZD = ZLP whenever ZD(u) is not 
increased by removing the integrality restriction on 
x from the constraints of the Lagrangian problem. 
Geoffrion (1974) calls this the integrality property. 

Applying these results to the generalized assign- 
ment problem establishes that 

ZD1l 
ZD2 = ZLP since 

the second Lagrangian relaxation has the integrality 
property while the first does not. 

It should be emphasized that the integrality prop- 
erty is not defined relative to a given problem class 
but relative to a given integer programming formulation 
of a problem class. This is an important distinction 
because a problem often has more than one formula- 
tion. The Lagrangian relaxation of the K-median prob- 
lem given in i7 has the integrality property if one 
takes (P) to be formulation (5)-(9). This fact alone 
is misleading since there is another formulation of 
the K-median problem in which constraints (8) are 
replaced by 

m 

Exijmyj, j=1,...,n, (8'a) 
i=1 

0 < xij < 1, for all i and j, (8'b) 

0 < yj < 1, j=l,...,n. (8'c) 

This formulation is much more compact than (5)-(9) 
and is the one used in most LP-based branch 
and bound algorithms for the K-median problem. 
The Lagrangian relaxation given previously can be 
defined equivalently in terms of this formulation but 
relative to this formulation, it does not have the inte- 
grality property. In fact, it is shown in Cornuejols et al. 
(1977) that the Lagrangian bound ZD and the LP value 
of (5), (6), (7), (8), (9) are substantially sharper than the 
LP value of (5), (6), (7), (8') and (9). Others (Williams 
1974, 1975 and Mairs et al. 1978) have also noted that 
there are frequently alternative IP formulations for the 
same problem that have quite different LP properties. 

It is also worth noting that many other success- 
ful Lagrangian relaxations (including Held and Karp 
1970, 1971; Etcheberry 1977; Etcheberry et al. 1978; 
and Fisher and Hochbaum 1980) have had the inte- 
grality property. For these applications Lagrangian 
relaxation was successful because the LP relax- 
ation closely approximated (P) and because the 
method used to optimize (D) (usually the subgradi- 
ent method) was more powerful then methods avail- 
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able for solving the (generally large) LP relaxation 
of (P). The important message of these applications is 
that combinatorial optimization problems frequently 
can be formulated as a large IP whose LP relaxation 
closely approximates the IP and can be solved quickly 
by dual methods. To exploit this fact, future research 
should be broadly construed to develop methods for 
solving the large structured LPs arising from combi- 
natorial problems and to understand the properties 
of combinatorial problems that give rise to good LP 
approximations. There has already been significant 
research on methods other than Lagrangian relaxation 
for exploiting the special structure of LP's derived 
from combinatorial problems. Schrage (1975), Miliotis 
(1976a, b), and Christofides and Whitlock (1978) have 
given clever LP solution methods that exploit certain 
types of structure that are common in formulations of 
combinatorial problems. 

9. Feasible Solutions 
This section is concerned with using (LR,) to obtain 
feasible solutions for (P). It is possible in the course 
of solving (D) that a solution to (LR,) will be dis- 
covered that is feasible in (P). Because the dualized 
constraints Ax = b are equalities, this solution is also 
optimal for (P). If the dualized constraints contain 
some inequalities, a Lagrangian problem solution can 
be feasible but nonoptimal for (P). However, it is 
rare that a feasible solution of either type is dis- 
covered. On the other hand, it often happens that a 
solution to 

(LRu) 
obtained while optimizing (D) will 

be nearly feasible for (P) and can be made feasible 
with some judicious tinkering. Such a method might 
be called a Lagrangian heuristic. After illustrating 
this approach for the generalized assignment problem 
and (LR1u), we will discuss computational experience 
with Lagrangian heuristics for other problems. 

It is convenient to think of the generalized assign- 
ment problem as requiring a packing of n items into 
m knapsacks using each item exactly once. In (LR1,) 
the constraints Elm xi = 1, j = 1, ..., n requiring that 
each item be used exactly once are dualized and 
may be violated. Let x denote an optimal solution to 

(LR1u). Partition N = {1,..., n} into three sets defined 
by 

m 

S, = 
ie J i =1 0, 

i=1 

s2 = 
J xj 

=j i l 

S3 i= > S3 = j{iJe v i> 1 .m 
i=1 

The constraints of (P) which are violated by x corre- 
spond to j E S U S3. We wish to modify 

- 
so that these 

constraints are satisfied. This is easy for a j E S3. Sim- 
ply remove item j from all but one knapsack. A vari- 
ety of rules could be used to determine in which 
knapsack to leave item j. For example, it would be 
reasonable to choose the knapsack that maximizes 

(ui - cij)/aij. 
To complete the construction of a feasible solution 

it is only necessary to assign items in S, to knapsacks. 
While there is no guarantee that this can be done, the 
chances of success should be good unless the knap- 
sack constraints are very tight. Many assignment rules 
are plausible, such as the following one that is moti- 
vated by bin packing heuristics. Order items in 

S1 by decreasing value of Eil aij and place each item 
in turn into a knapsack with sufficient capacity that 
maximizes (ui - cij)/aij. 

Several researchers have reported success using 
Lagrangian problem solutions obtained during the 
application of the subgradient method to construct 
primal feasible solutions. For example, this is easy to 
do for the K-median problem. Let x, Y denote a feasi- 
ble solution to the Lagrangian problem defined in j7 
for the K-median problem. Let S = {jj |= 11 and for 
each i set 

=ij 
= 1 for a j that solves maxij, cij. Set 

ij 
= 0 

for remaining ij. The solution =, 
- 

is feasible and rep- 
resents the best assignment of x given P. Cornuejols 
et al. (1977) found that this approach performed as 
well as the best of several other heuristics they tested. 

Fisher (1976) reports experience for the problem 
of sequencing n jobs on one machine to minimize 
a tardiness function. A Lagrangian solution is a set 
of start times x,,. ., Xn for the n jobs that may vio- 
late the machine constraints. A primal feasible solu- 
tion is obtained by sequencing jobs on the machine 
in order of increasing X, values. This rule was tested 
on 63 problems. It was applied in conjunction with 
the subgradient method after an initial feasible solu- 
tion had been generated by a greedy heuristic. The 
greedy heuristic found an optimal solution for 18 of 
the problems. The Lagrangian heuristic found opti- 
mal solutions to 21 of the remaining 45 problems. On 
average the greedy value was 100.4% of the optimal 
value while the value of the solution produced by 
the Lagrangian heuristic was 100.16% of the optimal 
value. 

10. Using Lagrangian Relaxation in 
Branch and Bound 

The issues involved in designing a branch and bound 
algorithm that uses a Lagrangian relaxation are essen- 
tially the same as those that arise when a linear pro- 
gramming relaxation is used. Some of these issues are 
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Figure 2 Partial Branching Tree for the Generalized Assignment Prob- 
lem with m = 3 

x21 = =1 x3,= 1 x23 = 1 1 

x=2 13j3 
= 1 

O 3O3 

illustrated here for the generalized assignment prob- 
lem and (LR1,) derived in r3. 

A natural branching tree for this problem is illus- 
trated in Figure 2. This tree exploits the structure of 
constraints (2) by selecting a particular index j when 
branching and requiring exactly one variable in the 
set xij, i =1,..., m, to equal 1 along each branch. 

A Lagrangian relaxation (presumably LR1u given 
the discussion in m8) can be used at each node of this 
tree to obtain lower bounds and feasible solutions. 

We note that the Lagrangian problem defined at 
a particular node of this tree has the same struc- 
ture as (LR1,) and is no harder to solve. This is an 
obvious property that must hold for any application. 
Sometimes it is desirable to design the branching 
rules to achieve this property (e.g., Held and Karp 
1971). 

There are several tactical decisions that must be 
made in any branch and bound scheme such as which 
node to explore next and what indices (jI, j2 and j3, 
in Figure 2) to use in branching. Lagrangian relax- 
ation can be used in making these decisions in much 
the same way that linear programming would he 
used. For example, we might choose to branch on an 
index j for which uj(Em xij -1) is large in the current 
Lagrangian problem solution in order to strengthen 
the bounds as much as possible. 

Finally, we note that the method for optimizing 
(D) must be carefully integrated into the branch and 
bound algorithm to avoid doing unnecessary work 
when (D) is reoptimized at a new node. A common 

strategy when using the subgradient method is to 
take uo equal to the terminal value of u at the previ- 
ous node. The subgradient method is then run for a 
fixed number of iterations that depends on the type of 
node being explored. At the first node a large number 
of iterations is used. When branching down a small 
number is used, and when backtracking, an interme- 
diate number. 

11. Conclusions and Future Research 
Directions 

Lagrangian relaxation is an important new com- 
putational technique in the management scientist's 
arsenal. This paper has documented a number of suc- 
cessful applications of this technique, and hopefully 
will inspire other applications. Besides additional 
applications, what opportunities for further research 
exist in this area? The most obvious is development of 
more powerful technology for optimizing the nondif- 
ferentiable dual function. Nondifferentiable optimiza- 
tion has become an important general research area 
that surely will continue to grow. One corner of this 
area that seems to hold great promise for Lagrangian 
relaxation is the development of multiplier adjust- 
ment methods of the type described at the end of 
b6. The enormous success that has been obtained 
with this approach on the uncapacitated location 
(Erlenkotter 1978) and the generalized assignment 
problems (Fisher et al. 1980) suggests that it should 
be tried on other problems. Two other research areas 
that deserve further attention are the development 
and analysis of Lagrangian heuristics as described in 
k9 and the analysis (worst-case or probabilistic) of the 
quality of the bounds produced by Lagrangian relax- 
ation as discussed in q7 and Cornuejols et al. (1977). 
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