Floating-Point on x86-64

Sixteen registers: $xmmO0 through $xmm15
 float or double arguments in $xmm0 — Fxmm7
* float or double result in $xmmO

* $xmm8 — $xmml5 are temporaries (caller-saved)

Two operand sizes:
* single-precision = 32 bits = float

* double-precision = 64 bits = double

1

-2

Arithmetic Instructions

addsx source, dest
subsx source, dest
mulsx source, dest
diwvsx source, dest

x is either s ord

Add doubles

addsd $%$xmmO,

Multiply £loats

mulss %$xmmO,

Sxmml

Sxmml

Conversion

cvtsx2sx source, dest
cvttsx2sx source, dest
x is either s, d, or 1

With i, add an extra extension for 1 or

Convert a long to a double

cvtsi2sdq %rdi, %xmmO

Converta float toa int

cvttss2sil $xmm0, %eax

Example Floating-Point Compilation

double scale(double a, int b) {
return b * a;

}

cvtsi2sdl %edi, %$xmml
mulsd $xmml, $%$xmmO
ret

addpx
subpx
mulpx

divpx

source,

source,

source,

source,

SIMD Instructions

dest
dest
dest

dest

Combine pairs of doubles or £1oats

... because registers are actually 128 bits wide

Add two pairs of doubles

addpd %$xmm0O, %xmml

Multiply four pairs of £loats

mulps 3xmmQO, %xmml

Auto-Vectorization

void mult all(double a[4], double b[4]) {
a[0] = a[0] * b[0];
a[l] = a[l] * b[1];
af[2] = a[2] * b[2];
a[3] = a[3] * b[3];

* What if a and b are alises!?

* What if a or b is not |16-byte aligned?

7-8

Auto-Vectorization

void mult all (double * restrict

ai,

double * restrict Dbi) {
double *a = builtin assume aligned(ai, 16);
double *b = builtin assume aligned(bi, 16);
a[0] = a[0] * b[O];
al[l] = a[l] * b[1];
al[2] = a[2] * b[2];
a[3] = a[3] * b[3];
}
movapd 16 (%rdi), %xmmO
m | movapd $rdi) , %xmml
C|> mulpd 16(%rsi), %xmmO
mulpd (%rsi) , %xmml
8 movapd 3%xmmO, 16 (3rdi)
o movapd S%xmml, (%rdi)
ret

9-10

History: Floating-Point Support in x86

8086

* No floating-point hardware

* Software can implement IEEE arithmatic by
manipulating bits, but that’s slow

8087 (a.k.a. x87)

* Co-processor for 8086
* CPU handles instructions by deferring to the FPU

11-12

History: Floating-Point Support in x86

80386
« CPU + FPU together on one chip
* Some 80386 chips had FP support, some didn’t

80486

* FP support always available

13-14

x87 Features

80-bit floating-point numbers
* 63 bits for fraction part
* |5 bits for exponent

* | extra bit (not quite |IEEE encoding)

Registers are arranged in a stack

* Leads to FADD vs. FADDP

15-16

On to SSE

To support parallel operations, Intel and AMD

introduced alternative FP instructions as the MMX and
3DNow! extensions

By the Pentium 4 (ca.2000): SSE2

* At this point, x87 is always available, and SSE2 is
practically always available

» Still, to support old hardware and old libraries, x87
remains in widespread use for 32-bit x86

17-19

Floating-Point Support in x86-64

On x86-64, SSE2 is always available
So, x86-64 applications and ABls use SSE2

ADDSD, MOVD, CVTSD2S1T, etc.

x87 is still around!

Scientific applications that benefit from 80 bits of FP
precision sometimes still use it

FADD, FLD, FILD, etc.

20-21

More Variants

 SSE (1999)

« SSE2 (2001) — new instructions

« SSE3 (2004) — new instructions

« SSSE3 & SSE4 — new instructions

* AVX (201 I) — 256-bit registers
* AVX2 (2015) — new instructions

22

